

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XF

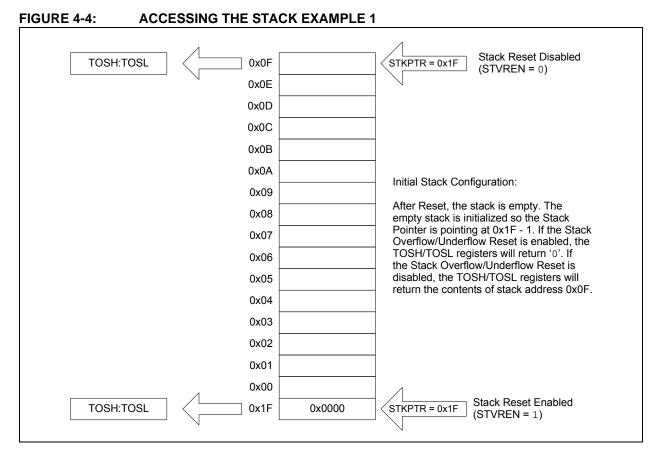
| Details                    |                                                                             |
|----------------------------|-----------------------------------------------------------------------------|
| Product Status             | Active                                                                      |
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 32MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 12                                                                          |
| Program Memory Size        | 14KB (8K x 14)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 256 x 8                                                                     |
| RAM Size                   | 1K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                 |
| Data Converters            | A/D 11x10b; D/A 1x5b                                                        |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 14-TSSOP (0.173", 4.40mm Width)                                             |
| Supplier Device Package    | 14-TSSOP                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18325-i-st |
|                            |                                                                             |

Email: info@E-XFL.COM

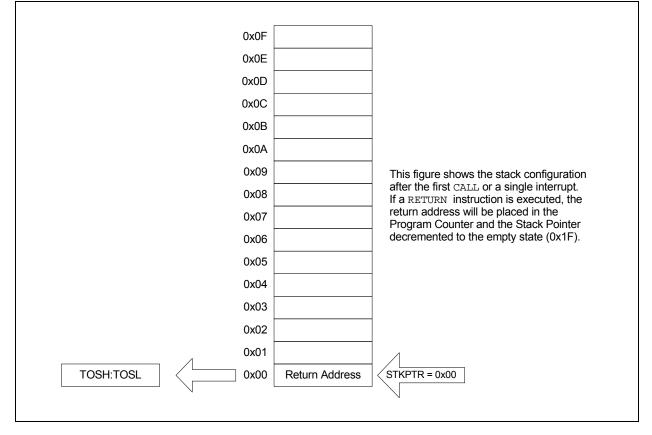
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| TABLE 4-4: | SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED) |
|------------|----------------------------------------------------------|

| Address | Name       | PIC16(L)F18325<br>PIC16(L)F18345 | Bit 7 | Bit 6 | Bit 5       | Bit 4          | Bit 3             | Bit 2         | Bit 1 | Bit 0     | Value on:<br>POR, BOR | Value on<br>all other<br>Resets |
|---------|------------|----------------------------------|-------|-------|-------------|----------------|-------------------|---------------|-------|-----------|-----------------------|---------------------------------|
| Bank 28 | В          |                                  |       |       |             |                |                   |               |       |           |                       |                                 |
|         |            |                                  |       |       | CPU CORE RE | EGISTERS; see  | Table 4-2 for spe | ecifics       |       |           |                       |                                 |
| E0Ch    | _          |                                  |       |       |             | Unimple        | mented            |               |       |           | _                     | _                               |
| E0Dh    | _          | _                                |       |       |             | Unimple        |                   |               |       |           | _                     |                                 |
| E0Eh    |            |                                  |       |       |             | Unimple        |                   |               |       |           | _                     |                                 |
| E0Fh    | PPSLOCK    |                                  | _     | _     | _           | _              | _                 | _             | _     | PPSLOCKED | 0                     |                                 |
| E10h    | INTPPS     |                                  | _     | _     | _           |                |                   | INTPPS<4:0>   |       |           | 0 0010                | u uuu                           |
| E11h    | TOCKIPPS   |                                  | _     | _     | _           |                |                   | T0CKIPPS<4:0> |       |           | 0 0010                | u uuu                           |
| E12h    | T1CKIPPS   |                                  | _     | —     | _           |                |                   | T1CKIPPS<4:0> |       |           | 0 0101                | u uuu                           |
| E13h    | T1GPPS     |                                  | _     | —     | _           | T1GPPS<4:0>    |                   |               |       | 0 0100    | u uuu                 |                                 |
| E14h    | CCP1PPS    |                                  | _     | _     | _           | CCP1PPS<4:0>   |                   |               |       | 1 0011    | u uuu                 |                                 |
| E15h    | CCP2PPS    |                                  | _     | _     | _           | CCP2PPS<4:0>   |                   |               |       | 1 0101    | u uuu                 |                                 |
| E16h    | CCP3PPS    |                                  | _     | _     | _           | CCP3PPS<4:0>   |                   |               |       | 0 0010    | u uuu                 |                                 |
| E17h    | CCP4PPS    | X —                              | _     | _     | _           | CCP4PPS<4:0>   |                   |               |       |           | 1 0001                | u uuu                           |
|         |            | — X                              | _     | _     | _           |                |                   | CCP4PPS<4:0>  |       |           | 0 0100                | u uuu                           |
| E18h    | CWG1PPS    |                                  | —     | _     | _           |                |                   | CWG1PPS<4:0>  |       |           | 0 0010                | u uuuu                          |
| E19h    | CWG2PPS    |                                  | —     | —     |             |                |                   | CWG2PPS<4:0>  |       |           | 0 0010                | u uuui                          |
| E1Ah    | MDCIN1PPS  |                                  | _     | _     |             |                | N                 | IDCIN1PPS<4:0 | >     |           | 1 0010                | u uuu                           |
| E1Bh    | MDCIN2PPS  |                                  | _     | _     |             |                | N                 | IDCIN2PPS<4:0 | >     |           | 1 0101                | u uuu                           |
| E1Ch    | MDMINPPS   |                                  | _     | —     | _           |                | 1                 | MDMINPPS<4:0> |       |           | 1 0011                | u uuuu                          |
| E1Dh    | SSP2CLKPPS | X —                              | _     | —     | -           |                | S                 | SP2CLKPPS<4:0 | )>    |           | 1 0100                | u uuu                           |
|         |            | — X                              | _     | _     | _           |                | S                 | SP2CLKPPS<4:0 | )>    |           | 0 1111                | u uuu                           |
| E1Eh    | SSP2DATPPS | Х —                              | _     | —     | _           |                | -                 | SP2DATPPS<4:0 |       |           | 1 0101                | u uuuu                          |
|         |            | — X                              | _     | _     | _           |                |                   | SP2DATPPS<4:0 |       |           | 0 1101                | u uuuu                          |
| E1Fh    | SSP2SSPPS  | Х —                              | _     | _     | _           |                |                   | SP2SSPPS<4:0  |       |           | 0 0000                | u uuuu                          |
|         |            | — X                              | —     | —     | —           | SSP2SSPPS<4:0> |                   |               |       |           | 0 0001                | u uuuu                          |
| E20h    | SSP1CLKPPS | X —                              | —     | _     | _           |                |                   | SP1CLKPPS<4:0 |       |           | 1 0000                | u uuuu                          |
|         |            | — X                              | —     | —     | _           |                | S                 | SP1CLKPPS<4:0 | )>    |           | 0 1110                | u uuu                           |


e on ther sets PIC16(L)F18325/18345

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.


**Note 1:** Only on PIC16F18325/18345.

2: Register accessible from both User and ICD Debugger.

## PIC16(L)F18325/18345







## 5.7 Register Definitions: Device and Revision

| REGISTER 5-5: | DE\ | /ID: DEVICE ID | REGISTER |       |        |   |       |
|---------------|-----|----------------|----------|-------|--------|---|-------|
|               |     | R              | R        | R     | R      | R | R     |
|               |     |                |          | DEV<  | <13:8> |   |       |
|               |     | bit 13         |          |       |        |   | bit 8 |
|               |     |                |          |       |        |   |       |
| R             | R   | R              | R        | R     | R      | R | R     |
|               |     |                | DEV      | <7:0> |        |   |       |
| bit 7         |     |                |          |       |        |   | bit 0 |
|               |     |                |          |       |        |   |       |

## Legend:

R = Readable bit

'1' = Bit is set

bit 13-0 **DEV<13:0>:** Device ID bits

| Device       | DEVID<13:0> Values               |  |  |  |  |  |  |  |
|--------------|----------------------------------|--|--|--|--|--|--|--|
| PIC16F18325  | 11 0000 0011 1110 <b>(303Eh)</b> |  |  |  |  |  |  |  |
| PIC16LF18325 | 11 0000 0100 0000 <b>(3040h)</b> |  |  |  |  |  |  |  |
| PIC16F18345  | 11 0000 0011 1111 <b>(303Fh)</b> |  |  |  |  |  |  |  |
| PIC16LF18345 | 11 0000 0100 0001 <b>(3041h)</b> |  |  |  |  |  |  |  |

'0' = Bit is cleared

## REGISTER 5-6: REVID: REVISION ID REGISTER

| R-1       | R-0 | R | R | R | R     |  |  |  |  |
|-----------|-----|---|---|---|-------|--|--|--|--|
| REV<13:8> |     |   |   |   |       |  |  |  |  |
| bit 13    |     |   |   |   | bit 8 |  |  |  |  |

| R           | R        | R | R | R | R | R | R |  |  |
|-------------|----------|---|---|---|---|---|---|--|--|
|             | REV<7:0> |   |   |   |   |   |   |  |  |
| bit 7 bit 0 |          |   |   |   |   |   |   |  |  |

| Legend:          |                      |
|------------------|----------------------|
| R = Readable bit |                      |
| '1' = Bit is set | '0' = Bit is cleared |

bit 13-0 **REV<13:0>:** Revision ID bits

Note: The upper two bits of the Revision ID Register will always read '10'.

#### 11.5 Register Definitions: Program Flash Memory Control REGISTER 11-1: NVMDATL: NONVOLATILE MEMORY DATA LOW BYTE REGISTER

| R/W-0/0                                 | R/W-0/0 | R/W-0/0            | R/W-0/0 | R/W-0/0        | R/W-0/0            | R/W-0/0            | R/W-0/0 |
|-----------------------------------------|---------|--------------------|---------|----------------|--------------------|--------------------|---------|
|                                         |         |                    | NVME    | AT<7:0>        |                    |                    |         |
| bit 7                                   |         |                    |         |                |                    |                    | bit 0   |
|                                         |         |                    |         |                |                    |                    |         |
| Legend:                                 |         |                    |         |                |                    |                    |         |
| R = Readable bit W = Writable bit       |         |                    | it      | U = Unimplem   | ented bit, read as | s 'O'              |         |
| u = Bit is unchanged x = Bit is unknown |         |                    | own     | -n/n = Value a | t POR and BOR/     | /alue at all other | Resets  |
| '1' = Bit is set                        |         | '0' = Bit is clear | red     |                |                    |                    |         |

bit 7-0

NVMDAT<7:0>: Read/write value for Least Significant bits of program memory

#### REGISTER 11-2: NVMDATH: NONVOLATILE MEMORY DATA HIGH BYTE REGISTER

| U-0   | U-0 | R/W-0/0 | R/W-0/0      | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 |  |
|-------|-----|---------|--------------|---------|---------|---------|---------|--|
| —     | —   |         | NVMDAT<13:8> |         |         |         |         |  |
| bit 7 |     |         |              |         |         |         | bit 0   |  |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

#### bit 7-6 Unimplemented: Read as '0'

| bit 5-0 | NVMDAT<13:8>: | Read/write value for | Most Significant bits | of program memory <sup>(1)</sup> |
|---------|---------------|----------------------|-----------------------|----------------------------------|
|         |               |                      | moot orginnount bito  | or program momory                |

Note 1: This byte is ignored when writing to EEPROM.

#### REGISTER 11-3: NVMADRL: NONVOLATILE MEMORY ADDRESS LOW BYTE REGISTER

| R/W-0/0     | R/W-0/0     | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 |  |  |
|-------------|-------------|---------|---------|---------|---------|---------|---------|--|--|
| NVMADR<7:0> |             |         |         |         |         |         |         |  |  |
| bit 7       | bit 7 bit 0 |         |         |         |         |         |         |  |  |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 NVMADR<7:0>: Specifies the Least Significant bits for program memory address

#### REGISTER 11-4: NVMADRH: NONVOLATILE MEMORY ADDRESS HIGH BYTE REGISTER

| U-1   | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0     | R/W-0/0 | R/W-0/0 | R/W-0/0 |
|-------|---------|---------|---------|-------------|---------|---------|---------|
| _     |         |         |         | NVMADR<14:8 | }>      |         |         |
| bit 7 |         |         |         |             |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7 Unimplemented: Read as '1'

bit 6-0 NVMADR<14:8>: Specifies the Most Significant bits for program memory address

| W-0/0                             | W-0/0  | W-0/0               | W-0/0                                               | W-0/0                              | W-0/0 | W-0/0 | W-0/0       |  |  |
|-----------------------------------|--------|---------------------|-----------------------------------------------------|------------------------------------|-------|-------|-------------|--|--|
|                                   |        |                     | NVN                                                 | ICON2                              |       |       |             |  |  |
| bit 7                             |        |                     |                                                     |                                    |       |       | bit 0       |  |  |
|                                   |        |                     |                                                     |                                    |       |       |             |  |  |
| Legend:                           |        |                     |                                                     |                                    |       |       |             |  |  |
| R = Readable bit W = Writable bit |        |                     |                                                     | U = Unimplemented bit, read as '0' |       |       |             |  |  |
| S = Bit can only b                | oe set | x = Bit is unknow   | n -n/n = Value at POR and BOR/Value at all other Re |                                    |       |       | ther Resets |  |  |
| '1' = Bit is set                  |        | '0' = Bit is cleare | d                                                   |                                    |       |       |             |  |  |

#### REGISTER 11-6: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

#### bit 7-0 NVMCON2<7:0>: Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the NVMCON1 register. The value written to this register is used to unlock the writes.

TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH NONVOLATILE MEMORY (NVM)

| Name    | Bit 7            | Bit 6   | Bit 5 | Bit 4 | Bit 3  | Bit 2   | Bit 1  | Bit 0  | Register<br>on Page |
|---------|------------------|---------|-------|-------|--------|---------|--------|--------|---------------------|
| INTCON  | GIE              | PEIE    | —     | —     | —      | —       | -      | INTEDG | 101                 |
| PIR2    | TMR6IF           | C2IF    | C1IF  | NVMIF | SSP2IF | BLC2IF  | TMR4IF | NCO1IF | 109                 |
| PIE2    | TMR6IE           | C2IE    | C1IE  | NVMIE | SSP2IE | BLC2IE  | TMR4IE | NCO1IE | 104                 |
| NVMCON1 | _                | NVMREGS | LWLO  | FREE  | WRERR  | WREN    | WR     | RD     | 138                 |
| NVMCON2 | NVMCON2          |         |       |       |        |         |        | 139    |                     |
| NVMADRL | NVMADR<7:0>      |         |       |       |        |         |        |        | 137                 |
| NVMADRH | (1) NVMADR<14:8> |         |       |       |        |         |        | 137    |                     |
| NVMDATL | NVMDAT<7:0>      |         |       |       |        |         |        | 137    |                     |
| NVMDATH |                  | _       |       |       | NVMDA  | T<13:8> |        |        | 137                 |

**Legend:** — = unimplemented location, read as '0'. Shaded cells are not used by NVM. **Note 1:** Unimplemented, read as '1'.

| TABLE 11-0. SUMIWART OF CONFIGURATION WORD WITH NONVOLATILE MEMORY (NYM) | TABLE 11-6: | SUMMARY OF CONFIGURATION WORD WITH NONVOLATILE MEMORY (NVM) |
|--------------------------------------------------------------------------|-------------|-------------------------------------------------------------|
|--------------------------------------------------------------------------|-------------|-------------------------------------------------------------|

| Name    | Bits | Bit -/7 | Bit -/6 | Bit 13/5 | Bit 12/4 | Bit 11/3 | Bit 10/2 | Bit 9/1 | Bit 8/0 | Register<br>on Page |
|---------|------|---------|---------|----------|----------|----------|----------|---------|---------|---------------------|
| CONFIG3 | 13:8 | _       | _       | LVP      | —        | —        | —        | —       | _       | 66                  |
|         | 7:0  | _       | _       | _        | _        | _        | —        | WRT     | <1:0>   |                     |
| CONFIG4 | 13:8 | _       | _       | _        | _        | _        | —        | _       |         | 67                  |
|         | 7:0  | _       | _       | _        | _        | _        | _        | CPD     | CP      |                     |

**Legend:** — = unimplemented location, read as '0'. Shaded cells are not used by NVM.

© 2015-2016 Microchip Technology Inc.

| Name    | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register<br>on Page |
|---------|---------|---------|---------|---------|-------|-------|-------|-------|---------------------|
| PORTB   | RB7     | RB6     | RB5     | RB4     | _     | _     |       | _     | 149                 |
| TRISB   | TRISB7  | TRISB6  | TRISB5  | TRISB4  | _     | _     |       | _     | 149                 |
| LATB    | LATB7   | LATB6   | LATB5   | LATB4   | _     | _     | _     | _     | 150                 |
| ANSELB  | ANSB7   | ANSB6   | ANSB5   | ANSB4   | _     | _     | _     | _     | 150                 |
| WPUB    | WPUB7   | WPU6    | WPUB5   | WPUB4   | _     | _     | _     | _     | 151                 |
| ODCONB  | ODCB7   | ODCB6   | ODCB5   | ODCB4   | _     | _     | _     | _     | 151                 |
| SLRCONB | SLRB7   | SLRB6   | SLRB5   | SLRB4   | _     | _     | _     | _     | 152                 |
| INLVLB  | INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | _     | _     | _     | _     | 152                 |

#### TABLE 12-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

**Legend:** – = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

| R/W-1/1                                                                                                                                                                     | R/W-1/1                                                                                                                                             | R/W-1/1         | R/W-1/1 | R/W-1/1                                               | R/W-1/1 | R/W-1/1 | R/W-1/1 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-------------------------------------------------------|---------|---------|---------|--|--|
| TRISC7 <sup>(1)</sup>                                                                                                                                                       | TRISC6 <sup>(1)</sup>                                                                                                                               | TRISC5          | TRISC4  | TRISC3                                                | TRISC2  | TRISC1  | TRISC0  |  |  |
| bit 7                                                                                                                                                                       |                                                                                                                                                     |                 |         |                                                       |         |         | bit 0   |  |  |
|                                                                                                                                                                             |                                                                                                                                                     |                 |         |                                                       |         |         |         |  |  |
| Legend:                                                                                                                                                                     |                                                                                                                                                     |                 |         |                                                       |         |         |         |  |  |
| R = Readable                                                                                                                                                                | bit                                                                                                                                                 | W = Writable    | bit     | U = Unimplemented bit, read as '0'                    |         |         |         |  |  |
| u = Bit is unch                                                                                                                                                             | anged                                                                                                                                               | x = Bit is unkn | iown    | -n/n = Value at POR and BOR/Value at all other Resets |         |         |         |  |  |
| '1' = Bit is set '0' = Bit is cleared                                                                                                                                       |                                                                                                                                                     |                 |         |                                                       |         |         |         |  |  |
| bit 7-6 <b>TRISC&lt;7:6&gt;</b> : PORTC Tri-State Control bits <sup>(1)</sup><br>1 = PORTC pin configured as an input (tri-stated)<br>0 = PORTC pin configured as an output |                                                                                                                                                     |                 |         |                                                       |         |         |         |  |  |
| bit 5-0                                                                                                                                                                     | <b>TRISC&lt;5:0&gt;:</b> PORTC Tri-State Control bits<br>1 = PORTC pin configured as an input (tri-stated)<br>0 = PORTC pin configured as an output |                 |         |                                                       |         |         |         |  |  |

#### REGISTER 12-18: TRISC: PORTC TRI-STATE REGISTER

Note 1: PIC16(L)F18345 only; otherwise read as '0'.

## REGISTER 12-19: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u              | R/W-x/u              | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u |
|----------------------|----------------------|---------|---------|---------|---------|---------|---------|
| LATC7 <sup>(1)</sup> | LATC6 <sup>(1)</sup> | LATC5   | LATC4   | LATC3   | LATC2   | LATC1   | LATC0   |
| bit 7                |                      |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-6 LATC<7:6>: PORTC Output Latch Value bits<sup>(1)</sup>

bit 5-0 LATC<5:0>: PORTC Output Latch Value bits

Note 1: PIC16(L)F18345 only; otherwise read as '0'.

#### 19.1.3 PWM RESOLUTION

PWM resolution, expressed in number of bits, defines the maximum number of discrete steps that can be present in a single PWM period. For example, a 10-bit resolution will result in 1024 discrete steps, whereas an 8-bit resolution will result in 256 discrete steps.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 19-4.

#### EQUATION 19-4:

Resolution =  $\frac{\log[4(PR2+1)]}{\log(2)}$  bits

**Note:** If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

## 19.1.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

#### 19.1.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 7.0, Oscillator Module** for additional details.

#### 19.1.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWMx registers to their Reset states.

## 19.1.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the module for using the PWMx outputs:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Configure the PWM output polarity by configuring the PWMxPOL bit of the PWMxCON register.
- 3. Load the PR2 register with the PWM period value, as determined by Equation 19-1.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value, as determined by Equation 19-2.
- 5. Configure and start Timer2:
  - Clear the TMR2IF interrupt flag bit of the PIR1 register.
  - Select the Timer2 prescale value by configuring the T2CKPS bit of the T2CON register.
  - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Wait until the TMR2IF is set.
- 7. When the TMR2IF flag bit is set:
  - Clear the associated TRIS bit(s) to enable the output driver.
  - Route the signal to the desired pin by configuring the RxyPPS register.
  - Enable the PWMx module by setting the PWMxEN bit of the PWMxCON register.

In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then the PWM module can be enabled during Step 2 by setting the PWMxEN bit of the PWMxCON register.

## 21.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR3 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP bit enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE3 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR3 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

## 21.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCDATA register. Reading this register samples the outputs of all CLCs simultaneously. This prevents any timing skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

## 21.4 Effects of a Reset

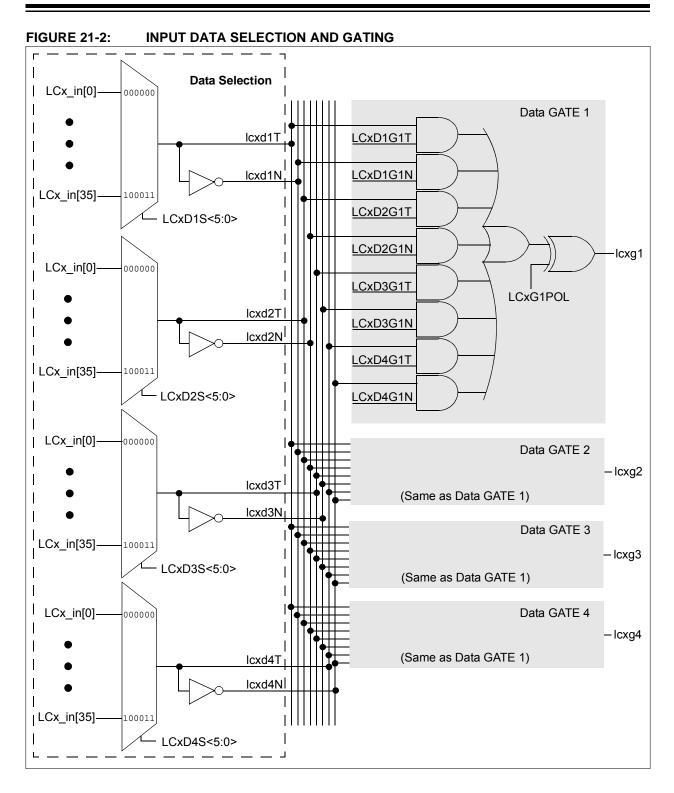
The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

## 21.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.


This will have a direct effect on the Sleep mode current.

#### 21.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 21-1).
- · Clear any associated ANSEL bits.
- Set all TRIS bits associated with external CLC inputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
  - Set the LCxINTP bit in the CLCxCON register for rising event.
  - Set the LCxINTN bit in the CLCxCON register for falling event.
  - Set the CLCxIE bit of the PIE3 register.
  - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

# PIC16(L)F18325/18345



© 2015-2016 Microchip Technology Inc.

DS40001795C-page 225

| R/W-x/u          | R/W-x/u     | R/W-x/u                                                                          | R/W-x/u         | R/W-x/u        | R/W-x/u          | R/W-x/u          | R/W-x/u      |  |  |
|------------------|-------------|----------------------------------------------------------------------------------|-----------------|----------------|------------------|------------------|--------------|--|--|
| LCxG2D4T         | LCxG2D4N    | LCxG2D3T                                                                         | LCxG2D3N        | LCxG2D2T       | LCxG2D2N         | LCxG2D1T         | LCxG2D1N     |  |  |
| bit 7            |             |                                                                                  |                 |                |                  |                  | bit C        |  |  |
|                  |             |                                                                                  |                 |                |                  |                  |              |  |  |
| Legend:          |             |                                                                                  |                 |                |                  |                  |              |  |  |
| R = Readable     | bit         | W = Writable                                                                     | bit             | U = Unimpler   | nented bit, read | as '0'           |              |  |  |
| u = Bit is unch  | anged       | x = Bit is unkr                                                                  | nown            | -n/n = Value a | at POR and BO    | R/Value at all c | other Resets |  |  |
| '1' = Bit is set |             | '0' = Bit is clea                                                                | ared            |                |                  |                  |              |  |  |
|                  |             |                                                                                  |                 |                |                  |                  |              |  |  |
| bit 7            |             | Gate 1 Data 4 1                                                                  | · ·             | ,              |                  |                  |              |  |  |
|                  |             | (true) is gated i                                                                |                 |                |                  |                  |              |  |  |
| 1.1.0            |             | (true) is not gat                                                                |                 |                |                  |                  |              |  |  |
| bit 6            |             | Gate 1 Data 4 l<br>(inverted) is ga                                              | •               | ,              |                  |                  |              |  |  |
|                  |             | (inverted) is ga                                                                 |                 |                |                  |                  |              |  |  |
| bit 5            |             | Gate 1 Data 3 True (non-inverted) bit                                            |                 |                |                  |                  |              |  |  |
|                  |             | (true) is gated into CLCx Gate 1                                                 |                 |                |                  |                  |              |  |  |
|                  | 0 = CLCIN2  | (true) is not gat                                                                | ted into CLCx   | Gate 1         |                  |                  |              |  |  |
| bit 4            |             | Gate 1 Data 3                                                                    | •               | ,              |                  |                  |              |  |  |
|                  |             | (inverted) is gated into CLCx Gate 1<br>(inverted) is not gated into CLCx Gate 1 |                 |                |                  |                  |              |  |  |
| 1.1.0            |             | ,                                                                                | •               |                |                  |                  |              |  |  |
| bit 3            |             | Gate 1 Data 2 1<br>(true) is gated i                                             | `               | ,              |                  |                  |              |  |  |
|                  |             | (true) is gated i<br>(true) is not gat                                           |                 |                |                  |                  |              |  |  |
| bit 2            |             | Gate 1 Data 2 I                                                                  |                 |                |                  |                  |              |  |  |
|                  |             | (inverted) is ga                                                                 | •               | ,              |                  |                  |              |  |  |
|                  | 0 = CLCIN1  | (inverted) is no                                                                 | t gated into Cl | _Cx Gate 1     |                  |                  |              |  |  |
| bit 1            | LCxG2D1T: ( | Gate 1 Data 1 1                                                                  | rue (non-inve   | rted) bit      |                  |                  |              |  |  |
|                  |             | I0 (true) is gated into CLCx Gate 1<br>I0 (true) is not gated into CLCx Gate 1   |                 |                |                  |                  |              |  |  |
|                  |             | . , .                                                                            |                 |                |                  |                  |              |  |  |
| bit 0            |             | Gate 1 Data 1 I                                                                  | -               | -              |                  |                  |              |  |  |
|                  |             | (inverted) is ga<br>(inverted) is no                                             |                 |                |                  |                  |              |  |  |
|                  |             |                                                                                  | e gatoa into Ol |                |                  |                  |              |  |  |
|                  |             |                                                                                  |                 |                |                  |                  |              |  |  |

## REGISTER 21-8: CLCxGLS1: GATE 1 LOGIC SELECT REGISTER

| U-0              | R/W-x/u                                                                                                     | R/W-x/u                                                                                  | U-0         | R/W-x/u           | R/W-x/u           | R/W-x/u  | R/W-x/u     |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------|-------------------|-------------------|----------|-------------|--|--|
| _                | MDCHPOL                                                                                                     | MDCHSYNC                                                                                 | _           |                   | MDCH              | <3:0>(1) |             |  |  |
| bit 7            |                                                                                                             |                                                                                          |             |                   |                   |          | bit         |  |  |
| Legend:          |                                                                                                             |                                                                                          |             |                   |                   |          |             |  |  |
| R = Readable     | bit                                                                                                         | W = Writable bi                                                                          | it          | U = Unimpler      | mented bit, read  | d as '0' |             |  |  |
| u = Bit is unch  | nanged                                                                                                      | x = Bit is unkno                                                                         | wn          | •                 | at POR and BO     |          | ther Resets |  |  |
| '1' = Bit is set | •                                                                                                           | '0' = Bit is clear                                                                       |             |                   |                   |          |             |  |  |
| L:1 7            |                                                                                                             | tad. Daad aa (o)                                                                         |             |                   |                   |          |             |  |  |
| bit 7            | -                                                                                                           | nted: Read as '0'                                                                        |             |                   |                   |          |             |  |  |
| bit 6            |                                                                                                             | Modulator High C                                                                         |             | -                 |                   |          |             |  |  |
|                  |                                                                                                             | I high carrier sign                                                                      |             |                   |                   |          |             |  |  |
|                  |                                                                                                             | I high carrier sign                                                                      |             |                   |                   |          |             |  |  |
| bit 5            | MDCHSYNC: Modulator High Carrier Synchronization Enable bit                                                 |                                                                                          |             |                   |                   |          |             |  |  |
|                  | 1 = Modulator waits for a falling edge on the high time carrier signal before allowing a switch to the      |                                                                                          |             |                   |                   |          |             |  |  |
|                  | low time carrier<br>0 = Modulator output is not synchronized to the high time carrier signal <sup>(1)</sup> |                                                                                          |             |                   |                   |          |             |  |  |
|                  |                                                                                                             |                                                                                          |             | a to the high tim | e carrier signal  | (-)      |             |  |  |
| bit 4            | •                                                                                                           | nted: Read as '0'                                                                        |             |                   | <i>(</i> <b>)</b> |          |             |  |  |
| bit 3-0          | MDCH<3:0> Modulator Data High Carrier Selection bits <sup>(1)</sup>                                         |                                                                                          |             |                   |                   |          |             |  |  |
|                  | 1111 = CLC4 output                                                                                          |                                                                                          |             |                   |                   |          |             |  |  |
|                  |                                                                                                             | 1110 = CLC3 output                                                                       |             |                   |                   |          |             |  |  |
|                  | 1101 = CLC                                                                                                  |                                                                                          |             |                   |                   |          |             |  |  |
|                  | 1100 = CLC                                                                                                  |                                                                                          |             |                   |                   |          |             |  |  |
|                  | 1011 = HFI                                                                                                  |                                                                                          |             |                   |                   |          |             |  |  |
|                  | 1010 = Fos                                                                                                  |                                                                                          |             |                   |                   |          |             |  |  |
|                  |                                                                                                             | erved. No chann                                                                          | el connecte | ed.               |                   |          |             |  |  |
|                  |                                                                                                             | 1000 = NCO1 output                                                                       |             |                   |                   |          |             |  |  |
|                  |                                                                                                             | 0111 = PWM6 output                                                                       |             |                   |                   |          |             |  |  |
|                  | 0110 = PWM5 output                                                                                          |                                                                                          |             |                   |                   |          |             |  |  |
|                  | 0101 = CCP2 output (PWM Output mode only)                                                                   |                                                                                          |             |                   |                   |          |             |  |  |
|                  |                                                                                                             | 0100 = CCP1 output (PWM Output mode only)<br>0011 = Reference clock module signal (CLKR) |             |                   |                   |          |             |  |  |
|                  |                                                                                                             |                                                                                          | ulle signal |                   |                   |          |             |  |  |
|                  | 0010 = MD0                                                                                                  |                                                                                          |             |                   |                   |          |             |  |  |
|                  | 0001 = MD<br>0000 = Vss                                                                                     |                                                                                          |             |                   |                   |          |             |  |  |
|                  | 0000 - 1000                                                                                                 |                                                                                          |             |                   |                   |          |             |  |  |
|                  |                                                                                                             |                                                                                          |             |                   |                   |          |             |  |  |

#### REGISTER 25-3: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTER

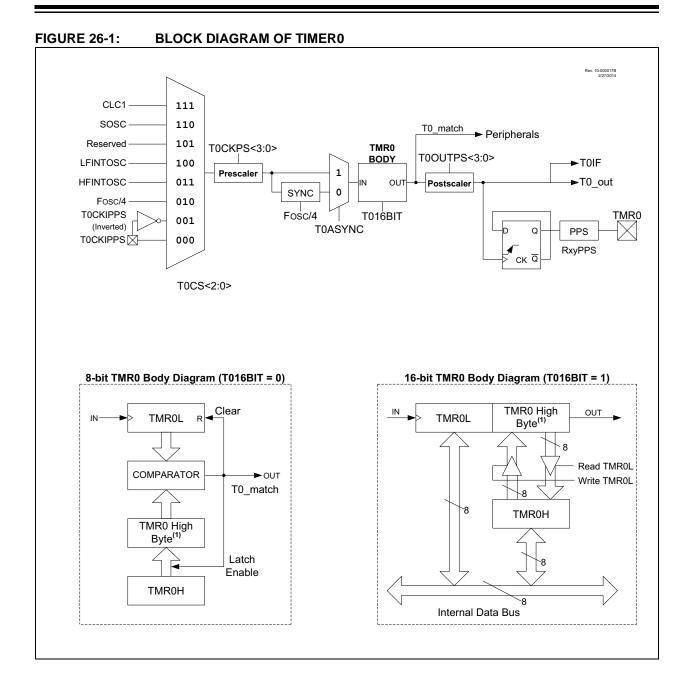
**Note 1:** Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

| MDCLPOL                                                                                | MDCLSYNC                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                        | MDCLSTNC                                                                                                                                                                                                                                                                                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MDCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <3:0>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| it                                                                                     | W = Writable bi                                                                                                                                                                                                                                                                                                                       | it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U = Unimpler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nented bit, read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| nged                                                                                   | x = Bit is unkno                                                                                                                                                                                                                                                                                                                      | wn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -n/n = Value a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at POR and BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/Value at all c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | other Resets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                        | '0' = Bit is clear                                                                                                                                                                                                                                                                                                                    | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Unimplemen                                                                             | ted: Read as '0'                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| -                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ity Soloct bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        | •                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 5                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| •                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| time carrier                                                                           |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 0 = Modulator output is not synchronized to the low time carrier signal <sup>(1)</sup> |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| -                                                                                      |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1100 = CLC                                                                             | C1 output                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1011 = HFH                                                                             | NTOSC                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1010 = Fos                                                                             | C                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1001 = Reserved. No channel connected.                                                 |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1000 = NCO1 output                                                                     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 0111 = PWM6 output                                                                     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                        | MDCLPOL: I<br>1 = Selected<br>0 = Selected<br>MDCLSYNC<br>1 = Modulate<br>time carro<br>0 = Modulate<br>Unimplemen<br>MDCL<3:0><br>1111 = CLC<br>1101 = CLC<br>1101 = CLC<br>1101 = CLC<br>1011 = HFII<br>1010 = Fos<br>1001 = Res<br>1000 = NCC<br>0111 = PWI<br>0110 = CCF<br>0101 = CFF<br>0100 = CCF<br>0101 = Refe<br>0001 = MDC | nged x = Bit is unkno<br>'0' = Bit is clear<br>Unimplemented: Read as '0'<br>MDCLPOL: Modulator Low C<br>1 = Selected low carrier signa<br>0 = Selected low carrier signa<br>MDCLSYNC: Modulator Low<br>1 = Modulator waits for a fallir<br>time carrier<br>0 = Modulator output is not sy<br>Unimplemented: Read as '0'<br>MDCL<3:0> Modulator Data H<br>111 = CLC4 output<br>110 = CLC3 output<br>110 = CLC3 output<br>110 = CLC3 output<br>101 = HFINTOSC<br>1010 = Fosc<br>1001 = Reserved. No chann<br>1000 = NCO1 output<br>0111 = PWM6 output<br>0110 = CCP2 output (PWM<br>0100 = CCP1 output (PWM | nged x = Bit is unknown<br>'0' = Bit is cleared<br>Unimplemented: Read as '0'<br>MDCLPOL: Modulator Low Carrier Polar<br>1 = Selected low carrier signal is inverte<br>0 = Selected low carrier signal is not inverte<br>MDCLSYNC: Modulator Low Carrier Syr<br>1 = Modulator waits for a falling edge on the<br>time carrier<br>0 = Modulator output is not synchronized<br>Unimplemented: Read as '0'<br>MDCL<3:0> Modulator Data High Carrier<br>1111 = CLC4 output<br>1101 = CLC3 output<br>1101 = CLC3 output<br>1101 = CLC2 output<br>1011 = HFINTOSC<br>1010 = Fosc<br>1001 = Reserved. No channel connected<br>1000 = NCO1 output<br>0111 = PWM6 output<br>0111 = PWM5 output<br>0101 = CCP2 output (PWM Output mod<br>0101 = CCP1 output (PWM Output mod<br>0101 = Reference clock module signal for<br>0010 = MDCIN2PPS<br>0001 = MDCIN1PPS | nged x = Bit is unknown -n/n = Value a<br>'0' = Bit is cleared<br>Unimplemented: Read as '0'<br>MDCLPOL: Modulator Low Carrier Polarity Select bit<br>1 = Selected low carrier signal is not inverted<br>MDCLSYNC: Modulator Low Carrier Synchronization En<br>1 = Modulator waits for a falling edge on the low time carrier<br>0 = Modulator output is not synchronized to the low time<br>Unimplemented: Read as '0'<br>MDCL<3:0> Modulator Data High Carrier Selection bits<br>1111 = CLC4 output<br>1100 = CLC3 output<br>1101 = CLC3 output<br>1100 = CLC1 output<br>1011 = HFINTOSC<br>1010 = Fosc<br>1001 = Reserved. No channel connected.<br>1000 = NCO1 output<br>0111 = PWM6 output<br>0112 = CCP2 output (PWM Output mode only)<br>0103 = CCP1 output (PWM Output mode only)<br>0114 = Reference clock module signal (CLKR)<br>0010 = MDCIN2PPS<br>0001 = MDCIN1PPS | nged x = Bit is unknown -n/n = Value at POR and BO<br>'0' = Bit is cleared<br>Unimplemented: Read as '0'<br>MDCLPOL: Modulator Low Carrier Polarity Select bit<br>1 = Selected low carrier signal is inverted<br>0 = Selected low carrier signal is not inverted<br>MDCLSYNC: Modulator Low Carrier Synchronization Enable bit<br>1 = Modulator waits for a falling edge on the low time carrier signal before<br>time carrier<br>0 = Modulator output is not synchronized to the low time carrier signal. <sup>(1)</sup><br>Unimplemented: Read as '0'<br>MDCL<3:0> Modulator Data High Carrier Selection bits <sup>(1)</sup><br>1111 = CLC4 output<br>1100 = CLC3 output<br>1101 = CLC2 output<br>1101 = CLC2 output<br>1011 = HFINTOSC<br>1001 = Fosc<br>1001 = Reserved. No channel connected.<br>1000 = NCO1 output<br>0111 = PWM6 output<br>0112 = CLC2 output (PWM Output mode only)<br>0103 = CCP1 output (PWM Output mode only)<br>0104 = Reference clock module signal (CLKR)<br>005 = MDCIN2PPS<br>0001 = MDCIN1PPS | nged       x = Bit is unknown       -n/n = Value at POR and BOR/Value at all of '0' = Bit is cleared         Unimplemented: Read as '0'       MDCLPOL: Modulator Low Carrier Polarity Select bit         1 = Selected low carrier signal is inverted       MDCLSYNC: Modulator Low Carrier Synchronization Enable bit         1 = Modulator waits for a falling edge on the low time carrier signal before allowing a swittime carrier         0 = Modulator output is not synchronized to the low time carrier signal before allowing a swittime carrier         0 = Modulator output is not synchronized to the low time carrier signal before allowing a swittime carrier         0 = Modulator output is not synchronized to the low time carrier signal before allowing a swittime carrier         0 = Modulator output is not synchronized to the low time carrier signal before allowing a swittime carrier         0 = Modulator output         111 = CLC4 output         110 = CLC3 output         110 = CLC2 output         101 = CLC2 output         1010 = Fosc         1011 = PWM6 output         1011 = PWM6 output         1011 = PWM6 output         1011 = CCP2 output (PWM Output mode only)         1010 = CCP1 output (PWM Output mode only)         1011 = Reference clock module signal (CLKR)         1012 = MDCIN2PPS         1013 = MDCIN2PPS |  |  |

#### REGISTER 25-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

| TABLE 23-1.            | SUMMART OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR W |                        |          |                |         |         |         |         |                     |
|------------------------|--------------------------------------------------------------|------------------------|----------|----------------|---------|---------|---------|---------|---------------------|
| Name                   | Bit 7                                                        | Bit 6                  | Bit 5    | Bit 4          | Bit 3   | Bit 2   | Bit 1   | Bit 0   | Register<br>on Page |
| TRISA                  |                                                              | _                      | TRISA5   | TRISA4         | (2)     | TRISA2  | TRISA1  | TRISA0  | 143                 |
| ANSELA                 | _                                                            |                        | ANSA5    | ANSA4          | _       | ANSA2   | ANSA1   | ANSA0   | 144                 |
| SLRCONA                | _                                                            |                        | SLRA5    | SLRA4          | _       | SLRA2   | SLRA1   | SLRA0   | 146                 |
| INLVLA                 | _                                                            |                        | INLVLA5  | INLVLA4        | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 | 146                 |
| TRISB <sup>(1)</sup>   | TRISB7                                                       | TRISB6                 | TRISB5   | TRISB4         | _       | _       | _       | _       | 149                 |
| ANSELB <sup>(1)</sup>  | ANSB7                                                        | ANSB6                  | ANSB5    | ANSB4          | _       | _       | _       | _       | 150                 |
| SLRCONB <sup>(1)</sup> | SLRB7                                                        | SLRB6                  | SLRB5    | SLRB4          | _       |         |         | _       | 152                 |
| INLVLB <sup>(1)</sup>  | INLVLB7                                                      | INLVLB6                | INLVLB5  | INLVLB4        | _       | _       | _       | _       | 152                 |
| TRISC                  | TRISC7 <sup>(1)</sup>                                        | TRISC6 <sup>(1)</sup>  | TRISC5   | TRISC4         | TRISC3  | TRISC2  | TRISC1  | TRISC0  | 156                 |
| ANSELC                 | ANSC7 <sup>(1)</sup>                                         | ANSC6 <sup>(1)</sup>   | ANSC5    | ANSC4          | ANSC3   | ANSC2   | ANSC1   | ANSC0   | 157                 |
| SLRCONC                | SLRC7 <sup>(1)</sup>                                         | SLRC6 <sup>(1)</sup>   | SLRC5    | SLRC4          | SLRC3   | SLRC2   | SLRC1   | SLRC0   | 158                 |
| INLVLC                 | INLVLC7 <sup>(1)</sup>                                       | INLVLC6 <sup>(1)</sup> | INLVLC5  | INLVLC4        | INLVLC3 | INLVLC2 | INLVLC1 | INLVLC0 | 159                 |
| MDCON                  | MDEN                                                         | _                      | _        | MDOPOL         | MDOUT   | _       | _       | MDBIT   | 271                 |
| MDSRC                  | _                                                            | _                      | _        | _              |         | MDMS    | \$<3:0> |         | 272                 |
| MDCARH                 | _                                                            | MDCHPOL                | MDCHSYNC | — MDCH<3:0>    |         |         |         |         | 273                 |
| MDCARL                 | _                                                            | MDCLPOL                | MDCLSYNC | — MDCL<3:0>    |         |         |         |         | 274                 |
| MDCIN1PPS              | _                                                            | _                      | _        | MDCIN1PPS<4:0> |         |         |         |         | 162                 |
| MDCIN2PPS              | _                                                            |                        |          | MDCIN2PPS<4:0> |         |         |         |         | 162                 |
| MDMINPPS               | _                                                            | _                      | _        |                | 162     |         |         |         |                     |


## TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

Note 1: PIC16(L)F18345 only.

2: Unimplemented. Read as '1'.

# PIC16(L)F18325/18345



#### 27.2.1 TIMER1 (SECONDARY) OSCILLATOR

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is designed to be used in conjunction with an external 32.768 kHz crystal. The oscillator circuit is enabled by setting the T1SOSC bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1SOSC should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

## 27.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

## 27.4 Timer1 Operation in Asynchronous Mode

If the control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 27.4.1 "Reading and Writing Timer1 in Asynchronous Mode").

| Note: | When switching from synchronous to        |
|-------|-------------------------------------------|
|       | asynchronous operation, it is possible to |
|       | skip an increment. When switching from    |
|       | asynchronous to synchronous operation,    |
|       | it is possible to produce an additional   |
|       | increment.                                |

## 27.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

## 27.5 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

#### 27.5.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 27-3 for timing details.

| TABLE 27-3: | TIMER1 GATE ENABLE |
|-------------|--------------------|
|             | SELECTIONS         |

| T1CLK      | T1GPOL | T1G | Timer1 Operation |
|------------|--------|-----|------------------|
| $\uparrow$ | 0      | 0   | Counts           |
| $\uparrow$ | 0      | 1   | Holds Count      |
| 1          | 1      | 0   | Holds Count      |
| $\uparrow$ | 1      | 1   | Counts           |

## 30.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

## 30.3 I<sup>2</sup>C Mode Overview

The Inter-Integrated Circuit (I<sup>2</sup>C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is controlled through addressing.

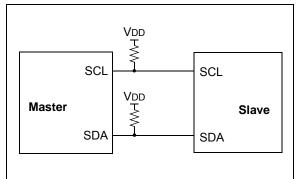
The I<sup>2</sup>C bus specifies two signal connections:

- · Serial Clock (SCL)
- Serial Data (SDA)

Figure 30-2 and Figure 30-3 show the block diagrams of the MSSPx module when operating in  $I^2C$  mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one. Figure 30-11 shows a typical connection between two processors configured as master and slave devices.

The  $I^2C$  bus can operate with one or more master devices and one or more slave devices.


There are four potential modes of operation for a given device:

- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, the master device sends out a Start condition followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues to either transmit or receive data from the slave.

#### FIGURE 30-11: I<sup>2</sup>C MASTER/ SLAVE CONNECTION



## 33.0 IN-CIRCUIT SERIAL PROGRAMMING<sup>™</sup> (ICSP<sup>™</sup>)

ICSP<sup>™</sup> programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP<sup>™</sup> programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, data EEPROM, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP<sup>TM</sup> refer to the "PIC16(L)F183XX Memory Programming Specification" (DS40001738).

## 33.1 High-Voltage Programming Entry Mode

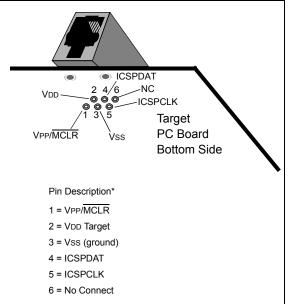
The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

## 33.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC<sup>®</sup> Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'. The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.


Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained.

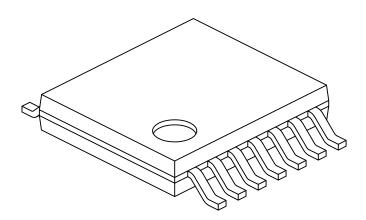
If low-voltage programming is enabled (LVP = 1), the  $\overline{\text{MCLR}}$  Reset function is automatically enabled and cannot be disabled. See **Section 6.4** "**MCLR**" for more information.

## 33.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP<sup>™</sup> header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 33-1.






Another connector often found in use with the PICkit<sup>™</sup> programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 33-2.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 33-3 for more information.

#### 14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



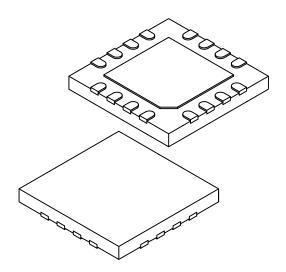
|                          | N                | MILLIMETERS |          |      |  |  |
|--------------------------|------------------|-------------|----------|------|--|--|
| Dimension                | Dimension Limits |             |          |      |  |  |
| Number of Pins           | N                |             | 14       |      |  |  |
| Pitch                    | е                |             | 0.65 BSC |      |  |  |
| Overall Height           | A                | -           | -        | 1.20 |  |  |
| Molded Package Thickness | A2               | 0.80        | 1.00     | 1.05 |  |  |
| Standoff                 | A1               | 0.05        | -        | 0.15 |  |  |
| Overall Width            | E                | 6.40 BSC    |          |      |  |  |
| Molded Package Width     | E1               | 4.30        | 4.40     | 4.50 |  |  |
| Molded Package Length    | D                | 4.90        | 5.00     | 5.10 |  |  |
| Foot Length              | L                | 0.45        | 0.60     | 0.75 |  |  |
| Footprint                | (L1)             | 1.00 REF    |          |      |  |  |
| Foot Angle               | φ                | 0°          | -        | 8°   |  |  |
| Lead Thickness           | С                | 0.09        | -        | 0.20 |  |  |
| Lead Width               | b                | 0.19        | -        | 0.30 |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or
- protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

## 16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                         | Units            | N         | <b>IILLIMETER</b> | S    |  |  |
|-------------------------|------------------|-----------|-------------------|------|--|--|
| Dimension               | Dimension Limits |           |                   | MAX  |  |  |
| Number of Pins          | N                |           | 16                |      |  |  |
| Pitch                   | е                |           | 0.65 BSC          |      |  |  |
| Overall Height          | Α                | 0.45      | 0.50              | 0.55 |  |  |
| Standoff                | A1               | 0.00      | 0.02              | 0.05 |  |  |
| Terminal Thickness      | A3               | 0.127 REF |                   |      |  |  |
| Overall Width           | E                | 4.00 BSC  |                   |      |  |  |
| Exposed Pad Width       | E2               | 2.50      | 2.60              | 2.70 |  |  |
| Overall Length          | D                | 4.00 BSC  |                   |      |  |  |
| Exposed Pad Length      | D2               | 2.50      | 2.60              | 2.70 |  |  |
| Terminal Width          | b                | 0.25      | 0.30              | 0.35 |  |  |
| Terminal Length         | L                | 0.30      | 0.40              | 0.50 |  |  |
| Terminal-to-Exposed-Pad | К                | 0.20      | -                 | -    |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-257A Sheet 2 of 2