

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18345-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER	R 5-3: CONF	-IGURATION	WORD 3: M	EMORY			
		R/P-1	U-1	U-1	U-1	U-1	U-1
		LVP ⁽¹⁾	—	—	—	_	—
		bit 13					bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
_	—	—	—	—	_	WRT1	WRT0
bit 7							bit 0
Legend:							
R = Readal	ble bit	P = Programn	nable bit	U = Unimplem	nented bit, read	as '1'	
'0' = Bit is c	leared	'1' = Bit is set		n = Value whe	en blank or afte	r Bulk Erase	
bit 13		ltage Programn					
	1 = ON Low-Voltage Programming is enabled. MCLR/VPP pin function is MCLR. MCLRE						
		onfiguration bit V on MCLR/VP		for programm	ina		
bit 12-2		ted: Read as '			ing.		
bit 1-0	-	Jser NVM Self-		n hita			
DIL 1-0		Write protectio		IT DILS			
	10 = BOOT 0000h to 01FFh write-protected, 0200h to 1FFFh may be modified						
	01 = HALF 0000h to 0FFFh write-protected, 1000h to 1FFFh may be modified						
	01 = ALL 0000h to 1FFFh write-protected, no addresses may be modified						
							protected.
Note 1.	WRT applies only to the self-write feature of the device; writing through ICSP™ is never protected.						

REGISTER 5-3: CONFIGURATION WORD 3: MEMORY

Note 1: The LVP bit cannot be programmed to '0' when Programming mode is entered via LVP.

6.13 Register Definitions: Power Control

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit C
Legend:							
HC = Bit is clea	ared by hardwa	are		HS = Bit is se	et by hardware		
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unk	nown	-m/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	eared	q = Value dep	pends on condit	ion	
bit 7		ack Overflow F Overflow occu	-				
				has been clea	red by firmware	;	
bit 6		ck Underflow					
	1 = A Stack Underflow occurred						
				r has been cle	ared by firmwa	re	
bit 5	Unimplemen	ted: Read as	'0'				
bit 4	1 = A Watcho		set has not occ		'1' by firmware		
			set has occurre	d (cleared by h	hardware)		
bit 3		LR Reset Flag	bit toccurred or se	tto (1) by firm	wara		
			curred (cleared		ware		
bit 2		struction Flag	-	, ,			
	 1 = A RESET instruction has not been executed or set to '1' by firmware 0 = A RESET instruction has been executed (cleared by hardware) 						
bit 1		on Reset Stat		, j	,		
	1 = No Power-on Reset occurred						
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)						
bit 0							
		n-out Reset or		sot in softwar	after a Dower	on Posot or Pr	
	0 = A Brown- occurs)	-out Reset OCC	unea (must be	set in soltware	e after a Power-	on Reset of Bro	

REGISTER 6-2: PCON0: POWER CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	_	_		_			BORRDY	76
PCON0	STKOVF	STKUNF		RWDT	RMCLR	RI	POR	BOR	77
STATUS	_	_	_	TO	PD	Z	DC	С	30
WDTCON				V	VDTPS<4:0	>		SWDTEN	121


Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

^{© 2015-2016} Microchip Technology Inc.

11.4.8 WRITE VERIFY

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full row, then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 11-7: PROGRAM FLASH MEMORY VERIFY FLOWCHART

19.2 Register Definitions: PWM Control

REGISTER 1			CONTROL R				
R/W-0/0	U-0	R-0	R/W-0/0	U-0	U-0	U-0	U-0
PWMxEN	—	PWMxOUT	PWMxPOL	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PWMxEN: PV	VM Module En	able bit				
	1 = PWM mo	dule is enable	t				
	0 = PWM mo	dule is disable	d				
bit 6	Unimplemen	ted: Read as '	D'				
bit 5	PWMxOUT: F	WM Module C	utput Level wi	hen bit is read.			
bit 4	PWMxPOL: PWMx Output Polarity Select bit						
	1 = PWM output is active-low.						
	0 = PWM output is active-high.						
bit 3-0	Unimplemented: Read as '0'						

REGISTER 19-1: PWMxCON: PWM CONTROL REGISTER

REGISTER 19-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
	PWMxDC<9:2>						
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

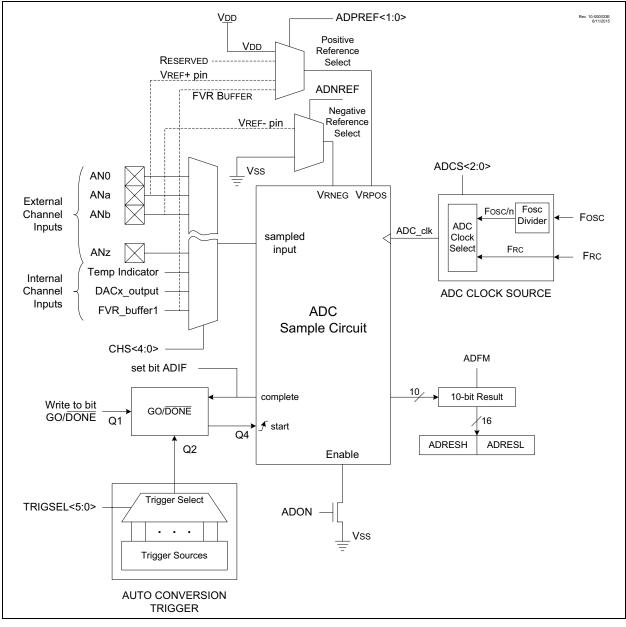
bit 7-0 **PWMxDC<9:2>:** PWM Duty Cycle Most Significant bits

These bits are the MSbs of the PWM duty cycle. The two LSbs are found in PWMxDCL Register.

REGISTER 19-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxD	C<1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-6 **PWMxDC<1:0>:** PWM Duty Cycle Least Significant bits These bits are the LSbs of the PWM duty cycle. The MSbs are found in PWMxDCH Register.

bit 5-0 Unimplemented: Read as '0'

22.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 22-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

FIGURE 22-1: ADC BLOCK DIAGRAM

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

22.2 ADC Operation

22.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 22.2.6 "ADC Conver-
	sion Procedure".

22.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- · Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

22.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

22.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the ADCRC option. When the ADCRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than ADCRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

22.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The Auto-conversion Trigger source is selected with the ADACT<4:0> bits of the ADACT register.

See Table 22-2 for auto-conversion sources.

TABLE 22-2: ADC AUTO-CONVERSION TABLE

Source Peripheral	Description
TMR0	Timer0 Overflow condition
TMR1	Timer1 Overflow condition
TMR3	Timer3 Overflow condition
TMR5	Timer5 Overflow condition
TMR2	Match between Timer2 and PR2
TMR4	Match between Timer4 and PR4
TMR6	Match between Timer6 and PR6
C1	Comparator C1 output
C2	Comparator C2 output
CLC1	CLC1 output
CLC2	CLC2 output
CLC3	CLC3 output
CLC4	CLC4 output
CCP1	CCP1 output
CCP2	CCP2 output
CCP3	CCP3 output
CCP4	CCP4 output

25.0 DATA SIGNAL MODULATOR (DSM) MODULE

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic low state, the DSM mixes the carrier low signal with the modulator signal.

Using this method, the DSM can generate the following types of key modulation schemes:

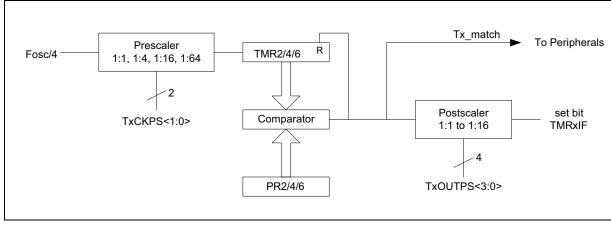
- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- Carrier Source Polarity Select
- Carrier Source Pin Disable
- Programmable Modulator Data
- Modulator Source Pin Disable
- Modulated Output Polarity Select
- Slew Rate Control

Figure 25-1 shows a simplified block diagram of the Data Signal Modulator peripheral.

PIC16(L)F18325/18345


28.0 TIMER2/4/6 MODULE

Timer2/4/6 modules are 8-bit timers that incorporate the following features:

- 8-bit Timer and Period registers (TMR2/4/6 and PR2/4/6, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2/4/6 match with PR2/4/6
- Optional use as the shift clock for the MSSPx module

See Figure 28-1 for a block diagram of Timer2/4/6.

- Note 1: In devices with more than one Timer module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the T2CON and T4CON control the same operational aspects of two completely different Timer modules.
 - 2: Throughout this section, generic references to Timer2 module in any of its operating modes may be interpreted as being equally applicable to Timerx module. Register names, module signals, I/O pins and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

FIGURE 28-1: TIMER2/4/6 BLOCK DIAGRAM

29.4 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 29-3 shows a typical waveform of the PWM signal.

SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 29-4:

29.4.1 STANDARD PWM OPERATION

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- PR2/4/6 registers
- T2/4/6CON registers
- CCPRxL registers
- CCPxCON registers

Figure 29-4 shows a simplified block diagram of PWM operation.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.

FIGURE 29-3:

CCP PWM OUTPUT SIGNAL

Rev. 10-000157E Duty cycle registers CCPRxH CCPRxL CCPx out To Peripherals set CCPIF 10-bit Latch⁽²⁾ (Not accessible by user) Comparator R Q CCPx s **TRIS** Control TMR2 Module R TMR2 (1) **ERS** logic CCPx_pset Comparator PR2 1. 8-bit timer is concatenated with two bits generated by Fosc or two bits of the internal prescaler to Notes: create 10-bit time-base. 2. The alignment of the 10 bits from the CCPR register is determined by the CCPxFMT bit.

30.4.9 ACKNOWLEDGE SEQUENCE

The ninth SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, the clock is stretched, allowing the slave time to change the \overrightarrow{ACK} value before it is sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

30.5 I²C SLAVE MODE OPERATION

The MSSP Slave mode operates in one of four modes selected by the SSPM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

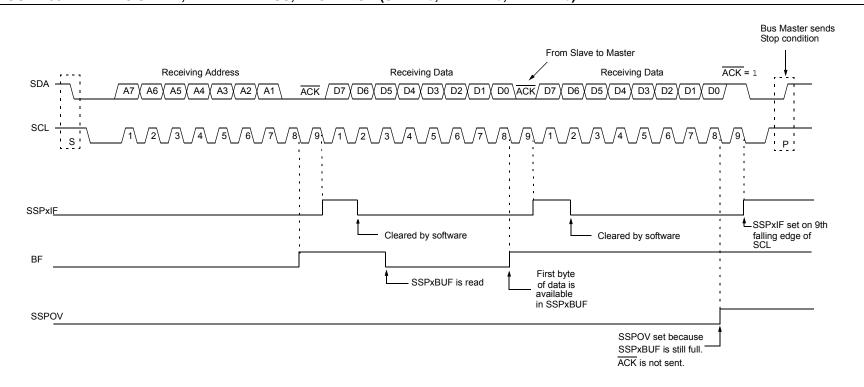
Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

30.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 30-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 30-5) affects the address matching process. See **Section 30.5.9** "**SSP Mask Register**" for more information.

30.5.1.1 I²C Slave 7-bit Addressing Mode


In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

30.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPIF and UA are set, and SCL is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

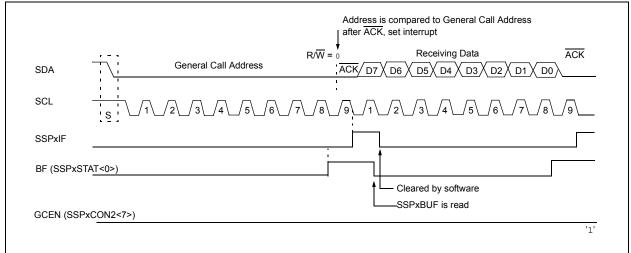
A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

FIGURE 30-14: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0)

PIC16(L)F18325/18345

30.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.


The general call address is a reserved address in the $I^{2}C$ protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with

the R/\overline{W} bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 30-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

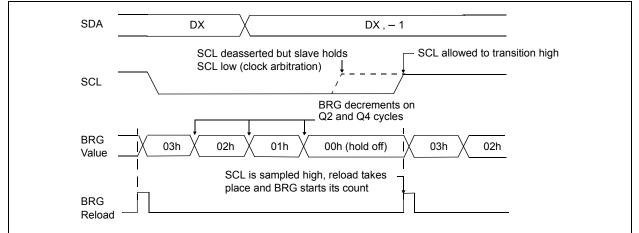
FIGURE 30-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

30.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 30-5) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:


- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

30.6.2 CLOCK ARBITRATION

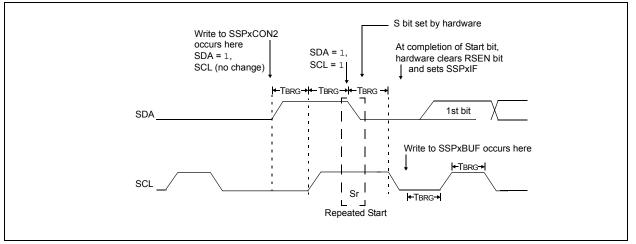
Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the

SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 30-25).

30.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,							
	writing to the lower five bits of SSPxCON2							
	is disabled until the Start condition is							
	complete.							


30.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 30-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.

- **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 30-27: REPEATED START CONDITION WAVEFORM

34.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 34-3 lists the instructions recognized by the MPASM[™] assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine entry takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

34.1 Read-Modify-Write Operations

Any write instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the working (W) register, or the originating file register, depending on the state of the destination designator 'd' (see Table 34-1 for more information). A read operation is performed on a register even if the instruction writes to that register.

TABLE 34-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 34-2: ABBREVIATION DESCRIPTIONS

Field	Description		
PC	Program Counter		
TO	Time-Out bit		
С	Carry bit		
DC	Digit Carry bit		
Z	Zero bit		
PD	Power-Down bit		

PIC16LF	18325/18345	Standard Operating Conditions (un	less c	otherwi	se stat	ed)		
PIC16F1	8325/18345	Standard Operating Conditions (unless otherwise stated)						
Param.	Symbol	Device Characteristics	Min	Typ.†	Max.	Units	Conditions	
No.	Cymbol			1,46.1	max.	onits	Vdd	Note
D100	IDDxt4	XT = 4 MHz	—	321	455	uA	3.0V	\wedge
D100	IDDxt4	XT = 4 MHz	—	332	479	uA	3.0V	
D101	IDDHF016	HFINTOSC = 16 MHz	—	1.3	1.8	mA	3.0V/	
D101	IDDHF016	HFINTOSC = 16 MHz	—	1.4	1.9	mA	3.0V	
D102	IDDHFOPLL	HFINTOSC = 32 MHz	—	2.2	2.8	mA	3.0V	\sim
D102	IDDHFOPLL	HFINTOSC = 32 MHz		2.3	2.9	mA	/3.0Y	
D103	IDDHSPLL32	HS+PLL = 32 MHz	-	2.2	2.8	ſmA<	3.ØV	
D103	IDDHSPLL32	HS+PLL = 32 MHz		2.3	2.9	mÀ	3.0√	
D104	IDDIDLE	IDLE Mode, HFINTOSC = 16 MHz	—	804	1283	uA	3.QV	\geq
D104	IDDIDLE	IDLE Mode, HFINTOSC = 16 MHz	_	816	(1284	∕₽Ą	3.0V	/
D105	IDDDOZE ⁽³⁾	DOZE mode, HFINTOSC = 16 MHz, DOZE Ratio = 16	_	863	f	ZuA	3.0V	
D105	IDDDOZE ⁽³⁾	DOZE mode, HFINTOSC = 16 MHz, DOZE Ratio = 16	_<	875		A	3.0V	

TABLE 35-2: SUPPLY CURRENT (IDD)^(1,2)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: IDDDOZE = $[IDDIDLE^{(N-1)/N}] + IDDHFO16/N where N = DOZE Ration (see Register 9-2).$

DC CHA	RACTI	ERISTICS	Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
D300		with TTL buffer	—	—	0.8	V	$4.5V \le VDD \le 5.5V$			
D301			—	_	0.15 VDD	V	$1.8V \leq VDD \leq 4.5V$			
D302		with Schmitt Trigger buffer	_	_	0.2 Vdd	V	2.0V ≤ VDD ≤ 5.5 V			
D303		with I ² C levels	_	_	0.3 Vdd	V	\frown			
D304		with SMBus levels	—	_	0.8	V /	$2.7V \leq VDD \leq 5.5V$			
D305		MCLR		_	0.2 VDD	K				
	VIH	Input High Voltage								
		I/O PORT:	_		\frown		\searrow			
D320		with TTL buffer	2.0	_	_/ _	\checkmark	$4.5V \neq VDD \leq 5.5V$			
D321			0.25 VDD + 0.8	_	$ - \rangle$	\vee	$1.8V \le VDD \le 4.5V$			
D322		with Schmitt Trigger buffer	0.8 Vdd	<	<u> </u>	$\sqrt{}$	$2.0V \leq V\text{DD} \leq 5.5V$			
D323		with I ² C levels	0.7 Vdd		/-/	\bigvee				
D324		with SMBus levels	2.1 '	$\langle - \langle$		> v	$2.7V \le V\text{DD} \le 5.5V$			
D325		MCLR	0.7 VDD	$ \ge $		V				
	lı∟	Input Leakage Current ⁽²⁾								
D340		I/O Ports	7	±5	± 125	nA	$\label{eq:VSS} \begin{split} VSS &\leq V PIN \leq V DD, \\ Pin \ at \ high-impedance, \ 85^\circ C \end{split}$			
D341		<	A/	₹5	± 1000	nA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance, } 125^{\circ}{\sf C} \end{split}$			
D342		MCLR ⁽²⁾	\square	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C			
	IPUR	Weak Pull-up Current								
D350		\land	25	120	200	μA	VDD = 3.0V, VPIN = VSS			
	Vol	Output Low Voltage ⁽⁴⁾	>		•					
D360		I/O ports	_	_	0.6	V	IOL = 10.0 mA, VDD = 3.0V			
	Vон	Output High Vøltage ⁽⁴⁾								
D370		I/Q ports	Vdd - 0.7	_	—	V	Іон = 6.0 mA, Vdd = 3.0V			
D380	CIO	All VO pins	_	5	50	рF				

TABLE 35-4: I/O PORTS

These parameters are characterized but not tested. €

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2;

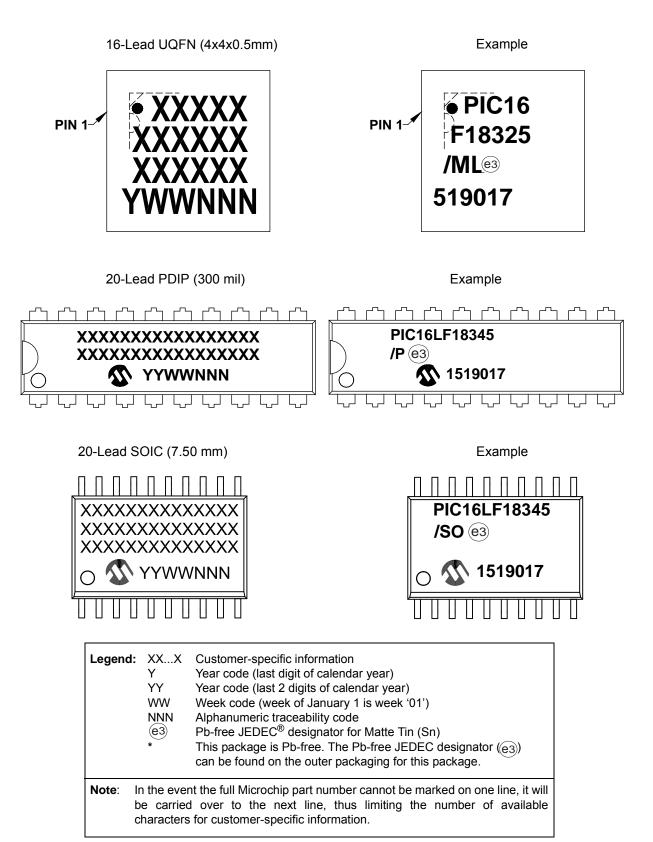
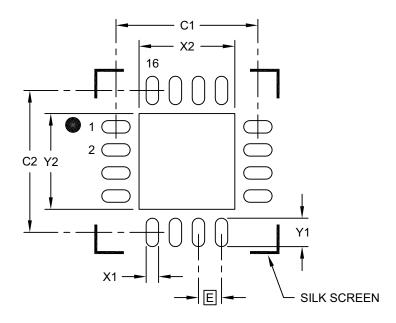

Param. No.	Symbol	Charact	eristic	Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—	$\langle \langle \rangle$	
SP102* TR	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall	100 kHz mode	_	250	ris ~	\square
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold	100 kHz mode	0	\mathcal{F}	ns	
		time	400 kHz mode	0	0.9	μs	
SP107*	TSU:DAT	Data input setup	100 kHz mode	250		ns	(Note 2)
		time	400 kHz mode	100	$\geq -$	ns	
SP109*	ΤΑΑ	Output valid from	100 kHz mode	$\langle \mathcal{F} \rangle$	3500	ns	(Note 1)
		clock	400 kHz mode	\searrow	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loadi	ng	_	400	pF	

TABLE 35-24: I²C BUS DATA CHARACTERISTICS

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.


2: A Fast mode (400 kHz) $|^{2}$ C bus device can be used in a Standard mode (100 kHz) $|^{2}$ C bus system, but the requirement Tsy:Dat \geq 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode 1^{2} bus specification), before the SCL line is released.

Package Marking Information (Continued)

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimensio					
Dimensio	IVIIIN	NOM	MAX		
Contact Pitch	0.65 BSC				
Optional Center Pad Width	X2	2.70			
Optional Center Pad Length Y2				2.70	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X16)	X1			0.35	
Contact Pad Length (X16)				0.80	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2257A