

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18325-i-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ABLE	Ζ:	20		ALLO	CATIO		= (PIC10(L)F10343)											
I/O ⁽²⁾	20-Pin PDIP/SOIC/SSOP	20-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	DSM	Timers	ССР	PWM	CWG	MSSP	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RA0	19	16	ANA0		C1IN0+	—	DAC1OUT	_	—	-	_	—	—	_	—		IOC	Y	ICDDAT ICSPDAT
RA1	18	15	ANA1	VREF+	C1IN0- C2IN0-	—	DAC1REF+	—	—	—	_	—	SS2	_	—		IOC	Y	ICDCLK ICSPCLK
RA2	17	14	ANA2	VREF-	_	_	DAC1REF-	_	T0CKI ⁽¹⁾	CCP3 ⁽¹⁾	_	CWG1IN ⁽¹⁾ CWG2IN ⁽¹⁾	—	Ι	CLCIN0 ⁽¹⁾		IOC INT ⁽¹⁾	Y	_
RA3	4	1	-		-	—	_	—	—	—	_	—	—	-	—		IOC	Y	MCLR VPP
RA4	3	20	ANA4	_	_	—	_	_	T1G ⁽¹⁾ T3G ⁽¹⁾ T5G ⁽¹⁾ SOSCO	CCP4 ⁽¹⁾	_		—	Ι		_	IOC	Y	CLKOUT OSC2
RA5	2	19	ANA5	_	_	—	_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T5CKI ⁽¹⁾ SOSCIN SOSCI	_	_	—	—	_	—	_	IOC	Y	CLKIN OSC1
RB4	13	10	ANB4	_	_	—	—	—	—	—	_	—	SDI1 ⁽¹⁾ SDA1 ^(1,3,4)	—	CLCIN2 ⁽¹⁾	_	IOC	Y	-
RB5	12	9	ANB5		-	—	_	—	—	—	_	—	SDI2 ⁽¹⁾ SDA2 ^(1,3,4)	RX ⁽¹⁾	CLCIN3 ⁽¹⁾		IOC	Y	-
RB6	11	8	ANB6	-	-	—	—	-	—	-	_	-	SCK1 ⁽¹⁾ SCL1 ^(1,3,4)		-	-	IOC	Y	-
RB7	10	7	ANB7			—	—	—	—	—	—	—	SCK2 ⁽¹⁾ SCL2 ^(1,3,4)	—	—		IOC	Y	—
RC0	16	13	ANC0	_	C2IN0+	_	—	_	_	-	_	_	—	—	_	_	IOC	Y	—
RC1	15	12	ANC1	l	C1IN1- C2IN1-	_	—	_	_	—	_	—	—	_	_	l	IOC	Y	_
RC2	14	11	ANC2	_	C1IN2- C2IN2-	—	_	MDCIN1 ⁽¹⁾	_	_	—	_	_	_	_		IOC	Y	—

TABLE 2: 20-PIN ALLOCATION TABLE (PIC16(L)F18345)

All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. 2:

These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections. 3:

These pins are configured for I²C logic levels; clock and data signals may be assigned to any of these pins. Assignments to other pins (e.g. RA5) will operate, but logic levels will be standard 4: TTL/ST as selected by the INLVL register.

PIC16(L)F18325/18345

TABLE	4-4: SPEC	IAL F	UNCTION RE	GISTER S	UMMARY B	ANKS 0-31 (CONTINUE)				
Address	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 1	3											
					CPU CORE RE	EGISTERS; see	Table 4-2 for spe	cifics				
68Ch	_	_		Unimplemented						—	_	
68Dh	—	—	Unimplemented						_	-		
68Eh	—	—				Unimple	mented				-	-
68Fh	—	—				Unimple	mented				-	—
690h		_				Unimple	mented				_	_
691h	CWG1CLKCON		_	_	—	_	_	—	—	CS	0	0
692h	CWG1DAT		—	—	—	_		DAT	<3:0>		0000	0000
693h	CWG1DBR		_	—			DBR	<5:0>			00 0000	00 0000
694h	CWG1DBF		_	_		DBF<5:0>					00 0000	00 0000
695h	CWG1CON0		EN	LD	—	_	—		MODE<2:0>		00000	00000
696h	CWG1CON1			—	IN	_	POLD	POLC	POLB	POLA	x- 0000	x- 0000
697h	CWG1AS0		SHUTDOWN	REN	LSBE	0<1:0>	LSAC	<1:0>	—	—	0001 01	0001 01

AS4E

OVRA

Unimplemented

AS2E

STRC

AS3E

STRD

AS1E

STRB

AS0E

STRA

---0 0000

0000 0000 0000 0000

---0 0000

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

_

OVRB

Only on PIC16F18325/18345. Note 1:

CWG1AS1

CWG1STR

Register accessible from both User and ICD Debugger. 2:

_

_

OVRD

_

OVRC

698h

699h

69Fh

69Ah to

Address	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 30	D											
					CPU CORE RE	EGISTERS; see 1	Table 4-2 for spe	cifics				
F20h	CLC2GLS0		LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xxxx xxxx	นนนน นนนเ
F21h	CLC2GLS1		LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	սսսս սսսս
F22h	CLC2GLS2		LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	นนนน นนนเ
F23h	CLC2GLS3		LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	սսսս սսսս
F24h	CLC3CON		LC3EN	—	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:0>			0-00 0000
F25h	CLC3POL		LC3POL	—	—	—	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuuu
F26h	CLC3SEL0		—	_		LC3D1S<5:0>				xx xxxx	uu uuuu	
F27h	CLC3SEL1		—	—		LC3D2S<5:0>					xx xxxx	uu uuuu
F28h	CLC3SEL2		_	—			LC3D3	S<5:0>			xx xxxx	uu uuuu
F29h	CLC3SEL3			—			LC3D4	S<5:0>			xx xxxx	uu uuu
F2Ah	CLC3GLS0		LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	xxxx xxxx	սսսս սսսս
F2Bh	CLC3GLS1		LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	xxxx xxxx	սսսս սսսս
F2Ch	CLC3GLS2		LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	xxxx xxxx	นนนน นนนเ
F2Dh	CLC3GLS3		LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	xxxx xxxx	นนนน นนนเ
F2Eh	CLC4CON		LC4EN	—	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:0>	>	0-00 0000	0-00 0000
F2Fh	CLC4POL		LC4POL	—		_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	0 xxxx	0 uuuu
F30h	CLC4SEL0			—			LC4D1	S<5:0>			xx xxxx	uu uuuu
F31h	CLC4SEL1		_	—			LC4D2	S<5:0>			xx xxxx	uu uuuu
F32h	CLC4SEL2			_			LC4D3	S<5:0>			xx xxxx	uu uuuu
F33h	CLC4SEL3		_	—			LC4D4	S<5:0>			xx xxxx	uu uuuu
F34h	CLC4GLS0		LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	xxxx xxxx	սսսս սսսւ
F35h	CLC4GLS1		LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	xxxx xxxx	սսսս սսսս
F36h	CLC4GLS2		LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	XXXX XXXX	นนนน นนนเ

TABLE 4-4: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

LC4G4D3N

LC4G4D2T

LC4G4D2N

LC4G4D1T

LC4G4D1N

XXXX XXXX

uuuu uuuu

LC4G4D3T

Note 1: Only on PIC16F18325/18345.

CLC4GLS3

2: Register accessible from both User and ICD Debugger.

LC4G4D4T

LC4G4D4N

F37h

R/W/HS-0/0	R/W/HS-0/0	R-0	R/HS/HC-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF
bit 7							bit
Legend:							
R = Readable	hit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unchanged		x = Bit is unki		•	at POR and BO		ther Resets
'1' = Bit is set		'0' = Bit is cle		HS = Hardwa			
bit 7	1 = The Time			e gate is close	d).		
bit 6	ADIF: Analog-to-Digital Converter (ADC) Interrupt Flag bit 1 = The A/D conversion completed 0 = The A/D conversion is not completed						
bit 5	RCIF: EUSART Receive Interrupt Flag bit (read-only) 1 = The EUSART1 receive buffer is not empty 0 = The EUSART1 receive buffer is empty						
bit 4	1 = The EUSA	ART1 receive b	errupt Flag bit ouffer is empty ouffer is not en				
bit 3	1 = The Trans	mission/Rece	ption/Bus Con		ete (must be cle	eared in softwa	re)
bit 2	 0 = Waiting for the Transmission/Reception/Bus Condition in progress BCL1IF: MSSP Bus Collision Interrupt Flag bit 1 = A bus collision was detected (must be cleared in software) 0 = No bus collision was detected 						
bit 1	TMR2IF: Timer2 to PR2 Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred						
bit 0	0 TMR1IF: Timer1 Overflow Interrupt Flag bit 1 = TMR1 overflow occurred (must be cleared in software) 0 = No TMR1 overflow occurred						

REGISTER 8-8: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

Note:	Interrupt flag bits are set when an interrupt				
	condition occurs, regardless of the state of				
	its corresponding enable bit or the Global				
	Enable bit, GIE, of the INTCON register.				
	User software should ensure the				
	appropriate interrupt flag bits are clear				
	prior to enabling an interrupt.				

13.0 PERIPHERAL PIN SELECT (PPS) MODULE

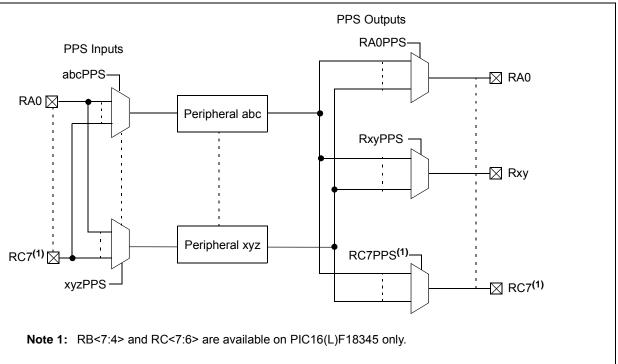
The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 13-1.

13.1 PPS Inputs

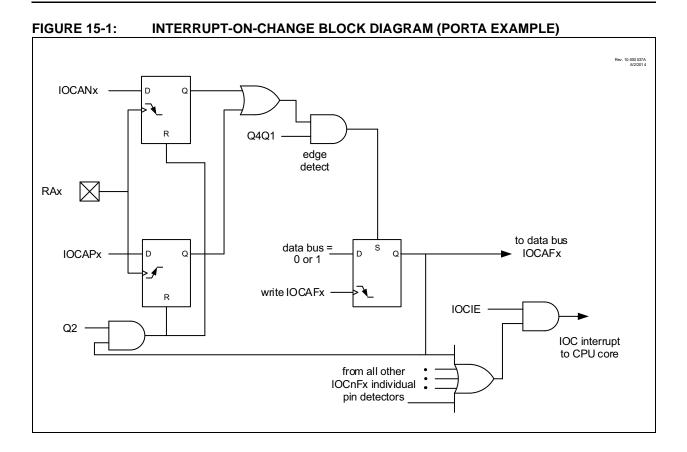
Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 13-1.

Note:	The notation "xxx" in the register name is
	a place holder for the peripheral identifier.
	For example, CLC1PPS.


13.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals are:


- EUSART1 (synchronous operation)
- MSSP (I²C)

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 13-2.

Note: The notation "Rxy" is a place holder for the pin identifier. For example, RA0PPS.

FIGURE 13-1: SIMPLIFIED PPS BLOCK DIAGRAM

Full-Bridge Reverse Mode

In Full-Bridge Reverse mode (MODE<2:0> = 011),

CWGxC is driven to its active state and CWGxB is modulated while CWGxA and CWGxD are driven to

their inactive state, as illustrated at the bottom of

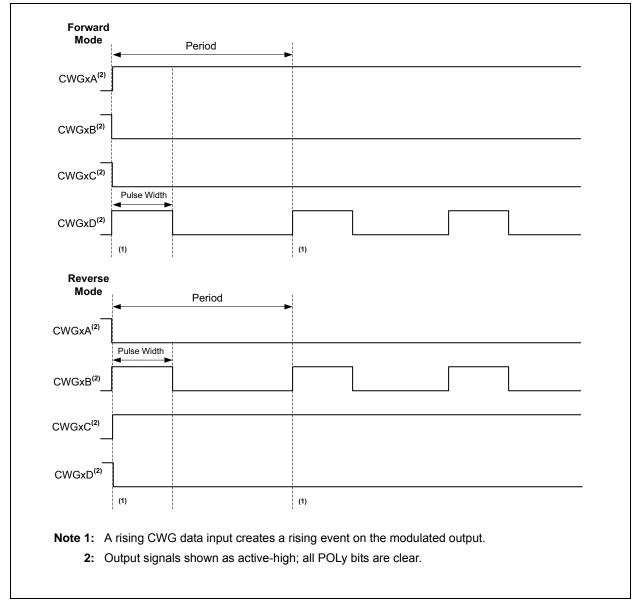

20.2.4.2

Figure 20-6.

20.2.4.1 Full-Bridge Forward Mode

In Full-Bridge Forward mode (MODE<2:0> = 010), CWGxA is driven to its active state and CWGxD is modulated while CWGxB and CWGxC are driven to their inactive state, as illustrated at the top of Figure 20-6.

FIGURE 20-6: EXAMPLE OF FULL-BRIDGE OUTPUT

20.2.4.3 Direction Change in Full-Bridge Mode

In Full-Bridge mode, changing MODE<2:0> controls the forward/reverse direction. Changes to MODE<2:0> change to the new direction on the next rising edge of the modulated input.

A direction change is initiated in software by changing the MODE<2:0> bits of the WGxCON0 register. The sequence is illustrated in Figure 20-7.

- The associated active output CWGxA and the inactive output CWGxC are switched to drive in the opposite direction.
- The previously modulated output CWGxD is switched to the inactive state, and the previously inactive output CWGxB begins to modulate.
- CWG modulation resumes after the direction-switch dead band has elapsed.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	_		TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA	— —		ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	_	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	_	—	_	150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
PIR2	TMR6IF	C2IF	C1IF	NVMIF	SSP2IF	BCL2IF	TMR4IF	NCO1IF	109
PIE2	TMR6IE	C2IE	C1IE	NVMIE	SSP2IE	BCL2IE	TMR4IE	NCO1IE	104
INTCON	GIE	PEIE		_	_	_	_	INTEDG	101
NCO1CON	N1EN	_	N1OUT	N1POL				N1PFM	256
NCO1CLK		N1PWS<2:0)>				N1CK	S<1:0>	257
NCO1ACCL			NC	CO1ACC <7	:0>				257
NCO1ACCH			NC	01ACC <18	5:8>				258
NCO1ACCU	_			_		NCO1AC	C <19:16>	>	258
NCO1INCL			N	CO1INC<7:	0>				258
NCO1INCH			NC	CO1INC<15	:8>				259
NCO1INCU	_		_			NCO1IN	C<19:16>		259
CWG1DAT	_	_				DAT	<3:0>		215
MDSRC	_	_	—	_		MDM	S<3:0>		272
MDCARH		MDCHPOL	MDCHSYNC			MDCI	H<3:0>		273
MDCARL	_	MDCLPOL	MDCLSYNC	_		MDC	L<3:0>		274
CCPxCAP	—	—	—	—		CCPxC	TS<3:0>		309

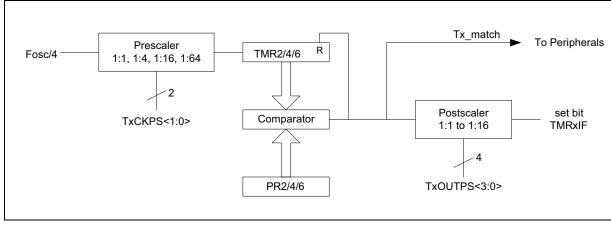
TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCO1

Legend: – = unimplemented read as '0'. Shaded cells are not used for NCO1 module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.

PIC16(L)F18325/18345


28.0 TIMER2/4/6 MODULE

Timer2/4/6 modules are 8-bit timers that incorporate the following features:

- 8-bit Timer and Period registers (TMR2/4/6 and PR2/4/6, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2/4/6 match with PR2/4/6
- Optional use as the shift clock for the MSSPx module

See Figure 28-1 for a block diagram of Timer2/4/6.

- Note 1: In devices with more than one Timer module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the T2CON and T4CON control the same operational aspects of two completely different Timer modules.
 - 2: Throughout this section, generic references to Timer2 module in any of its operating modes may be interpreted as being equally applicable to Timerx module. Register names, module signals, I/O pins and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

FIGURE 28-1: TIMER2/4/6 BLOCK DIAGRAM

29.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains four standard Capture/Compare/PWM modules (CCP1, CCP2, CCP3 and CCP4).

The Capture and Compare functions are identical for all CCP modules.

29.1 CCP/PWM Clock Selection

The PIC16(L)F18325/18345 devices allow each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2, Timer4, and Timer6), PWM mode on the CCP and PWM modules can use any of these timers.

The CCPTMRS register is used to select which timer is used.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

29.2 Capture Mode

Capture mode makes use of either the 16-bit Timer0 or Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR0H:TMR0L or TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxMODE<3:0> bits of the CCPxCON register:

- Every falling edge
- · Every rising edge
- · Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR4 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 29-1 shows a simplified diagram of the capture operation.

29.2.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a Capture condition.

The capture source is selected by configuring the CCPxCTS<3:0> bits of the CCPxCAP register. The following sources can be selected:

- CCPxPPS input
- C1_output
- C2_output
- NCO_output
- IOC_interrupt
- LC1_output
- LC2_output
- LC3_output
- LC4_output

30.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the $I^{2}C$ protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with

the R/\overline{W} bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 30-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

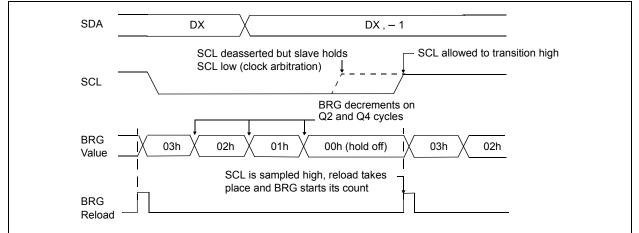
FIGURE 30-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

30.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 30-5) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:


- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

30.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the

SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 30-25).

30.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,				
	writing to the lower five bits of SSPxCON2				
	is disabled until the Start condition is				
	complete.				

PIC16(L)F18325/18345

30.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 30-33).
- b) SCL is sampled low before SDA is asserted low (Figure 30-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- · the Start condition is aborted,
- the BCL1IF flag is set and
- the MSSPx module is reset to its Idle state (Figure 30-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 30-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

TABLE 30-2: MSSP CLOCK RATE W/BRG

Fosc	Fcy	FCY BRG Value	
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in Table 35-4 to ensure the system is designed to support IOL requirements.

R/W-0/0	R/HS/HC-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	-	'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set	
bit 7	1 = Enable in		•	.,	or 00h) is receiv	ed in the SSPS	ŝR
bit 6	1 = Acknowle	cknowledge St dge was not re dge was recei		mode only)			
bit 5	ACKDT: Ackr In Receive me	nowledge Data <u>ode:</u> itted when the owledge	bit (in I ² C mod	• /	e sequence at	the end of a rec	ceive
bit 4	<u>In Master Rec</u> 1 = Initiate A Automati	ceive mode:	sequence on y hardware.		ter mode only) CL pins, and	transmit ACK	DT data bi
bit 3	RCEN: Recei	ve Enable bit (Receive mode	in I ² C Master r	mode only)			
bit 2		op condition or	e bit (in I ² C Ma n SDA and SC	-	y) atically cleared	by hardware.	
bit 1	1 = Initiate R			-	er mode only) ins. Automatica	lly cleared by h	ardware.
bit 0	SEN: Start Co In Master mod 1 = Initiate St 0 = Start cond In Slave mod	ondition Enable de: art condition or dition Idle <u>e:</u> etching is enab	e/Stretch Enab	L pins. Automa	atically cleared nd slave receive	-	ed)

REGISTER 30-3: SSPxCON2: SSPx CONTROL REGISTER 2 (I²C MODE ONLY)⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the idle state, these bits may not be set (no spooling) and the SSPBUF may not be written.

31.1 EUSART1 Asynchronous Mode

The EUSART1 transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 31-3 for examples of baud rate configurations.

The EUSART1 transmits and receives the LSb first. The EUSART1's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

31.1.1 EUSART1 ASYNCHRONOUS TRANSMITTER

The EUSART1 transmitter block diagram is shown in Figure 31-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TX1REG register.

31.1.1.1 Enabling the Transmitter

The EUSART1 transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART1 control bits are assumed to be in their default state.

Setting the TXEN bit of the TX1STA register enables the transmitter circuitry of the EUSART1. Clearing the SYNC bit of the TX1STA register configures the EUSART1 for asynchronous operation. Setting the SPEN bit of the RC1STA register enables the EUSART1 and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

31.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TX1REG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TX1REG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TX1REG until the Stop bit of the previous character has been transmitted. The pending character in the TX1REG is then transferred to the TSR in one TcY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TX1REG.

31.1.1.3 Transmit Data Polarity

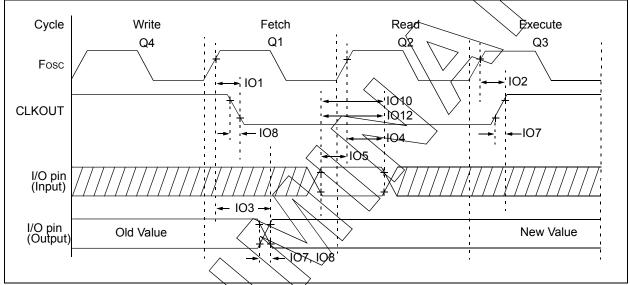
The polarity of the transmit data can be controlled with the SCKP bit of the BAUD1CON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 31.4.1.2 "Clock Polarity"**.

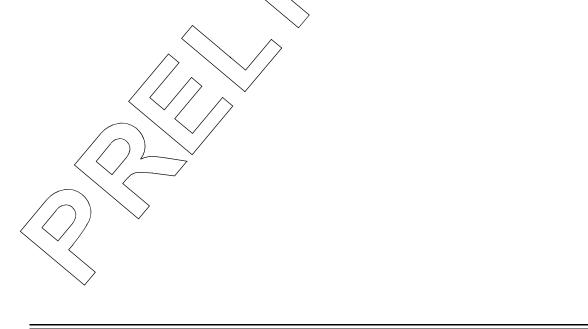
31.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART1 transmitter is enabled and no character is being held for transmission in the TX1REG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TX1REG. The TXIF flag bit is not cleared immediately upon writing TX1REG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TX1REG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TX1REG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TX1REG.


TABLE 35-9:	PLL CLOCK TIMING SPECIFICATIONS
-------------	---------------------------------


Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
PLL01	FPLLIN	PLL Input Frequency Range	4	_	8	MHz		
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	32	MHz		
PLL03	TPLLST	PLL Lock Time from Start-up	—	200	—	μs	1	
PLL04	Fplljit	PLL Output Frequency Stability (Jitter)	-0.25	—	0.25	%		

* These parameters are characterized but not tested.

† Data in "Typ." column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 35-14: COMPARATOR SPECIFICATIONS

VDD = 3.0V, TA = 25°C

See Section 36.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

					•		
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage	—	—	±40	mV	VICM = VDD/2
CM02	VICM	Input Common Mode Voltage	GND	_	Vdd	V	
CM03	CMRR	Common Mode Input Rejection Ratio	—	50	—	dB	
CM04	CHYST	Comparator Hysteresis	15	25	35	mV	
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	_	300	600	ns	
		Response Time, Falling Edge	—	220	500	ns	
CM06*	Тмсv2vo ⁽²⁾	Mode Change to Valid Output	_	_	10	us	

These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

TABLE 35-15: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param No.	Sym.	Characteristics	Min.	Typ.†	Max.	Units	Comments	
DSB01	VLSB	Step Size		VDD/32	> -	V		
DSB01	VACC	Absolute Accuracy	$\downarrow \neq /$	$\overline{/-/}$	± 0.5	LSb		
DSB03*	RUNIT	Unit Resistor Value	\sum	6000	_	Ω		
DSB04*	Tst	Settling Time ⁽¹⁾		$\rangle -$	10	μS		
* These parameters are characterized but not tested.								

These parameters are characterized but not tested.

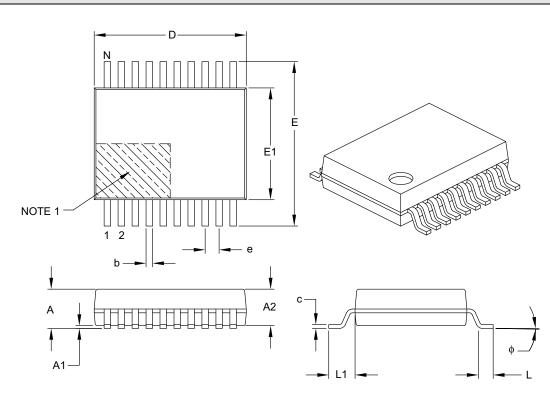
Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '00000' to '01111'.

TABLE 35-16: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
FVR01	VFVR1	1x Gain (1.024V nominal)	-4	_	4	%	VDD \ge 2.5V, -40°C to 85°C
FVR02	VFVR2	2x Gain (2.048V nominal)	-4		4	%	VDD \geq 2.5V, -40°C to 85°C
FVR03	VFVR4	4x Gain (4.096V nominal)	-5		5	%	VDD \geq 4.75V, -40°C to 85°C
FVR04/	TFVRST	FVR Start-up Time	_			μS	

Param. No.	Symbol	Charact	eristic	Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—	$\langle \langle \rangle$	
SP102*	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall	100 kHz mode	_	250	ris ~	\square
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold	100 kHz mode	0	\mathcal{F}	ns	
		time	400 kHz mode	0	0.9	μs	
SP107*	TSU:DAT	Data input setup	100 kHz mode	250		ns	(Note 2)
		time	400 kHz mode	100	$\geq -$	ns	
SP109*	ТАА	A Output valid from clock	100 kHz mode	$\langle \mathcal{F} \rangle$	3500	ns	(Note 1)
			400 kHz mode	\searrow	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loadi	ng	_	400	pF	


TABLE 35-24: I²C BUS DATA CHARACTERISTICS

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) $|^{2}$ C bus device can be used in a Standard mode (100 kHz) $|^{2}$ C bus system, but the requirement Tsy:Dat \geq 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode 1^{2} bus specification), before the SCL line is released.

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS				
Dimensio	Dimension Limits			MAX				
Number of Pins	20							
Pitch	е	0.65 BSC						
Overall Height	Α	-	-	2.00				
Molded Package Thickness	A2	1.65	1.75	1.85				
Standoff	A1	0.05	-	-				
Overall Width	Е	7.40	7.80	8.20				
Molded Package Width	E1	5.00	5.30	5.60				
Overall Length	D	6.90	7.20	7.50				
Foot Length	L	0.55	0.75	0.95				
Footprint	L1	1.25 REF						
Lead Thickness	С	0.09	-	0.25				
Foot Angle	¢	0°	4°	8°				
Lead Width	b	0.22	_	0.38				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B