

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18345-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F18325/18345

TABLE 2:	20-PIN ALLOCATION TABLE (PIC16(L)F18345) (CONTINUED)
----------	--

ИО ⁽²⁾	PDIP/SOIC/SSOP	20-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	WSQ	Timers	CCP	PWM	CWG	MSSP	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
	20-Pir																		
RC3	7	4	ANC3	—	C1IN3- C2IN3-	—	_	MDMIN ⁽¹⁾	_	CCP2 ⁽¹⁾	—	—	—	—	CLCIN1 ⁽¹⁾	—	IOC	Y	—
RC4	6	3	ANC4		_	_	—	_	_	_	_	_	_	_	_		IOC	Y	—
RC5	5	2	ANC5	_	—	—	—	MDCIN2 ⁽¹⁾	—	CCP1 ⁽¹⁾	—	—	_	_	—	_	IOC	Y	—
RC6	8	5	ANC6		—	—	—	—	—	—	_	—	SS1 ⁽¹⁾	_	—	_	IOC	Y	—
RC7	9	6	ANC7	-	—	—	—	—	_	—	—	—	—	_	—	-	IOC	Y	—
VDD	1	18	_	_	—	—	—	_	—	—	—	_	—	—	—	—	_	_	Vdd
Vss	20	17	_	-	—	—	—	—	_	—	—	—	—	_	—	-	_	-	Vss
	—	-	-	-	C1OUT	NCO1	—	DSM	TMR0	CCP1	PWM5	CWG1A CWG2A	SDO1 SDO2	DT	CLC1OUT	CLKR	-	—	-
ou r (2)	_	-	-	-	C2OUT	—	_	-	—	CCP2	PWM6	CWG1B CWG2B	SCK1 SCK2	СК	CLC2OUT	-	—	—	-
001-7	_	—	-	_	_	_	_	_	_	CCP3	_	CWG1C CWG2C	SCL1 ⁽³⁾ SCL2 ⁽³⁾	ТХ	CLC3OUT	_	_	_	_
	—	—	_	—	—	—	_	-	—	CCP4	—	CWG1D CWG2D	SDA1 ⁽³⁾ SDA2 ⁽³⁾	_	CLC4OUT	—	—	—	—

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I²C logic levels; clock and data signals may be assigned to any of these pins. Assignments to other pins (e.g. RA5) will operate, but logic levels will be standard TTL/ST as selected by the INLVL register.

TABLE	4-4: SPE	ECIAL F	UNCTION RE	EGISTER S	UMMARY B	ANKS 0-31						
Address	Name	PIC16(L)F18325 PIC16(L)F18345	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 0												
					CPU CORE R	EGISTERS; see	Table 4-2 for spe	ecifics				
00Ch	PORTA		—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
00Dh	PORTB	X —				Unimple	emented				— —	_
		— X	RB7	RB6	RB5	RB4	_	_	_	_	xxxx	uuuu
00Eh	PORTC	X —	—	_	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu
		— X	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
00Fh	—	—				Unimple	emented				_	—
010b					TMPOIE	IOCIE				INITE	00 0	00 0

		_ ^	IXD7	IXD0	IXD5	IND-F					AAAA	uuuu
00Eh	PORTC	X —	—	—	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu
		— X	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
00Fh	—	—			Unimplemented						_	—
010h	PIR0		—	—	TMR0IF	IOCIF	—	—	_	INTF	000	000
011h	PIR1		TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2		TMR6IF	C2IF	C1IF	NVMIF	SSP2IF	BCL2IF	TMR4IF	NCO1IF	0000 0000	0000 0000
013h	PIR3		OSFIF	CSWIF	TMR3GIF	TMR3IF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	0000 0000	0000 0000
014h	PIR4		CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	0000 0000	0000 0000
015h	TMR0L			TMR0L<7:0>							xxxx xxxx	xxxx xxxx
016h	TMR0H					TMR0	H<7:0>				1111 1111	1111 1111
017h	T0CON0		T0EN		TOOUT	T016BIT		TOOUT	PS<3:0>		0-00 0000	0-00 0000
018h	T0CON1			T0CS<2:0>		TOASYNC		TOCKP	°S<3:0>		0000 0000	0000 0000
019h	TMR1L					TMR1	L<7:0>				xxxx xxxx	uuuu uuuu
01Ah	TMR1H					TMR1	H<7:0>				xxxx xxxx	uuuu uuuu
01Bh	T1CON		TMR1CS	6<1:0>	T1CK	PS<1:0>	T1SOSC	T1SYNC		TMR10N	0000 00-0	uuuu uu-u
01Ch	T1GCON		TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	0000 0x00	uuuu uxuu
01Dh	TMR2					TMR2	<7:0>				0000 0000	0000 0000
01Eh	PR2			PR2<7:0>						1111 1111	1111 1111	
01Fh	T2CON		_		T2OU	TPS<3:0>		TMR2ON	T2CKF	PS<1:0>	-000 0000	-000 0000

 Legend:
 x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

 Note
 1:
 Only on PIC16F18325/18345.

 2:
 Register accessible from both User and ICD Debugger.

6.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON0 register are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during Normal Operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON0 Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during Normal Operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
Brown-out Reset	0000h	1 1000	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

7.0 OSCILLATOR MODULE

7.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 7-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device is reset, including when it is first powered-up.

The internal clock modes, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the External Clock mode.

The external oscillator module can be configured in one of the following clock modes by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode (<= 100 kHz)
- ECM External Clock Medium-Power mode (<= 8 MHz)
- ECH External Clock High-Power mode (<= 32 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS Clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 7-1).

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0		
—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0		
bit 7		•					bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets									

REGISTER 15-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

bit 7-6	Unimplemented: Read as '	0'
		0

1' = Bit is set

bit 5-0

IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

'0' = Bit is cleared

1 = An enabled change was detected on the associated pin Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

HS - Bit is set in hardware

0 = No change was detected, or the user cleared the detected change.

REGISTER 15-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBP7	IOCBP6	IOCBP5	IOCBP4	-	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCBP<7:4>:** Interrupt-on-Change PORTB Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

bit 3-0 Unimplemented: Read as '0'

Note 1: PIC16(L)F18345 only.

17.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μs after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed.

TABLE 17-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFV	R<1:0>	180

Legend: Shaded cells are unused by the temperature indicator module.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	—	AS4E	AS3E	AS2E	AS1E	AS0E
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value de	pends on condit	ion	
bit 7-5	Unimplemented: Read as '0'						
bit 4	AS4E: CWG	Auto-Shutdowr	n Source 4 (CL	C4) Enable bit	I		
	1 = Auto-sh	utdown for CLC	C4 is enabled				
	0 = Auto-sh	utdown for CLC	C4 is disabled				
bit 3	AS3E: CWG	Auto-Shutdowr	n Source 3 (CL	C2) Enable bit			
	1 = Auto-sh	utdown from C	LC2 is enabled	4			
hit 0				u 2) Enchla hit			
DIL Z	ASZE: UWG Auto-Snutdown Source 2 (U2) Enable bit						
	0 = Auto-shutdown from Comparator 2 is disabled						
bit 1	AS1E: CWG Auto-Shutdown Source 1 (C1) Enable bit						
	1 = Auto-shutdown from Comparator 1 is enabled						
	0 = Auto-shutdown from Comparator 1 is disabled						
bit 0	AS0E: CWG Auto-Shutdown Source 0 (CWGxPPS) Enable bit						
	1 = Auto-sh	utdown from C	WGxPPS is er	nabled			
	0 = Auto-sh	utdown from C	WGxPPS is dis	sabled			

REGISTER 20-7: CWGxAS1: CWG AUTO-SHUTDOWN CONTROL REGISTER 1

REGISTER 20-8: CWGxDBR: CWGx RISING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			DBR	<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0' bit 5-0 DBR<5:0>: CWG Rising Edge Triggered Dead-Band Count bits 11 1111 = 63-64 CWG clock periods 11 1110 = 62-63 CWG clock periods . . . 00 0010 = 2-3 CWG clock periods 00 0001 = 1-2 CWG clock periods 00 0000 = 0 CWG clock periods. Dead-band generation is bypassed.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG3D4T: (Gate 2 Data 4 1	rue (non-inve	rted) bit			
	1 = CLCIN3	(true) is gated i	nto CLCx Gate	e 2 Octo 0			
	0 = CLCIN3	(true) is not gai		Gate 2			
DIT 6	LCXG3D4N: 0	Gate 2 Data 4	Negated (Invel	Coto 2			
	1 = CLCIN3 (0 = CLCIN3 ((inverted) is ga	t gated into CLCX	Cx Gate 2			
bit 5	LCxG3D3T: (Gate 2 Data 3 1	rue (non-inve	rted) bit			
	1 = CLCIN2 ((true) is gated i	nto CLCx Gat	e 2			
	0 = CLCIN2	(true) is not gat	ed into CLCx	Gate 2			
bit 4	LCxG3D3N:	Gate 2 Data 3 I	Negated (inver	rted) bit			
	1 = CLCIN2 ((inverted) is ga	ted into CLCx	Gate 2			
	0 = CLCIN2 ((inverted) is no	t gated into CL	Cx Gate 2			
bit 3	LCxG3D2T: (Gate 2 Data 2 T	rue (non-inve	rted) bit			
	1 = CLCIN1 (0 = CLCIN1 ((true) is gated i	nto CLCX Gate	e 2 Gate 2			
hit 2		Gate 2 Data 2	Negated (inve	rted) hit			
5112	1 = CLCIN1 (inverted) is gated into CLCx Gate 2						
	0 = CLCIN1 (inverted) is not gated into CLCx Gate 2						
bit 1	LCxG3D1T: Gate 2 Data 1 True (non-inverted) bit						
	1 = CLCIN0 (true) is gated into CLCx Gate 2						
	0 = CLCIN0 (true) is not gated into CLCx Gate 2						
bit 0	LCxG3D1N: Gate 2 Data 1 Negated (inverted) bit						
	1 = CLCINO((inverted) is ga	ted into CLCx	Gate 2			
	0 = GLGINU((invented) is no	i galeu into Cl	LOX Gale Z			

REGISTER 21-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

27.2.1 TIMER1 (SECONDARY) OSCILLATOR

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is designed to be used in conjunction with an external 32.768 kHz crystal. The oscillator circuit is enabled by setting the T1SOSC bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1SOSC should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

27.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

27.4 Timer1 Operation in Asynchronous Mode

If the control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 27.4.1 "Reading and Writing Timer1 in Asynchronous Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

27.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

27.5 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

27.5.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 27-3 for timing details.

TABLE 27-3:	TIMER1 GATE ENABLE
	SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	-	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
ANSELA		—	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	_	_	_	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	_	_	_	150
TRISC	TRISC7 ⁽¹⁾	TRISC6(1)	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
INTCON	GIE	PEIE	_	_	—	_	_	INTEDG	101
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	108
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	103
PIR3	OSFIF	CSWIF	TMR3GIF	TMR3IF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	110
PIE3	OSFIE	CSWIE	TMR3GIE	TMR3IE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	105
PIR4	CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	111
PIE4	CWG2IE	CWG1IE	TMR5GIE	TMR5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	106
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1SOSC	T1SYNC	_	TMR10N	292
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	293
TMR1L	TMR1L<7:0>							294	
TMR1H	TMR1H<7:0>							294	
T1CKIPPS	_	_	_		T1CK	IPPS<4:0>			162
T1GPPS	_	_	— T1GPPS<4:0>					162	
T3CON	TMR3C	:S<1:0>	T3CKP	S<1:0>	T3SOSC	T3SYNC	_	TMR3ON	292
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GS	S<1:0>	293
TMR3L		TMR3L<7:0>							294
TMR3H				TMR	3H<7:0>				294
T3CKIPPS	_	_	_		T3CK	IPPS<4:0>			162
T3GPPS	_	_	_		T3G	PPS<4:0>			162
T5CON	TMR5C	S<1:0>	T5CKP	S<1:0>	T5SOSC	T5SYNC	—	TMR5ON	292
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GSS	S<1:0>	293
TMR5L				TMR	5L<7:0>				294
TMR5H				TMR	5H<7:0>				294
T5CKIPPS	_	_	_		T5CK	IPPS<4:0>			162
T5GPPS	_	—	_		T5G	PPS<4:0>			162
T0CON0	T0EN	_	TOOUT	T016BIT		T0OUTPS-	<3:0>		280
CMxCON0	CxON	CxOUT		CxPOL	—	CxSP	CxHYS	CxSYNC	190
CCPTMRS	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSEL<	1:0>	C1TSE	L<1:0>	311
CCPxCON	CCPxEN	—	CCPxOUT	CCPxFMT	(CCPxMODE	=<3:0>		308
CLCxSELy	—	—			LCxDyS<5	:0>			229
ADACT	_	—	—		ADA	ACT<4:0>			246

TABLE 27-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/	TABLE 27-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5
--	-------------	---

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.

REGISTER 28-2: TMRx⁽¹⁾: TIMERx COUNT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMRx	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplen	nented bit, read	d as '0'		
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clear	red				

bit 7-0 TMRx<7:0>: TMRx Counter bits 7..0

Note 1: 'x' refers to either '2,' 4' or '6' for the respective Timer2/4/6 registers.

REGISTER 28-3: PRx: TIMERx PERIOD REGISTER⁽¹⁾

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
PRx<7:0>							
bit 7							bit 0
Leaend:							

Logonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 PRx<7:0>: TMRx Counter bits 7..0

When TMRx = PRx, the next clock will reset the counter; counter period is (PRx+1)

Note 1: 'x' refers to either '2,' 4' or '6' for the respective Timer2/4/6 registers.

© 2015-2016 Microchip Technology Inc.

29.3 Compare Mode

Compare mode makes use of the 16-bit Timer1/3/5 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1/3/5H:TMR1/3/5L register pair. When a match occurs, one of the following events can occur:

- Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- Generate an Auto-conversion Trigger
- · Generate a Software Interrupt

The action on the pin is based on the value of the CCPxMODE<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set, and an ADC conversion can be triggered, if selected.

All Compare modes can generate an interrupt and trigger an ADC conversion.

Figure 29-2 shows a simplified diagram of the compare operation.

Note: When the CCP is configured in Compare mode using the 'toggle output on match' setting (CCPxMODE<3:0> bits = 0010) and the reference timer is set for an input clock prescale other than 1:1, the output of the CCP will toggle multiple times until finally settling a '0' logic level. To avoid this, the timer input clock prescale select bits must be set to a 1:1 ratio (TxCKPS = 00).

FIGURE 29-2: COMPARE MODE OPERATION BLOCK DIAGRAM

29.3.1 CCPX PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit and defining the appropriate output pin through the RxyPPS registers. See Section 13.0 "Peripheral Pin Select (PPS) Module" for more details.

Note:	Clearing the CCPxCON register will force							
	the CCPx compare output latch to the							
	default low level. This is not the PORT I/O							
	data latch.							

29.3.2 TIMER1/3/5 MODE RESOURCE

In Compare mode, Timer1/3/5 must be running in either Timer mode or Synchronized mode. The compare operation may not work in Asynchronous mode.

See Section 27.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1/3/5.

Note: Clocking Timer1/3/5 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, Timer1/3/5 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

29.3.3 AUTO-CONVERSION TRIGGER

All CCPx modes set the CCP interrupt flag (CCPxIF). When this flag is set as a match occurs, an auto-conversion trigger can occur if the CCP module is selected as the conversion trigger source.

Refer to **Section 22.2.5 "Auto-Conversion Trigger"** for more information.

Note:	Removing the Match condition by chang-
	ing the contents of the CCPRxH and
	CCPRxL register pair, between the clock
	edge that generates the Auto-conversion
	Trigger and the clock edge that generates
	the Timer Reset, will preclude the Reset
	from occurring.

29.3.4 COMPARE DURING SLEEP

Since FOSC is shut down during Sleep mode, the Compare mode will not function properly during Sleep, unless the timer is running. The device will wake on interrupt (if enabled).

29.3.5 COMPARE INTERRUPTS

The CCPxIF interrupt flag will be set when a match between the CCPRxH:CCPRxL register pair and the TMR1/3/5H:TMR1/3/5L register pair occurs. If the device is in Sleep and interrupts are enabled (CCPxIE = 1), the device will wake up, assuming Timer1 is operating during Sleep.

FIGURE 30-15: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

© 2015-2016 Microchip Technology Inc

Preliminary

PIC16(L)F18325/18345

30.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCL low and SDA unchanged (Figure 30-28).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCL low and allowing SDA to float.

30.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

30.6.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

30.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

30.6.6.4 Typical Transmit Sequence

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSPx module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

31.1 EUSART1 Asynchronous Mode

The EUSART1 transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 31-3 for examples of baud rate configurations.

The EUSART1 transmits and receives the LSb first. The EUSART1's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

31.1.1 EUSART1 ASYNCHRONOUS TRANSMITTER

The EUSART1 transmitter block diagram is shown in Figure 31-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TX1REG register.

31.1.1.1 Enabling the Transmitter

The EUSART1 transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART1 control bits are assumed to be in their default state.

Setting the TXEN bit of the TX1STA register enables the transmitter circuitry of the EUSART1. Clearing the SYNC bit of the TX1STA register configures the EUSART1 for asynchronous operation. Setting the SPEN bit of the RC1STA register enables the EUSART1 and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

31.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TX1REG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TX1REG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TX1REG until the Stop bit of the previous character has been transmitted. The pending character in the TX1REG is then transferred to the TSR in one TcY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TX1REG.

31.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUD1CON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 31.4.1.2 "Clock Polarity"**.

31.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART1 transmitter is enabled and no character is being held for transmission in the TX1REG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TX1REG. The TXIF flag bit is not cleared immediately upon writing TX1REG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TX1REG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TX1REG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TX1REG.

Mnemonic, Operands		Description	Civalaa	14-bit Opcode				Status	Netaa
		Description		MSb			LSb	Affected	Notes
		INHERENT OPERA	ATIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
RESET	_	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
C-COMPILER OPTIMIZED									
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Section 34.2 "Instruction Descriptions" for detailed MOVIW and MOVWI instruction descriptions.

PIC16(L)F18325/18345

TABLE 35-5: I/O AND CLOCK TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
High Vol	tage Entry	y Programming Mode Specification	ons				
MEM01	Vінн	Voltage on MCLR/VPP pin to enter Programming mode	_	_	_	V	Note 2
MEM02	IPPGM	Current on MCLR/VPP pin during Programming mode	_	_	—	uA	Note 2
Program	ming Mo	de Specifications					
MEM10	VBE	VDD for Bulk Erase	—	2.7	_	V	
MEM11	IDDPGM	Supply Current during Programming Operation	—	_	_	V	
Data EE	PROM Me	mory Specifications					
MEM20	ED	DataEE Byte Endurance	100k		_	E/W	-40°C ≤ TA ≤ 85°C
MEM21	TD_RET	Characteristic Retention	_	40	- <	Year	Provided no other specifications are violated
MEM22	ND_REF	Total Erase/Write Cycles before Refresh	_	_	100k	E.W.	
MEM23	VD_RW	VDD for Read or Erase/Write Operation	VDDMIN	_	VDQMAX	v	
MEM24	TD_BEW	Byte Erase and Write Cycle Time	—	4.0	5.0	ms	
Program	Flash Me	emory Specifications					
MEM30	Eр	Flash Memory Cell Endurance	10k		\searrow	E/W	-40°C ≤ Ta ≤ 85°C (Note 1)
MEM31	EPHEF	High-Endurance Flash Memory Cell Endurance	100K		\sim_{-}	E/W	TBD
MEM32	TP_RET	Characteristic Retention		40	_	Year	Provided no other specifications are violated
MEM33	VP_RD	VDD for Read Operation	VDDMIN	—	VDDMAX	V	
MEM34	VP_REW	VDD for Row Erase or Write Operation		_	VDDMAX	V	
MEM35	TP_REW	Self-Timed Row Erase or Self-Timed Write		2.0	2.5	ms	

+ Data in "Typ." column is at 3.00, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

2: Required only if CONFIG3.LVP is disabled.

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to	70.0	°C/W	14-pin PDIP package		
		Ambient	95.3	°C/W	14-pin SOIC package		
			100.0	°C/W	14-pin TSSOP package		
			51.5	°C/W	16-pin UQFN 4x4mm package		
			62.2	°C/W	20-pin PDIP package		
			87.3	°C/W	20-pin SSOP package		
			77.7	°C/W	20-pin SOIC package		
			43.0	°C/W	20-pin UQFN 4x4mm package		
TH02	θJC	Thermal Resistance Junction to	32.75	°C/W	14-pin PDIR package		
		Case	31.0	°C/W	14-pin SOIC package		
			24.4	°C/W	14-pin ISSOP package		
			5.4	°C/W	16-pm UQFN 4x4mm package		
			27.5	°C/W	20-pin PDIP package		
			31.1	ŶĊŇŲ	20-pin SSOP package		
			23.1	°C/W	20-pin SOIC package		
			5,8	°C/₩	20-pin UQFN 4x4mm package		
TH03	TJMAX	Maximum Junction Temperature	150	Ø			
TH04	PD	Power Dissipation	0.800	∕ ¥	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	X	V W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation		V V	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	Pder	Derated Power		Ŵ	Pder = PDmax (Τj - Τa)/θja ⁽²⁾		

TABLE 35-6: THERMAL CHARACTERISTICS

Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature, TJ = Junction Temperature

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
AD01	NR	Resolution	—	_	10	bit		
AD02	EIL	Integral Error		±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF- = 0V	
AD03	Edl	Differential Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF- = 0V	
AD04	EOFF	Offset Error	—	0.5	2	LSb	ADCREF+ = 3.0V, ADCREF- = 0V	
AD05	Egn	Gain Error	—	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF- = 0V	
AD06	VADREF	ADC Reference Voltage (ADREF+) ⁽³⁾	1.8	_	Vdd	V		
AD07	VAIN	Full-Scale Range	Vss	_	ADREF+	V		
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-) ⁽³⁾	1.8	_	Vdd	V		
AD07	VAIN	Full-Scale Range	ADREF-	_	ADREF+	\sqrt{V}		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	—	10	—	kΩ		
AD09	RVREF	ADC Voltage Reference	—	_	\langle	kΩ		
* These parameters are characterized but not tested								

TABLE 35-12: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2)

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.