

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18345-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Allocation Tables

TABLE 1: 14/16-PIN ALLOCATION TABLE (PIC16(L)F18325)

I/O ⁽²⁾	14-Pin PDIP/SOIC/TSSOP	16-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	DSM	Timers	CCP	MWd	CWG	MSSP	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RA0	13	12	ANA0		C1IN0+	_	DAC1OUT	—	_	_		—	SS2 ⁽¹⁾	_	_		IOC	Y	ICDDAT/ ICSPDAT
RA1	12	11	ANA1	VREF+	C1IN0- C2IN0-	_	DAC1REF+	_		_		_	_	-	_		IOC	Y	ICDCLK/ ICSPCLK
RA2	11	10	ANA2	VREF-	-	Ι	DAC1REF-		T0CKI ⁽¹⁾	CCP3 ⁽¹⁾		CWG1IN ⁽¹⁾ CWG2IN ⁽¹⁾		Ι			INT ⁽¹⁾ IOC	Y	—
RA3	4	3	_		_						—	—		Ι			IOC	Y	MCLR VPP
RA4	3	2	ANA4		-	-	_	-	T1G ⁽¹⁾ SOSCO	_	_	—	-	-	_	_	IOC	Y	CLKOUT OSC2
RA5	2	1	ANA5			Ι		Ι	T1CKI ⁽¹⁾ SOSCIN SOSCI	Ι	_		Ι	Ι	CLCIN3 ⁽¹⁾		IOC	Y	CLKIN OSC1
RC0	10	9	ANC0	1	C2IN0+	_	_	_	T5CKI ⁽¹⁾	_		—	SCK1 ⁽¹⁾ SCL1 ^(1,3,4)	-	_	_	IOC	Y	_
RC1	9	8	ANC1	l	C1IN1- C2IN1-	_	_	_		CCP4 ⁽¹⁾		_	SDI1 ⁽¹⁾ SDA1 ^(1,3,4)	Ι	CLCIN2 ⁽¹⁾		IOC	Y	_
RC2	8	7	ANC2	_	C1IN2- C2IN2-	Ι		MDCIN1 ⁽¹⁾				_					IOC	Y	-
RC3	7	6	ANC3		C1IN3- C2IN3-	Ι	Ι	MDMIN ⁽¹⁾	T5G ⁽¹⁾	CCP2 ⁽¹⁾	_	—	SS1 ⁽¹⁾	Ι	CLCIN0 ⁽¹⁾	-	IOC	Y	—
RC4	6	5	ANC4		-				T3G ⁽¹⁾		—	—	SCK2 ⁽¹⁾ SCL2 ^(1,3,4)	Ι	CLCIN1 ⁽¹⁾		IOC	Y	—
RC5	5	4	ANC5	_	_	_	_	MDCIN2 ⁽¹⁾	T3CKI ⁽¹⁾	CCP1 ⁽¹⁾		—	SDI2 ⁽¹⁾ SDA2 ^(1,3,4)	RX ⁽¹⁾	_		IOC	Y	—
VDD	1	16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VDD
Vss	14	13	—	—	—	—	—	—	_	—	—	—	—	_	—	—	—	_	Vss

Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I²C logic levels; clock and data signals may be assigned to any of these pins. Assignments to the other pins (e.g., RA5) will operate, but logic levels will be standard TTL/ ST as selected by the INLVL register.

Note

1:

TABLE	4-4: SPE0	CIAL F	UNCTION RE	EGISTER S	UMMARY B	BANKS 0-31	(CONTINUEI	D)				
Address	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 8												
					CPU CORE RI	EGISTERS; see	Table 4-2 for spe	ecifics				
40Ch to 410h	-	-				Unimple	emented				-	-
411h	TMR3L					TMR3	L<7:0>				xxxx xxxx	uuuu uuuu
412h	TMR3H			TMR3H<7:0>					xxxx xxxx	uuuu uuuu		
413h	T3CON		TMR3CS	IR3CS<1:0> T3CKPS<1:0> T3SOSC T3SYNC — TMR3ON					0000 00-0	uuuu uu-u		
414h	T3GCON		TMR3GE	T3GPOL	T3GTM	T3GSPM	T <u>3GGO</u> / DONE	T3GVAL	T3GS	S<1:0>	0000 0x00	uuuu uxuu
415h	TMR4					TMR4	<7:0>				0000 0000	0000 0000
416h	PR4					PR4·	<7:0>				1111 1111	1111 1111
417h	T4CON		_		T4OU	TPS<3:0>		TMR4ON	T4CKF	PS<1:0>	-000 0000	-000 0000
418h	TMR5L			TMR5L<7:0> x					xxxx xxxx	uuuu uuuu		
419h	TMR5H			TMR5H<7:0> xxx:						xxxx xxxx	uuuu uuuu	
41Ah	T5CON		TMR5CS	6<1:0>	T5CKI	PS<1:0>	T5SOSC	T5SYNC	_	TMR5ON	0000 00-0	uuuu uu-u
41Bh	T5GCON		TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/ DONE	T5GVAL	T5GS	S<1:0>	0000 0x00	uuuu uxuu
41Ch	TMR6			TMR6<7:0> 0000 0000							0000 0000	
41Dh	PR6					PR6·	<7:0>				1111 1111	1111 1111
41Eh	T6CON		_		T6OU	TPS<3:0>		TMR6ON	T6CKF	PS<1:0>	-000 0000	-000 0000

Unimplemented

PIC16(L)F18325/18345

_

DS40001795C-page 41

41Fh

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Only on PIC16F18325/18345. Note 1:

2:

_

Register accessible from both User and ICD Debugger.

TABLE	4-4:	SPE	CIAL F	UNCTION R	EGISTER S	UMMARY B	BANKS 0-31	(CONTINUEI	D)				
Address	,	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value of POR, Bit								Value on all other Resets
Banks 1	19-27												
						CPU CORE RI	EGISTERS; see	Table 4-2 for spe	cifics				
98Ch to 9EFh	_		_				Unimple	emented				_	—
A0Ch to A6Fh	_		—		Unimplemented							-	
A8Ch to AEFh	_		—		Unimplemented						-	-	
B0Ch to B6Fh	—		—		Unimplemented						-	_	
B8Ch to BEFh	—		—		Unimplemented						_	_	
C0Ch to C6Fh	_		_		Unimplemented						_	_	
C8Ch to CEFh	_		_		Unimplemented -						_	_	
D0Ch to D6Fh	—		_		Unimplemented — –						_		
D8Ch to DEFh	_		_		Unimplemented —						_		

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Only on PIC16F18325/18345. Legend:

Note 1:

Register accessible from both User and ICD Debugger. 2:

5.2 Register Definitions: Configuration Words

REGISTER 5-1: CONFIGURATION WORD 1: OSCILLATORS

		R/P-1	U-1	R/P-1	U-1	U-1	R/P-1	
		FCMEN	_	CSWEN	—	—	CLKOUTEN	
		bit 13					bit 8	
U-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1	
	RSTOSC2	RSTOSC1	RSTOSC0	—	FEXTOSC2	FEXTOSC1	FEXTOSC0	
bit 7							bit 0	
Legend:								
R = Readable	bit	P = Program	nable bit	U = Unimpler	mented bit, read	l as '1'		
'0' = Bit is clea	ared	'1' = Bit is set		n = Value wh	en blank			
bit 13	FCMEN: Fail- 1 = ON FS 0 = OFF FS	Safe Clock Mc SCM timer ena SCM timer disa	nitor Enable b bled bled	it				
bit 12	2 Unimplemented: Read as '1'							
bit 11	t 11 CSWEN: Clock Switch Enable bit 1 = ON Writing to NOSC and NDIV is allowed 0 = OFF The NOSC and NDIV bits cannot be changed by user software							
bit 10-9	Unimplemented: Read as '1'							
bit 8	CLKOUTEN: If FEXTOSC = 1 = OFF CL 0 = ON CL	Clock Out Ena <u> EC, HS, HT c</u> KOUT functio KOUT functio	ble bit <u>or LP, then this</u> n is disabled; l n is enabled; f	<u>s bit is ignored;</u> //O or oscillato ⁻ osc/4 clock a	<u>otherwise:</u> r function on OS ppears at OSC2	SC2 2		
bit 7	Unimplement	ted: Read as '	1'					
bit 6-4	 RSTOSC<2:0>: Power-up Default Value for COSC bits This value is the Reset default value for COSC, and selects the oscillator first used by user software 11 = EXT1X EXTOSC operating per FEXTOSC<2:0> bits 110 = HFINT1 HFINTOSC (1 MHz) 101 = Reserved 100 = LFINT LFINTOSC 011 = SOSC SOSC (32.768 kHz) 010 = Reserved 001 = EXT4X EXTOSC with 4x PLL; EXTOSC operating per FEXTOSC<2:0> bits 							
bit 3	Unimplemented: Read as '1'							
bit 2-0	III = ECH EC (External Clock) above 8 MHz III = ECH EC (External Clock) for 100 kHz to 8 MHz III = ECL EC (External Clock) below 100 kHz III = ECL EC (External Clock) below 100 kHz III = ECL EC (External Clock) below 100 kHz III = ECL EC (External Clock) below 100 kHz III = Unimplemented III = HS HS (Crystal oscillator) above 8 MHz III = UNIMPLEMENT III = UNIMPLEMENT							

REGISTER	5-2: CON	FIGURATION	WORD 2: S	UPERVISOR	S		
		R/P-1	R/P-1	R/P-1	U-1	R/P-1	U-1
		DEBUG	STVREN	PPS1WAY	_	BORV	
		bit 13					bit 8
R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1
BOREN1	BOREN0	LPBOREN	—	WDTE1	WDTE0	PWRTE	MCLRE
bit 7							bit C
l egend:							
R = Readable	bit	P = Programma	able bit	U = Unimpleme	ented bit read as	: '1'	
'0' = Bit is clea	red	'1' = Bit is set		n = Value when	i blank	-	
o Dit io oleu	ica			ii valae wilei	- Diamit		
bit 13	DEBUG : Debut $1 = OFF$ B 0 = ON B	gger Enable bit ⁽¹ ackground debug ackground debug) Iger disabled; IC Iger enabled; IC	SPCLK and ICSI	PDAT are genera PDAT are dedica	al purpose I/O pina ted to the debugg	s er
bit 12	STVREN: Stac 1 = ON Si 0 = OFF Si	k Overflow/Unde tack Overflow or tack Overflow or	rflow Reset Ena Underflow will ca Underflow will no	ble bit ause a Reset ot cause a Reset			
bit 11 PPS1WAY: PPSLOCK One-Way Set Enable bit 1 = ON The PPSLOCK bit can be cleared and set only once; PPS registers remain locked after one clear cycle The PPSLOCK bit can be set and cleared reported by (subject to the unlock consumption)							er one clear/se
	0 = OFF	he PPSLOCK bit	can be set and	cleared repeated	ly (subject to the	unlock sequence)
bit 10	Unimplemente	ed: Read as '1'	(0)				
bit 9	BORV: Brown- 1 = LOW 0 = HIGH The higher volt	out Reset Voltage Brown-out Rese Brown-out Rese age setting is rec	e Selection bit ⁽²⁾ t voltage (VBOR) t voltage (VBOR) commended for c	set to 1.9V on L set to 2.7V operation at or ab	F, and 2.45V on bove 16 MHz.	F devices	
bit 8	Unimplemente	ed: Read as '1'					
bit 7-6	BOREN<1:0>: When enabled 11 = ON 10 = SLEEP 01 = SBOREN 00 = OFF	Brown-out Rese Brown-out Rese Brown-out Re Brown-out Re Brown-out Re Brown-out Re	t Enable bits et Voltage (VBOR eset is enabled; S eset is enabled w eset is enabled a eset is disabled) is set by the BC SBOREN bit is ig rhile running, disa ccording to SBO	PRV bit nored abled in Sleep; S REN	BOREN bit is ign	ored
Dit 5	1 = OFF U $0 = ON U$	LPBOR is disable	ed ed				
bit 4	Unimplemente	ed: Read as '1'					
bit 3-2	WDTE<1:0>: W 11 = ON 10 = SLEEP 01 = SWDTEN 00 = OFF	Vatchdog Timer E WDT is ena WDT is ena WDT is cor WDT is dis	Enable bit abled; SWDTEN abled while runn ntrolled by the S' abled; SWDTEN	is ignored ing and disabled WDTEN bit in the I is ignored	in Sleep/Idle; SV WDTCON regis	VDTEN is ignored ter	I
bit 1	PWRTE: Powe 1 = OFF P' 0 = ON P'	er-up Timer Enabl WRT is disabled WRT is enabled	e bit				
bit 0		er Clear (MCLR) on is MCLR. ICLR pin is MCLF ICLR pin function	Enable bit <u> .</u> is port-defined f	unction.			
Note 1: Th an 2: Se	ne DEBUG bit in (nd programmers. ee VBOR paramet	Configuration Wo For normal devic er for specific trip	rds is managed e operation, this point voltages.	automatically by bit should be ma	device developm iintained as a '1'	nent tools includin	g debuggers

R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EXTOEN	HFOEN		LFOEN	SOSCEN	ADOEN	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	EXTOEN: Ext	ternal Oscillato	r Manual Requ	lest Enable bit			
	1 = EXTOSC	is explicitly enable	abled, operatin	g as specified	by FEXTOSC		
hit 6			ter Manual Ro				
DILO	1 = HEINTOS	SC is explicitly e	enabled, opera	ting as specifie	ed by OSCERO	(Register 7-6)	
	0 = HFINTOS	SC could be en	abled by anoth	er module		(i togiotoi i o)	
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	LFOEN: LFIN	TOSC (31 kHz	z) Oscillator Ma	anual Request	Enable bit		
	1 = LFINTOS	C is explicitly e	nabled				
	0 = LFINTOS	C could be ena	abled by anothe	er module			
bit 3	SOSCEN: Se	condary Oscill	ator Manual Re	equest Enable	bit		
	0 = Secondar	v Oscillator co	uld be enabled	by another mo	odule		
bit 2	ADOEN: ADO	- DSC (600 kHz)	Oscillator Mar	nual Request E	nable bit		
	1 = ADOSC is	s explicitly enal	bled	·			
	0 = ADOSC c	could be enable	ed by another r	nodule			
bit 1	Unimplemen	ted: Read as '	0'				
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 7-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

FIGURE 8-2:	INTERRUPT LA	TENCY				
						Rev. 10-000289E 8/31/2016
				Q1 Q2 Q3 Q4		
INT pin	Valid Interrupt	1 Cycle In	struction at	PC		
Fetch PC	- 11 PC	PC + 1		PC = 0x0004	PC = 0x0005	PC = 0x0006
Execute PC	- 21 PC - 1	PC	NOP	NOP	PC = 0x0004	PC = 0x0005
	Indeterminate Laten cy ⁽²⁾		Latency			
Note 1: An inter 2: Since a	rupt may occur at any n interrupt may occur a	time during the in any time during th	terrupt window. e interrupt wind	ow, the actual lat	ency can vary.	

11.4.2 NVM UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the NVM from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Program Flash Memory Row Erase
- · Load of Program Flash Memory write latches
- Write of Program Flash Memory write latches to Program Flash Memory memory
- Write of Program Flash Memory write latches to user IDs
- Write to EEPROM

The unlock sequence consists of the following steps and must be completed in order:

- Write 55h to NVMCON2
- Write AAh to NMVCON2
- Set the WR bit of NVMCON1

Once the WR bit is set, the processor will stall internal operations until the operation is complete and then resume with the next instruction.

Note: The two NOP instructions after setting the WR bit, which were required in previous devices, are not required for PIC16(L)F18325/18345 devices. See Figure 11-2.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 11-2: NVM UNLOCK SEQUENCE FLOWCHART

EXAMPLE 11-2: NVM UNLOCK SEQUENCE

BANKSEL	NVMCON1	
BSF	NVMCON1,WREN	; Enable write/erase
MOVLW	55h	; Load 55h
BCF	INTCON,GIE	; Recommended so sequence is not interrupted
MOVWF	NVMCON2	; Step 1: Load 55h into NVMCON2
MOVLW	AAh	; Step 2: Load W with AAh
MOVWF	NVMCON2	; Step 3: Load AAh into NVMCON2
BSF	NVMCON1,WR	; Step 4: Set WR bit to begin write/erase
BSF	INTCON,GIE	; Re-enable interrupts

Note 1: Sequence begins when NVMCON2 is written; steps 1-4 must occur in the cycle-accurate order shown.

2: Opcodes shown are illustrative; any instruction that has the indicated effect may be used.

© 2015-2016 Microchip Technology Inc

Preliminary

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-6	bit 7-6 TRISC<7:6> : PORTC Tri-State Control bits ⁽¹⁾ 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output									
bit 5-0	TRISC<5:0>: 1 = PORTC p 0 = PORTC p	PORTC Tri-Sta in configured a in configured a	ate Control bit s an input (tri s an output	ts -stated)						

REGISTER 12-18: TRISC: PORTC TRI-STATE REGISTER

Note 1: PIC16(L)F18345 only; otherwise read as '0'.

REGISTER 12-19: LATC: PORTC DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 LATC<7:6>: PORTC Output Latch Value bits⁽¹⁾

bit 5-0 LATC<5:0>: PORTC Output Latch Value bits

Note 1: PIC16(L)F18345 only; otherwise read as '0'.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ODCC7 ⁽¹⁾	ODCC6 ⁽¹⁾	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown		iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6 ODCC<7:6>: PORTC Open-Drain Enable bits ⁽¹⁾ For RC<7:6> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current) bit 5-0 ODCC<5:0>: PORTC Open-Drain Enable bits For RC<5:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)							

REGISTER 12-22: ODCONC: PORTC OPEN-DRAIN CONTROL REGISTER

Note 1: PIC16(L)F18345 only; otherwise read as '0'.

REGISTER 12-23: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	SLRC<7:6>: PORTC Slew Rate Enable bits ⁽¹⁾ For RC<7:6> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate
bit 5-0	SLRC<5:0>: PORTC Slew Rate Enable bits For RC<5:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

Note 1: PIC16(L)F18345 only; otherwise read as '0'.

18.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 18-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- · Hysteresis enable
- Timer1 output synchronization

The CMxCON1 register (see Register 18-2) contains Control bits for the following:

- · Interrupt on positive/negative edge enables
- · Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR OUTPUT

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register.

The comparator output can also be routed to an external pin through the RxyPPS register (Register 13-2). The corresponding TRIS bit must be clear to enable the pin as an output.

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

18.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 18-2 shows the output state versus input conditions, including polarity control.

TABLE 18-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

18.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See Comparator Specifications in Table 35-14 for more information.

18.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 27.5** "**Timer1 Gate**" for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

18.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. This allows the timer/counter to synchronize with the CxOUT bit so that the software sees no ambiguity due to timing. See the Comparator Block Diagram (Figure 18-2) and the Timer1 Block Diagram (Figure 27-1) for more information.

20.11 Register Definitions: CWG Control

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾	—	_			MODE<2:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncl	hanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BC	R/Value at all o	ther Resets
'1' = Bit is set	:	'0' = Bit is clea	ared	HS/HC = Bit i	is set/cleared b	y hardware	
bit 7	EN: CWGx E	nable bit					
	1 = CWGx is enabled						
	0 = CWGx is disabled						
bit 6	LD: CWG Loa	ad Buffers bit ⁽¹⁾	1				
	1 = Dead-ba	nd count buffer	s to be loade	d on CWG dat	a rising edge fo	ollowing first fall	ing edge after
	this bit is	set.					
	0 = Buffers re	emain unchang	ed				
bit 5-3	Unimplemented: Read as '0'						
bit 2-0	MODE<2:0>:	CWGx Mode b	oits				
	111 = Reser	rved					
	110 = Reser	ved					
	101 = CWG outputs operate in Push-Pull mode						
	100 = CWG outputs operate in Half-Bridge mode						
	011 = CWG outputs operate in Reverse Full-Bridge mode						
010 = CWG outputs operate in Forward Full-Bridge mode							
	000 = CWG	outputs operate	e in Asvnchro	nous Steering II	mode		
	000 000		o / toy 101110	incuo ocooning			

REGISTER 20-1: CWGxCON0: CWGx CONTROL REGISTER 0

Note 1: This bit can only be set after EN = 1; it cannot be set in the same cycle when EN is set.

© 2015-2016 Microchip Technology Inc.

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		IN	_	POLD	POLC	POLB	POLA
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplei	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set	•	'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7-6	Unimplemen	ted: Read as 'd)'				
bit 5	IN: CWGx Da	ta Input Signal	(read-only)				
bit 4	Unimplemen	ted: Read as 'o)'				
bit 3	POLD: WGxD	Output Polarit	y bit				
	1 = Signal out	tput is inverted	polarity				
	0 = Signal out	tput is normal p	olarity				
bit 2	POLC: WGxC Output Polarity bit						
	 Signal output is inverted polarity 						
	0 = Signal out	tput is normal p	olarity				
bit 1 POLB: WGxB Output Polarity bit							
	1 = Signal output is inverted polarity						
	0 = Signal output is normal polarity						
bit 0	POLA: WGxA Output Polarity bit						
	1 = Signal out	tput is inverted	polarity				
	0 = Signal out	tput is normal p	olarity				

REGISTER 20-2: CWGxCON1: CWGx CONTROL REGISTER 1

REGISTER 20-3: CWGxCLKCON: CWGx CLOCK INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	_	_	—	_	—	—	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

CS: CWG Clock Source Selection Select bits

CS	Clock Source		
0	Fosc		
1	HFINTOSC (remains operating during Sleep)		

bit 0

27.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing timer which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the timer.

The module can be used with either internal or external clock sources, and has the Timer1 Gate Enable function. When Timer1 is used with the Timer1 Gate Enable, the timer can measure time intervals or count signal pulses between two points of interest. When used without the Timer1 Gate Enable, the timer simply measures time intervals.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 27-1 displays the Timer1 enable selections.

TABLE 27-1: TIMER1 ENABLE SELECTIONS

TMR10N	TMR1GE Timer1 Operation	
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

27.2 Clock Source Selection

The TMR1CS<1:0> and T1OSC bits of the T1CON register are used to select the clock source for Timer1. Table 27-2 displays the clock source selections. The TMR1H:TMR1L register pair will increment on multiples of the clock source as determined by the Timer1 prescaler.

When either the FOSC or LFINTOSC clock source is selected, the TMR1H:TMR1L register pair will increment every rising clock edge. Reading from the TMR1H:TMR1L register pair when either the FOSC or LFINTOSC is the clock source will cause a 2 LSb loss in resolution, which can be mitigated by using an asynchronous input signal to gate the Timer1 clock input (see Section 26.5 "Operation During Sleep" for more information on the Timer1 Gate Enable).

When the FOSC/4 clock source is selected, the TMR1H:TMR1L register pair increments every instruction cycle (once every four FOSC pulses).

In addition to the internal clock sources, Timer1 has a dedicated external clock input pin, T1CKI. T1CKI can be either synchronized to the system clock or can run asynchronously via the T1SYNC bit of the T1CON register. When the T1CKI pin is used as the clock source, the TMR1H:TMR1L register pair increments on the rising edge of the T1CKI clock input.

Note:	When using Timer1 to count events, a
	falling edge must be registered by the
	counter prior to the first incrementing
	rising edge after any one or more of the
	following conditions:

- Timer1 enabled after POR
- Write to TMR1H or TMR1L
- · Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 27-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	Clock Source			
11	LFINTOSC			
10	External Clocking on T1CKI Pin			
01	System Clock (Fosc)			
00	Instruction Clock (Fosc/4)			

30.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

30.5.6.1 Normal Clock Stretching

Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

30.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPxADD.

Note: Previous versions of the module did not stretch the clock if the second address byte did not match.

30.5.6.3 Byte NACKing

When AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When DHEN bit of SSPxCON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

30.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 30-23).

FIGURE 30-23: CLOCK SYNCHRONIZATION TIMING

© 2015-2016 Microchip Technology Inc.

30.7 Baud Rate Generator

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 30-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 30-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 30-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

EQUATION 30-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 30-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

© 2015-2016 Microchip Technology Inc.

RIMLOU										
				RCEN	DEN		SEN			
GCEN	ACKSTAT	ACKDT	ACKEN	RGEN	FEIN	ROEN				
							DILU			
Legend:										
D - Doodo	blo bit		hit		montod bit road	ac '0'				
R = Readable bit		vv = vvritable bit		U = Unimplemented bit, read as U						
u = Bit is unchanged		x = Bit is unknown		-init - value at POR and bOR/value at all other Resets						
	Sei		areu	nc = cleared by hardware S = User set						
bit 7	GCEN: General Call Enable bit (in I ² C Slave mode only) 1 = Enable interrupt when a general call address (0x00 or 00h) is received in the SSPSR 0 = General call address disabled									
bit 6	ACKSTAT: Ad 1 = Acknowle 0 = Acknowle	ACKSTAT: Acknowledge Status bit (in I ² C mode only) 1 = Acknowledge was not received 0 = Acknowledge was received								
bit 5	ACKDT: Ackr In Receive me Value transmi 1 = Not Ackno 0 = Acknowle	ACKDT: Acknowledge Data bit (in I ² C mode only) In Receive mode: Value transmitted when the user initiates an Acknowledge sequence at the end of a receive 1 = Not Acknowledge = Acknowledge								
bit 4	ACKEN: Acku In Master Reg 1 = Initiate A Automati 0 = Acknowle	 ACKEN: Acknowledge Sequence Enable bit (in I²C Master mode only) In Master Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit Automatically cleared by hardware. 0 = Acknowledge sequence idle 								
bit 3	RCEN: Recei 1 = Enables F 0 = Receive i	RCEN: Receive Enable bit (in I ² C Master mode only) 1 = Enables Receive mode for I ² C 0 = Receive idle								
bit 2	PEN: Stop Co 1 = Initiate Sto 0 = Stop cond	PEN: Stop Condition Enable bit (in I ² C Master mode only) 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle								
bit 1	RSEN: Repea 1 = Initiate R 0 = Repeated	 RSEN: Repeated Start Condition Enable bit (in I²C Master mode only) 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 								
bit 0	SEN: Start Co In Master mod 1 = Initiate St 0 = Start cond In Slave mod 1 = Clock stre 0 = Clock stre	 SEN: Start Condition Enable/Stretch Enable bit In Master mode: 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is disabled 								
Note 1.				no 1 ² C modulo	ia nat in tha idla	atata thasa hi	to may not be			

REGISTER 30-3: SSPxCON2: SSPx CONTROL REGISTER 2 (I²C MODE ONLY)⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the idle state, these bits may not be set (no spooling) and the SSPBUF may not be written.

Mnemonic, Operands		Description	Cycles	14-bit Opcode				Status	Netes		
		Description		MSb			LSb	Affected	notes		
INHERENT OPERATIONS											
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD			
NOP	_	No Operation	1	00	0000	0000	0000				
RESET	_	Software device Reset	1	00	0000	0000	0001				
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD			
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf				
C-COMPILER OPTIMIZED											
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk				
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3		
		modifier, mm									
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2		
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3		
		modifier, mm									
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	lnkk	kkkk		2		

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Section 34.2 "Instruction Descriptions" for detailed MOVIW and MOVWI instruction descriptions.