

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18345t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.1 STATUS Register

The STATUS register, shown in Register 4-1, contains:

- The arithmetic status of the ALU
- · The Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

REGISTER 4-1: STATUS: STATUS REGISTER

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 34.0 "Instruction Set Summary").

Note 1:	The C and DC bits operate as Borrow
	and Digit Borrow out bits, respectively, in
	subtraction.

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u		
_	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾		
bit 7	•						bit 0		
Legend:									
R = Readable I	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depends on condition					

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-Out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT Time-out occurred
bit 3	PD: Power-Down bit
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
bit 1	 DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)⁽¹⁾ 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
bit 0	C : Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾ 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

6.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON0 register are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during Normal Operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON0 Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during Normal Operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
Brown-out Reset	0000h	1 1000	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

© 2015-2016 Microchip Technology Inc

Preliminary

12.2.6 ANALOG CONTROL

The ANSELA register (Register 12-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.2.7 WEAK PULL-UP CONTROL

The WPUA register (Register 12-5) controls the individual weak pull-ups for each PORT pin.

PORTA pin RA3 includes the $\overline{\text{MCLR}}$ /VPP input. The MCLR input allows the device to be reset, and can be disabled by the MCLRE bit of Configuration Word 2. A weak pull-up is present on the RA3 port pin. This weak pull-up is enabled when $\overline{\text{MCLR}}$ is enabled ($\overline{\text{MCLRE}} = 1$) or the WPUA3 bit is set. The weak pull-up is disabled when is disabled and the WPUA3 bit is clear.

12.2.8 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 13.0 "Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	101
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	103
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	108
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	143
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	149
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156
ANSELA	—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	144
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	—	_	—	150
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
ADCON0			CHS<	5:0>			GO/DONE	ADON	244
ADCON1	ADFM	ŀ	ADCS<2:0>	•	_	ADNREF	ADPRE	245	
ADACT	—	—				ADACT<4:	0>		246
ADRESH				ADRES	SH<7:0>				247
ADRESL	ADRESL<7:0>								247
FVRCON	FVREN	FVRRDY	TSEN	TSRNG CDAFVR<1:0> ADFVR<1:0>					180
DAC1CON1	_	_	_			DAC1R<4:	0>		264
OSCSTAT1	EXTOR	HFOR		LFOR	SOR	ADOR	_	PLLR	92

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.

EQUATION 29-2: PULSE WIDTH

Pulse Width = (*CCPRxH:CCPRxL register pair*) •

TOSC • (TMR2 Prescale Value)

EQUATION 29-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$

The CCPRxH:CCPRxL register pair and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering provides glitchless PWM operation.

The 8-bit timer TMR2/4/6 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 29-4).

29.4.6 PWM RESOLUTION

PWM resolution, expressed in number of bits, defines the maximum number of discrete steps that can be present in a single PWM period. For example, a 10-bit resolution will result in 1024 discrete steps, whereas an 8-bit resolution will result in 256 discrete steps.

The maximum PWM resolution is ten bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 29-4.

EQUATION 29-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 29-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)	

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 29-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

29.4.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2/4/6 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2/4/6 will continue from its previous state.

29.4.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 7.0** "Oscillator Module" for additional details.

29.4.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

29.5 Register Definitions: CCP Control

R/W-0/0) U-0	R-x/x	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CCPxEN	<u>ا</u> ا	CCPxOUT	CCPxFMT		CCPxMC)DE<3:0>	
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all	other Reset
'1' = Bit is s	set	'0' = Bit is clea	ared				
bit 7	CCPxEN: CC	P Module Ena	ble bit				
	0 = CCP is di	sabled					
hit C		tadieu	0'				
		CDv Output D	U ata (raad aabu)	h:t			
DIL D	CCPXCUT. C		dth) Alianmon	DIL t bit			
DIL 4	CCPxMODE	= Capture mod	le				
	Unused		<u> </u>				
	<u>CCPxMODE</u>	= Compare mo	<u>de</u>				
		- DW/M mode					
	0 = Right-alig	ned format					
	1 = Left-align	ed format					
bit 3-0	CCPxMODE.	<3:0>: CCPx N	lode Select bit	s ⁽¹⁾			
	1111 = PWM	mode					
	1110 = Rese	rved					
	1100 = Rese	rved					
	1011 = Comp	pare mode: out	put will pulse ()-1-0; Clears TI	MR1/3/5		
	1010 = Comp 1001 = Comp	pare mode: clea	ar output on co	mpare match			
	1000 = Com	oare mode: set	output on com	pare match			
	0.111 - Cont	iro modo: ovor	v 16th riging o		out		
	0111 - Capit0110 = Capit	ire mode: ever	v 4th rising ed	age of CCPx in	put		
	0101 = Captu	ure mode: ever	y rising edge o	of CCPx input			
	0100 = Capt u	ure mode: ever	y falling edge	of CCPx input			
	0011 = Cant i	ıre mode: ever	v edge of CCF	'x input			
	0010 = Comp	pare mode: tog	gle output on r	natch			
	0001 = Com	oare mode: tog	gle output on r	natch; clear TM	IR1/3/5		
	0000 = Capt u	ire/Compare/P	WM off (resets	CCPx module)		
Note 1:	All modes will set source.	the CCPxIF bit	and will trigge	r an ADC conve	rsion if CCPx is	s selected as th	ne ADC trigger

REGISTER 29-1: CCPxCON: CCPx CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	_	_	TRISA5	TRISA4	_(2)	TRISA2	TRISA1	TRISA0	143
ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	144
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	149
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	_	_	—	150
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	156
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	157
INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	101
PIR4	CWG2IF	CWG1IF	TMR5GIF	TMR5IF	CCP4IF	CCP3IF	CCP2IF	CCP1IF	111
PIE4	CWG2IE	CWGIE	TMR5GIE	TMR5IE	CCP4IE	CCP3IE	CCP2IE	CCP1IE	106
CCPxCON	CCPxEN		CCPxOUT	CCPxFMT		CCPxMO	308		
CCPxCAP	_		—	_	_	C	CPxCTS<2:)>	309
CCPRxL				CCPRx<	7:0>				310
CCPRxH				CCPRx<1	5:8>				310
CCPTMRS	C4TSE	EL<1:0>	C3TSEL	.<1:0>	C2TSE	EL<1:0>	C1TSE	EL<1:0>	311
CCP1PPS	_		—		C	CP1PPS<4:0)>		162
CCP2PPS	—		—		C	CP2PPS<4:0)>		162
CCP3PPS	_		_		C	CP3PPS<4:0)>		162
CCP4PPS	—	-	—	CCP4PPS<4:0>					
ADACT	—		—		ŀ	ADACT<4:0>	•		246
CLCxSELy	_				LCxDyS ⁻	<5:0>			229
CWGxDAT	—	_	—	—		DAT<	<3:0>		215
MDSRC	_	_	—	_		MDMS	\$<3:0>		272
MDCARH	—	MDCHPOL	MDCHSYNC	—		MDCH	I<3:0>		273
MDCARL	_	MDCLPOL	MDCLSYNC	—		MDCL	<3:0>		274

TABLE 29-4: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

Note 1: PIC16(L)F18345 only.

2: Unimplemented, read as '1'.

I²C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 0) **FIGURE 30-18:**

PIC16(L)F18325/18345

TABLE 30-2: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	Fclock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in Table 35-4 to ensure the system is designed to support IOL requirements.

31.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART1)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART1) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART1, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/\overline{A} integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART1 module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- Input buffer overrun error detection
- · Received character framing error detection
- · Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART1 module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART1 transmitter and receiver are shown in Figure 31-1 and Figure 31-2.

The EUSART1 transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

Configurable Logic Cell (CLC)

FIGURE 31-1: EUSART1 TRANSMIT BLOCK DIAGRAM

FIGURE 32-1: CLOCK REFERENCE BLOCK DIAGRAM

FIGURE 34-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register op	erations							
OPCODE d	f (FILE #)							
d = 0 for destination W d = 1 for destination f f = 7-bit file register address								
Bit-oriented file register operations								
OPCODE b (BIT	#) f (FILE #)							
b = 3-bit bit address f = 7-bit file register addre	ess							
Literal and control operation	s							
General								
OPCODE	K (literal)							
k = 8-bit immediate value	2							
CALL and GOTO instructions or	lly							
13 11 10	0							
OPCODE	k (literal)							
k = 11-bit immediate valu	e							
MOVLP instruction only 13 7	6 0							
OPCODE	k (literal)							
k = 7-bit immediate value	• •							
MOVLB INSTRUCTION ONLY	5 4 0							
OPCODE	k (literal)							
k = 5-bit immediate value								
BRA instruction only								
	(litoral)							
	K (interdi)							
K = 9-bit immediate value	2							
FSR Offset instructions								
	3 5 0							
OPCODE n	K (literal)							
n = appropriate FSR k = 6-bit immediate value	9							
FSR Increment instructions	3 2 1 0							
OPCODE	n m (mode)							
n = appropriate FSR m = 2-bit mode value								
OPCODE only 13	0							
OPCOD	E							

PIC16LF	PIC16LF18325/18345 Standard Operating Conditions (unless otherwise stated)								
PIC16F1	8325/18345	8345 Standard Operating Conditions (unless otherwise stated)							
Param.	Gumbal	Device Characteristics	Min	Тур.†	Max.	Units	Conditions		
No.	Gymbol		IVIII.				VDD	Note	
D100	IDDxt4	XT = 4 MHz	—	321	455	uA	3.0V	\wedge	
D100	IDDxt4	XT = 4 MHz	_	332	479	uA	3.0V		
D101	IDDHF016	HFINTOSC = 16 MHz		1.3	1.8	mA	3.0V/		
D101	IDDHF016	HFINTOSC = 16 MHz	_	1.4	1.9	mA	3.0V		
D102	IDDHFOPLL	HFINTOSC = 32 MHz	—	2.2	2.8	mA	3.0V	\sim	
D102	IDDHFOPLL	HFINTOSC = 32 MHz		2.3	2.9	mA	/3.0Y		
D103	IDDHSPLL32	HS+PLL = 32 MHz	_	2.2	2.8	ſ∕mA	3.ØV		
D103	IDDHSPLL32	HS+PLL = 32 MHz	_	2.3	2.9	mÀ	3.QV		
D104	IDDIDLE	IDLE Mode, HFINTOSC = 16 MHz	—	804	1283	uA	3.QV	\geq	
D104	IDDIDLE	IDLE Mode, HFINTOSC = 16 MHz	_	816	1284	∕¤A	3.0V		
D105	IDDDOZE ⁽³⁾	DOZE mode, HFINTOSC = 16 MHz, DOZE Ratio = 16	_	863	F	JuA	3.0V		
D105	IDDDOZE ⁽³⁾	DOZE mode, HFINTOSC = 16 MHz, DOZE Ratio = 16	_<	875		ЦА	3.0V		

TABLE 35-2: SUPPLY CURRENT (IDD)^(1,2)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: IDDDOZE = $[IDDIDLE^{(N-1)/N}] + IDDHFO16/N where N = DOZE Ration (see Register 9-2).$

TABLE 35-3:POWER-DOWN CURRENTS (IPD)

PIC16LF18325/18345				Standard Operating Conditions (unless otherwise stated)						
PIC16F18325/18345				Standard Operating Conditions (unless otherwise stated) VREGPM = 1						
Param. Sumbal		Dovice Characteristics	Min	Turn +	Max.	Max.			Conditions	
No.	Symbol	Device Characteristics	IVIII.	Typ.1	+85°C	+125°C	Units	Vdd	Note	
D200	IPD	IPD Base	—	0.05	2	9	μA	3.0V	$\langle \rangle$	
D200	IPD	IPD Base	_	0.8	4	12	μΑ	3.0V		
			—	13	22	27	μA	3.0V	∀REGPM =े०	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	_	0.8	5	13	μA	3.0V	\searrow	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.9	5	13	μA	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.6	5	13	μA	3.01		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	—	0.8	9	15~	μΑ	3.0	\searrow	
D203	IPD_FVR	FVR	—	40	47	47 r	μA	3.0V	Ŷ	
D203	IPD_FVR	FVR	—	33	44	44	\uA/	3.0√		
D204	IPD_BOR	Brown-out Reset (BOR)	—	12	17	19 \	μÁ	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)		12	18	20	\μA	3.0V		
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	—	3 <	5		μĂ >	3.0V		
D205	IPD_LPBOR	Low Power Brown-out Reset (LPBOR)	—		5	13	μA	3.0V		
D207	IPD_ADCA	ADC - Active	\langle , \rangle	0.9	5	√13	μA	3.0V	ADC is converting ⁽⁴⁾	
D207	IPD_ADCA	ADC - Active		0.9	5	13	μA	3.0V	ADC is converting ⁽⁴⁾	
D208	IPD_CMP	Comparator	X	32	43	45	μA	3.0V		
D208	IPD_CMP	Comparator	$ \neq $	31	42	44	μA	3.0V		

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

4: ADC clock source is ADCRC.

TABLE 35-20: EUSART SYNCHRONOUS TRANSMISSION CHARACTERISTICS

Standard	d Operating C					
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	-	80 \	Ins	. 3.0V ≤ VDD ≤ 5.5V
		Clock high to data-out valid	_	100	ns	$1.8V \le VDD \le 5.5V$
US121	TCKRF	Clock out rise time and fall time (Master mode)		45	ns 🤇	$3.0V \leq V\text{DD} \leq 5.5V$
			_	50	ns	$1.8V \le VDD \le 5.5V$
US122	TDTRF	Data-out rise time and fall time	$\overline{\langle}$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
				50	-⁄ns	$1.8V \leq V\text{DD} \leq 5.5V$

FIGURE 35-16: EUSART SYNCHRONOUS RÉCÈIVE (MASTER/SLAVE) TIMING

TABLE 35-21: EUSART SYNCHRONOUS RECEIVE CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol Characteristic	Min.	Max.	Units	Conditions			
US125	TDTV2CRL SYNC RCV (Master and Slave) Qata-setup before $CK \downarrow (DT hold time)$	10		ns				
US126	TCKL2DTL Data hold after CK \downarrow (DT hold time)	15	_	ns				

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch		0.65 BSC			
Optional Center Pad Width	X2			2.70	
Optional Center Pad Length	Y2			2.70	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X16)	X1			0.35	
Contact Pad Length (X16)	Y1			0.80	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2257A

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensior	Dimension Limits			MAX			
Number of Pins	N	20					
Pitch	е	0.65 BSC					
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	6.90	7.20	7.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	с	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	_	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B