

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18325-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F18325/18345

TABLE 1-3:	PIC16(L)F18345 PINOUT DESCRIPTION (C	ONTINUED)
------------	--------------------------------------	-----------

Name	Function	Input Type	Output Type	Description
RC3/ANC3/C1IN3-/C2IN3-/	RC3	TTL/ST	CMOS	General purpose I/O.
MDMIN ⁽¹⁾ / CCP2 ⁽¹⁾ /CLCIN1 ⁽¹⁾ /	ANC3	AN	—	ADC Channel C3 input.
	C1IN3-	AN	—	Comparator C1 negative input.
	C2IN3-	AN	—	Comparator C2 negative input.
	MDMIN	TTL/ST	—	Modular Source input.
	CCP2	TTL/ST	CMOS	Capture/Compare/PWM 2 input.
	CLCIN1	TTL/ST	—	Configurable Logic Cell 1 input.
RC4/ANC4	RC4	TTL/ST	CMOS	General purpose I/O.
	ANC4	AN	—	ADC Channel C4 input.
RC5/ANC5/MDCIN2 ⁽¹⁾ /CCP1 ⁽¹⁾	RC5	TTL/ST	CMOS	General purpose I/O.
	ANC5	AN	—	ADC Channel C5 input.
	MDCIN2	TTL/ST	—	Modular Carrier input 2.
	CCP1	TTL/ST	CMOS	Capture/Compare/PWM 1 input.
RC6/ANC6/SS1 ⁽¹⁾	RC6	TTL/ST	CMOS	General purpose I/O.
	ANC6	AN	—	ADC Channel C6 input.
	SS1	TTL/ST	—	Slave Select 1 input.
RC7/ANC7	RC7	TTL/ST	CMOS	General purpose I/O.
	ANC7	AN	_	ADC Channel C7 input.
VDD	Vdd	Power	_	Positive supply.
Vss	Vss	Power	—	Ground reference.

Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-2.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

IADLL 4-4.	SFECIAL I UNCTION REGISTER SUMMART DAMAS 0-51 (CONTINUED)	

Address	Name	L)F18325 L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on:	Value on all other
		PIC16()									POR, BOR	Resets
Bank 2												
	CPU CORE REGISTERS; see Table 4-2 for specifics											
10Ch	LATA		_	—	LATA5	LATA4	_	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
10Dh	LATB	X —				Unimple	mented				—	—
		— X	LATB7	LATB6	LATB5	LATB4	_	—	—	—	xxxx	uuuu
10Eh	LATC	x —	_	_	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xx xxxx	uu uuuu
		— X	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
10Fh	—	—				Unimple	mented				—	—
110h	—	—				Unimple	mented		ſ	ſ	—	—
111h	CM1CON0		C10N	C1OUT	—	C1POL	—	C1SP	C1HYS	C1SYNC	00-0 -100	00-0 -100
112h	CM1CON1		C1INTP	C1INTN		C1PCH<2:0>			C1NCH<2:0>	1	0000 0000	0000 0000
113h	CM2CON0		C2ON	C2OUT	—	C2POL	—	C2SP	C2HYS	C2SYNC	00-0 -100	00-0 -100
114h	CM2CON1		C2INTP	C2INTN		C2PCH<2:0>			C2MCH<2:0>	r	0000 0000	0000 0000
115h	CMOUT		—	—	_	_	_	_	MC2OUT	MC1OUT	00	00
116h	BORCON		SBOREN			_				BORRDY	1q	uu
117h	FVRCON		FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFV	R<1:0>	0000 00p0	0q00 0000
118h	DACCON0		DAC1EN	_	DAC10E		DAC1PS	SS<1:0>		DAC1NSS	0-0- 00-0	0-0- 00-0
119h	DACCON1		_	_	_			DAC1R<4:0>			0 0000	0 0000
11Ah to 11Fh	_	-		Unimplemented							_	_

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Only on PIC16F18325/18345. Legend:

Note 1:

Register accessible from both User and ICD Debugger. 2:

FABLE 4-4 :	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED))
--------------------	--	------------	---

		10 10				· `		<u> </u>				
Address	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 6												
CPU CORE REGISTERS; see Table 4-2 for specifics												
30Ch	SLRCONA		_	_	SLRA5	SLRA4	_	SLRA2	SLRA1	SLRA0	11 -111	11 -111
30Dh	SLRCONB	X —				Unimple	mented				—	—
		— X	SLRB7	SLRB6	SLRB5	SLRB4				_	1111	1111
30Eh	SLRCONC	X —	_	—	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	11 1111	11 1111
		— X	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
30Fh	—	—				Unimple	mented				—	—
310h	—	—				Unimple	mented				_	_
311h	CCPR3L					CCPR	3<7:0>				xxxx xxxx	xxxx xxxx
312h	CCPR3H					CCPR3	<15:8>				xxxx xxxx	xxxx xxxx
313h	CCP3CON		CCP3EN	—	CCP3OUT	CCP3FMT		CCP3MC	DE<3:0>		0-x0 0000	0-x0 0000
314h	CCP3CAP		_	—	—	—		CCP3C	TS<3:0>		0000	xxxx
315h	CCPR4L					CCPR4	1<7:0>				xxxx xxxx	xxxx xxxx
316h	CCPR4H			CCPR4<15:8>							xxxx xxxx	xxxx xxxx
317h	CCP4CON		CCP4EN	CCP4EN – CCP4OUT CCP4FMT CCP4MODE<3:0>							0-x0 0000	0-x0 0000
318h	CCP4CAP		_	_	_	_		CCP4C	TS<3:0>		0000	xxxx
319h to 31Fh	-	_	- Unimplemented							-	-	

Legend: x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Only on PIC16F18325/18345.

2: Register accessible from both User and ICD Debugger.

10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See Table 35-8 for the LFINTOSC specification.

10.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 10-1.

10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 10-1 for more details.

10.2.4 WDT IS ALWAYS OFF

When the WDTE bits are set to '00', the WDT is disabled, and the SWDTEN bit of the WDTCON is ignored.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
1.0	×	Awake	Active
10	^	Sleep	Disabled
01	1	×	Active
10	0	~	Disabled
00	х	Х	Disabled

TABLE 10-1: WDT OPERATING MODES

10.3 Time-out Period

The WDTPS<4:0> bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep due to an interrupt
- Oscillator fail
- · WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 10-2 for more information.

10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 7.0** "Oscillator **Module**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See STATUS Register (Register 4-1) for more information.

TABLE 10-2: WDT CLEARING CONDITIONS

Conditions	WDT
WDTE = 00	Olaszad az d Disablad
WDTE = 01 and SWDTEN = 0	Cleared and Disabled
Exit Sleep due to a Reset + System Clock = XT, HS, LP	
Exit Sleep due to a Reset + System Clock = HFINTOSC, LFINTOSC, EC, SOSC	Cleared until the end of US I
Exit Sleep due to an interrupt	
Enter Sleep	
CLRWDT Command	Cleared
Oscillator Failure (see Section 7.4 "Fail-Safe Clock Monitor")	
System Reset	
Any clock switch or divider change (see Section 7.3 "Clock Switching")	Unaffected

11.4.5 NVMREG WRITE TO PROGRAM FLASH MEMORY

Program memory is programmed using the following steps:

- 1. Load the address of the row to be programmed into NVMADRH:NVMADRL.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 11-4 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper ten bits of NVMADRH:NVMADRL, (NVMADRH<6:0>:NVMADRL<7:5>) with the lower five bits of NVMADRL, (NVMADRL<4:0>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF.

The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the NVMDATH:NVMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

Note: The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.

- 1. Set the WREN bit of the NVMCON1 register.
- 2. Clear the NVMREGS bit of the NVMCON1 register.
- Set the LWLO bit of the NVMCON1 register. When the LWLO bit of the NVMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the NVMADRH:NVMADRL register pair with the address of the location to be written.
- 5. Load the NVMDATH:NVMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 11.4.2 "NVM Unlock Sequence"). The write latch is now loaded.
- 7. Increment the NVMADRH:NVMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the NVMCON1 register. When the LWLO bit of the NVMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the NVMDATH:NVMDATL register pair with the program memory data to be written.
- 11. Execute the unlock sequence (Section 11.4.2 "NVM Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
- Note: The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 11-4. The initial address is loaded into the NVMADRH:NVMADRL register pair; the data is loaded using indirect addressing.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea								
bit 7-6	ANSC<7:6> :	Analog Select	between Analo	og or Digital Fu	nction on pins	RC<7:6>, resp	ectively ⁽¹⁾			

REGISTER 12-20: ANSELC: PORTC ANALOG SELECT REGISTER

bit 7-6	ANSC<7:6> : Analog Select between Analog or Digital Function on pins RC<7:6>, respectively ⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input ⁽²⁾ . Digital input buffer disabled.
bit 5-0	 ANSC<5:0>: Analog Select between Analog or Digital Function on pins RC<5:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽²⁾. Digital input buffer disabled.

Note 1: PIC16(L)F18345 only; otherwise read as '0'.

2: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	WPUC<7:6> ⁽¹⁾ : Weak Pull-up Register bits ⁽²⁾ 1 = Pull-up enabled 0 = Pull-up disabled
bit 5-0	<pre>WPUC<5:0>: Weak Pull-up Register bits⁽²⁾ 1 = Pull-up enabled 0 = Pull-up disabled</pre>

Note 1: PIC16(L)F18345 only; otherwise read as '0'.

2: The weak pull-up is disabled if the pin is configured as an output except when the pin is also configured as open-drain. When configured as open-drain, the pull-up is enabled when the output value is high, and disabled when the output value is low.

REGISTER 20	J-4. CWOA			SELECTION	INLOISTEN		
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			_		DAT•	<3:0>	
bit 7							bit 0
Legend:							

REGISTER 20-4: CWGxDAT: CWGx DATA INPUT SELECTION REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4 Unimplemented: Read as '0'

bit 3-0 DAT<3:0>: CWG Data Input Selection bits

DAT	Data Source
0000	CWGxPPS
0001	C1OUT
0010	C2OUT
0011	CCP1
0100	CCP2
0101	CCP3
0110	CCP4
0111	PWM5
1000	PWM6
1001	NCO1
1010	CLC1
1011	CLC2
1100	CLC3
1101	CLC4
1110	Reserved
1111	Reserved

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA	—	_	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	_	—	_	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	_	—	_	150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
PIR4	CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	111
PIE4	CWG2IE	CWG1IE	TMR5GIE	TMR5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	106
CWG1CON0	EN	LD	—	—	—	Ν	/IODE<2:0	>	213
CWG1CON1	—	—	IN	_	POLD	POLC	POLB	POLA	214
CWG1CLKCON		—				_	—	CS	214
CWG1DAT	—	—		_	DAT<3:0>				215
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	216
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	C<1:0>	—	—	217
CWG1AS1	—	—		AS4E	AS3E	AS2E	AS1E	AS0E	218
CWG1DBR	—	—			DBR	<5:0>			218
CWG1DBF	—	—			DBF∙	<5:0>			219
CWG1PPS	—	—			CV	VG1PPS<4	1:0>		162
CWG2CON0	EN	LD	_	_	_	Ν	/IODE<2:0	>	213
CWG2CON1	—	—	IN	_	POLD	POLC	POLB	POLA	214
CWG2CLKCON	—	—		_	_	_	—	CS	214
CWG2DAT	—	—	_	_		DAT	<3:0>		215
CWG2STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	216
CWG2AS0	SHUTDOWN	REN	LSBD•	<1:0>	LSAC	C<1:0>	—	—	217
CWG2AS1	—	—	—	AS4E	AS3E	AS2E	AS1E	AS0E	218
CWG2DBR		_			DBR	<5:0>			218
CWG2DBF	—	—			DBF∙	<5:0>			219
CWG2PPS	—	_	_		CV	VG2PPS<4	4:0>		162

TABLE 20-2: SUMMARY OF REGISTERS ASSOCIATED WITH CWGx

Legend: -= unimplemented location, read as '0'. Shaded cells are not used by interrupts.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '0'.

U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
	MDCHPOL	MDCHSYNC		MDCH<3:0> ⁽¹⁾					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'			
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ired						
bit 7	Unimplemer	nted: Read as '0)'						
bit 6	MDCHPOL:	Modulator High	Carrier Polar	ity Select bit					
	1 = Selected	d high carrier sig	nal is inverte	d					
	0 = Selected	d high carrier sig	nal is not inv	erted					
bit 5	MDCHSYNC	: Modulator Hig	h Carrier Syr	hchronization Er	able bit	<i>.</i>			
	1 = Modulate	or waits for a fai	ling edge on	the high time c	arrier signal be	etore allowing a	a switch to the		
	0 = Modulat	or output is not s	synchronized	to the high time	e carrier signal	1)			
bit 4	Unimplemer	nted: Read as '0)'	0	0				
bit 3-0	MDCH<3:0>	Modulator Data	High Carrier	Selection bits (1)				
	1111 = CLC	C4 output	0						
	1110 = CLC	C3 output							
	1101 = CLC	C2 output							
	1100 = CLC	C1 output							
	1011 = HH	NIOSC							
	1010 = F0	served No chan	nel connecte	d					
	1001 = NC			u.					
	0111 = PW	M6 output							
	0110 = PW	M5 output							
	0101 = CC	P2 output (PWM	Output mod	e only)					
	0100 = CCI	P1 output (PWM	Output mod	e only)					
	0011 = Ref	erence clock mo	dule signal (CLKR)					
	0010 = MD								
	0001 = MD								
	0000 - V 33	,							

REGISTER 25-3: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

26.1.6 SYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is clear (T0ASYNC = 0), the counter clock is synchronized to the system oscillator (Fosc/4). When operating in Synchronous mode, the counter clock frequency cannot exceed Fosc/4.

26.2 Clock Source Selection

The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 26-4 displays the clock source selections.

26.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, Timer0 operates as a timer and will increment on multiples of the clock source, as determined by the Timer0 prescaler.

26.2.2 EXTERNAL CLOCK SOURCE

When an external clock source is selected, Timer0 can operate as either a timer or a counter. Timer0 will increment on multiples of the rising edge of the external clock source, as determined by the Timer0 prescaler.

26.3 Programmable Prescaler

A software programmable prescaler is available for exclusive use with Timer0. There are 16 prescaler options for Timer0 ranging in powers of two from 1:1 to 1:32768. The prescaler values are selected using the T0CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable. Clearing the prescaler register can be done by writing to the TMR0L register, the T0CON0 register, or the T0CON1 register.

26.4 Programmable Postscaler

A software programmable postscaler (output divider) is available for exclusive use with Timer0. There are 16 postscaler options for Timer0 ranging from 1:1 to 1:16. The postscaler values are selected using the T0OUTPS<3:0> bits of the T0CON0 register.

The postscaler is not directly readable or writable. Clearing the postscaler register can be done by writing to the TMR0L register, the T0CON0 register, or the T0CON1 register.

26.5 Operation During Sleep

When operating synchronously, Timer0 will halt. When operating asynchronously, Timer0 will continue to increment and wake the device from Sleep (if Timer0 interrupts are enabled) provided that the input clock source is active.

26.6 Timer0 Interrupts

The Timer0 Interrupt Flag bit (TMR0IF) is set when either of the following conditions occur:

- 8-bit TMR0L matches the TMR0H value
- 16-bit TMR0 rolls over from FFFFh

When the postscaler bits (TOOUTPS<3:0>) are set to 1:1 operation (no division), the TOIF Flag bit will be set with every TMR0 match or rollover. In general, the TMR0IF Flag bit will be set every TOOUTPS +1 matches or rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the PIE0 register = 1), the CPU will be interrupted and the device may wake from Sleep (see Section 26.5 "Operation During Sleep" for more details).

26.7 Timer0 Output

The Timer0 output can be routed to any I/O pin via the RxyPPS output selection register (see **Section 13.0** "**Peripheral Pin Select (PPS) Module**" for additional information). The Timer0 output can also be used by other peripherals, such as the auto-conversion trigger of the Analog-to-Digital Converter. Finally, the Timer0 output can be monitored through software via the Timer0 Output bit (T0OUT) of the T0CON0 register (Register 26-3).

TMR0_out will be one postscaled clock period when a match occurs between TMR0L and TMR0H in 8-bit mode, or when TMR0 rolls over in 16-bit mode. When a match condition occurs, the Timer0 output will toggle every T0OUTPS + 1 match. The total Timer0 period takes two match events to occur, and creates a 50% duty cycle output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	-	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA		—	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	_	_	_	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	_	_	_	150
TRISC	TRISC7 ⁽¹⁾	TRISC6(1)	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
INTCON	GIE	PEIE	_	_	—	_	_	INTEDG	101
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	108
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	103
PIR3	OSFIF	CSWIF	TMR3GIF	TMR3IF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	110
PIE3	OSFIE	CSWIE	TMR3GIE	TMR3IE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	105
PIR4	CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	111
PIE4	CWG2IE	CWG1IE	TMR5GIE	TMR5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	106
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1SOSC	T1SYNC	_	TMR10N	292
T1GCON	TMR1GE	T1GPOL	T1GTM	TM T1GSPM T1GGO/DONE T1GVAL T1GSS<1:0>				S<1:0>	293
TMR1L	TMR1L<7:0>							294	
TMR1H	TMR1H<7:0>							294	
T1CKIPPS	_	_	_	- T1CKIPPS<4:0>					
T1GPPS	_	_	_		T1G	PPS<4:0>			162
T3CON	TMR3C	:S<1:0>	T3CKP	S<1:0>	T3SOSC	T3SYNC	_	TMR3ON	292
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GS	S<1:0>	293
TMR3L				TMR	3L<7:0>				294
TMR3H				TMR	3H<7:0>				294
T3CKIPPS	_	_	_		T3CK	IPPS<4:0>			162
T3GPPS	_	_	_		T3G	PPS<4:0>			162
T5CON	TMR5C	S<1:0>	T5CKP	S<1:0>	T5SOSC	T5SYNC	—	TMR5ON	292
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	S<1:0>	293
TMR5L				TMR	5L<7:0>				294
TMR5H				TMR	5H<7:0>				294
T5CKIPPS	_	_	_		T5CK	IPPS<4:0>			162
T5GPPS	_	—	_		T5G	PPS<4:0>			162
T0CON0	T0EN	_	TOOUT	T016BIT		T0OUTPS-	<3:0>		280
CMxCON0	CxON	CxOUT	-	CxPOL	—	CxSP	CxHYS	CxSYNC	190
CCPTMRS	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSEL<	1:0>	C1TSE	L<1:0>	311
CCPxCON	CCPxEN	—	CCPxOUT	CCPxFMT	(CCPxMODE	=<3:0>		308
CLCxSELy	—	—			LCxDyS<5	:0>			229
ADACT	_	—	—		ADA	ACT<4:0>			246

TABLE 27-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/	TABLE 27-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5
--	-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.

29.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains four standard Capture/Compare/PWM modules (CCP1, CCP2, CCP3 and CCP4).

The Capture and Compare functions are identical for all CCP modules.

29.1 CCP/PWM Clock Selection

The PIC16(L)F18325/18345 devices allow each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2, Timer4, and Timer6), PWM mode on the CCP and PWM modules can use any of these timers.

The CCPTMRS register is used to select which timer is used.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

29.2 Capture Mode

Capture mode makes use of either the 16-bit Timer0 or Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR0H:TMR0L or TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxMODE<3:0> bits of the CCPxCON register:

- Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR4 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 29-1 shows a simplified diagram of the capture operation.

29.2.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a Capture condition.

The capture source is selected by configuring the CCPxCTS<3:0> bits of the CCPxCAP register. The following sources can be selected:

- CCPxPPS input
- C1_output
- C2_output
- NCO_output
- IOC_interrupt
- LC1_output
- LC2_output
- LC3_output
- LC4_output

29.3 Compare Mode

Compare mode makes use of the 16-bit Timer1/3/5 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1/3/5H:TMR1/3/5L register pair. When a match occurs, one of the following events can occur:

- Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- Generate an Auto-conversion Trigger
- · Generate a Software Interrupt

The action on the pin is based on the value of the CCPxMODE<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set, and an ADC conversion can be triggered, if selected.

All Compare modes can generate an interrupt and trigger an ADC conversion.

Figure 29-2 shows a simplified diagram of the compare operation.

Note: When the CCP is configured in Compare mode using the 'toggle output on match' setting (CCPxMODE<3:0> bits = 0010) and the reference timer is set for an input clock prescale other than 1:1, the output of the CCP will toggle multiple times until finally settling a '0' logic level. To avoid this, the timer input clock prescale select bits must be set to a 1:1 ratio (TxCKPS = 00).

FIGURE 29-2: COMPARE MODE OPERATION BLOCK DIAGRAM

29.3.1 CCPX PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit and defining the appropriate output pin through the RxyPPS registers. See Section 13.0 "Peripheral Pin Select (PPS) Module" for more details.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

29.3.2 TIMER1/3/5 MODE RESOURCE

In Compare mode, Timer1/3/5 must be running in either Timer mode or Synchronized mode. The compare operation may not work in Asynchronous mode.

See Section 27.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1/3/5.

Note: Clocking Timer1/3/5 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, Timer1/3/5 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

29.3.3 AUTO-CONVERSION TRIGGER

All CCPx modes set the CCP interrupt flag (CCPxIF). When this flag is set as a match occurs, an auto-conversion trigger can occur if the CCP module is selected as the conversion trigger source.

Refer to **Section 22.2.5 "Auto-Conversion Trigger"** for more information.

Note:	Removing the Match condition by chang-
	ing the contents of the CCPRxH and
	CCPRxL register pair, between the clock
	edge that generates the Auto-conversion
	Trigger and the clock edge that generates
	the Timer Reset, will preclude the Reset
	from occurring.

29.3.4 COMPARE DURING SLEEP

Since FOSC is shut down during Sleep mode, the Compare mode will not function properly during Sleep, unless the timer is running. The device will wake on interrupt (if enabled).

29.3.5 COMPARE INTERRUPTS

The CCPxIF interrupt flag will be set when a match between the CCPRxH:CCPRxL register pair and the TMR1/3/5H:TMR1/3/5L register pair occurs. If the device is in Sleep and interrupts are enabled (CCPxIE = 1), the device will wake up, assuming Timer1 is operating during Sleep.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	DR/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit				
	Asynchronou	<u>s mode</u> :					
	1 = Auto-bauto-b	d timer overfiov d timer did not	vea				
	Synchronous	mode:	overnow				
	Don't care						
bit 6	RCIDL: Rece	ive Idle Flag bi	t				
	Asynchronou	<u>s mode</u> :					
	1 = Receiver	is idle	ed and the rea	ceiver is receiv	vina		
	Synchronous	mode:			ving		
	Don't care						
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	SCKP: Clock	/Transmit Pola	rity Select bit				
	<u>Asynchronou</u>	<u>s mode</u> :					
	1 = Idle state 0 = Idle state	for transmit (T. for transmit (T.	X) is a low lev X) is a high lev	el vel			
	<u>Synchronous</u>	<u>mode</u> :					
	1 = Idle state	for clock (CK)	is a high level				
h:# 0							
DIL 3	1 - 16 bit Pa	IL Baud Rale G	enerator bit				
	0 = 8-bit Bau	d Rate Genera	ator is used				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	WUE: Wake-	up Enable bit					
	Asynchronou	<u>s mode</u> :					
	1 = EUSART	will continue to	sample the F	Rx pin – interru	pt generated o	n falling edge; b	it cleared in
	hardware	on following ris	sing edge.				
	0 = RX pin no	ot monitored no	or rising edge of	detected			
	Unused in thi	<u>mode</u> . s mode – value	ianored				
bit 0	ABDEN [.] Auto	-Baud Detect	Enable bit				
5.00	Asynchronou	s mode:					
	1 = Enable b	aud rate meas	surement on t	the next chara	acter – requires	s reception of a	SYNCH field
	(55h);cle	ared in hardwa	ire upon comp	letion	•	-	
	0 = Baud rate	e measuremen	t disabled or o	completed			
	Unused in thi	s mode – value	eignored				

REGISTER 31-3: BAUD1CON: BAUD RATE CONTROL REGISTER

REGISTER 31-4: RC1REG⁽¹⁾: RECEIVE DATA REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RC1F	REG<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unknowr	٦	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cleared	l				

bit 7-0 **RC1REG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 31-2)

Note 1: RC1REG (including the ninth bit) is double buffered, and data is available while new data is being received.

REGISTER 31-5: TX1REG⁽¹⁾: TRANSMIT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
TX1REG<7:0>								
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TX1REG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 31-1)

Note 1: TX1REG (including the ninth bit) is double buffered, and can be written when previous data has started shifting.

REGISTER 31-6: SP1BRGL⁽¹⁾: BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SP1BF	RG<7:0>			
bit 7							bit 0
Legend:							
D - Deedekle hit					nantad bit raad	aa (0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SP1BRG<7:0>: Lower eight bits of the Baud Rate Generator

Note 1: Writing to SP1BRG resets the BRG counter.

PIC16(L)F18325/18345

 $0 \leq f \leq 127$

 $0 \rightarrow \text{dest} < 7 >$ (f<7:1>) $\rightarrow \text{dest} < 6:0 >$,

 $(f<0>) \rightarrow C,$

0-

The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

register f

С

C, Z

 $d \in [0,1]$

Operands:

Operation:

Status Affected:

Description:

LSLF	Logical Left Shift	MOVF	Move f		
Syntax:	[<i>label</i>]LSLF f{,d}	Syntax:	[<i>label</i>] MOVF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$(f < 7 >) \rightarrow C$	Operation:	$(f) \rightarrow (dest)$		
	$(f < 6:0 >) \rightarrow dest < 7:1 >$	Status Affected:	Z		
Status Affected:	C, Z	Description:	The contents of register f is moved to a destination dependent upon the		
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.		status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.		
	C	Words:	1		
		Cycles:	1		
		Example:	MOVF FSR, 0		
LSRF	Logical Right Shift		After Instruction W = value in FSR register		
Syntax:	[<i>label</i>]LSRF f{,d}		Z = 1		

35.2 Standard Operating Conditions

The standard operating of	conditions for any device are defined as:	
Operating Voltage:	$V_{DDMIN} < V_{DD} < V_{DDMAX}$	
Operating Temperature:	TA_MIN \leq TA_MAX	
VDD — Operating Suppl	ly Voltage ⁽¹⁾	
PIC16LF18325/183	345	
Vddmin (F	Fosc ≤ 16 MHz) +1.8\	/
Vddmin (F	Fosc ≤ 32 MHz) +2.5\	/
VDDMAX		/
PIC16F18325/1834	45	
Vddmin (F	Fosc ≤ 16 MHz)+2.3\	/
Vddmin (F	Fosc ≤ 32 MHz)+2,5\	/
VDDMAX		/
TA — Operating Ambien	It Temperature Range	
Industrial Tempera	iture	~
IA_MIN	-40*(, ,
IA_MAX Extended Tempera		,
		~
Та_мілі Та_мах	+125°(2
Note 1: See Paramete	er D002 DC Characteristice: Supply Voltage	_
Note 1. Occir aramete		
	$\bigwedge \setminus \bigvee $	
	\sim	
	$\langle \rangle \rangle \langle \rangle \langle \rangle$	
	\sim	
/	\land	
	\land	
	$// \sim$	
\sim	× < //	
$\left(\begin{array}{c} \end{array} \right) \right)$	\searrow	
	\bigvee	

TABLE 35-3:POWER-DOWN CURRENTS (IPD)

PIC16LF18325/18345				Standard Operating Conditions (unless otherwise stated)						
PIC16F18325/18345				Standard Operating Conditions (unless otherwise stated) VREGPM = 1						
Param.	Symbol		Min	Turn +	Max.	Max.			Conditions	
No.	Symbol	Device Characteristics	IVIII.	Typ.1	+85°C	+125°C	Units	Vdd	Note	
D200	IPD	IPD Base	—	0.05	2	9	μA	3.0V	$\langle \rangle$	
D200	IPD	IPD Base	_	0.8	4	12	μΑ	3.0V		
			—	13	22	27	μA	3.0V	∀REGPM =े०	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	_	0.8	5	13	μA	3.0V	\searrow	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.9	5	13	μA	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.6	5	13	μA	3.01		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	—	0.8	9	15~	μΑ	3.0	\searrow	
D203	IPD_FVR	FVR	—	40	47	47 r	μA	3.0V	Ŷ	
D203	IPD_FVR	FVR	—	33	44	44	\uA/	3.0√		
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	17	19 \	μÁ	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)		12	18	20	\μA	3.0V		
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	—	3 <	5		μĂ >	3.0V		
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	—		5	13	μA	3.0V		
D207	IPD_ADCA	ADC - Active	\langle , \rangle	0.9	5	√13	μA	3.0V	ADC is converting ⁽⁴⁾	
D207	IPD_ADCA	ADC - Active		0.9	5	13	μA	3.0V	ADC is converting ⁽⁴⁾	
D208	IPD_CMP	Comparator	X	32	43	45	μA	3.0V		
D208	IPD_CMP	Comparator	$ \neq $	31	42	44	μA	3.0V		

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

4: ADC clock source is ADCRC.