

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	34MHz
Connectivity	I ² C, IrDA, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	120-TQFP
Supplier Device Package	120-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2368vte34v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Page	Revisi	on	(See	Manu	al f	or De	etails)						
9.13.4 Pin Functions	391	Table a	ame	endec	ł									
		• PF	7/¢											
		(Before	e) P	FDDI	$R \rightarrow 0$	Afte	r) PF	7DDF	R					
	393	Table	ame	endec	`									
		• DE		<u>85/11</u>	<u> </u>									
			1/0						γ·	-1	····	····:		
		PFIDDR Pin functio	n ī	UCAS output	0 1 PF1 CS input outp	5 P out in	0 1 F1 PF put out	0 F1 PF1 put input	1 PF 1 outpu	UCA ut outpu	0 S PF1 ut input	1 CS outp	5 PF1 ut inpu	PF1 t output
14.3.7 Serial Status	558	Note a	mer	nded										
Register (SSR)		Note:	*	Only	v 0 ca	n be	e writ	ten, to	o cle	ar th	e flag	Alt	ernat	elv.
Normal Serial				use	the bi	it cle	ear in	struct	ion	to cle	ear the	fla	g.	
Communication Interface														
Mode (When SMIF in														
SCMR is 0)														
Smart Card Interface	562	Note amended												
Mode (When SMIF in		Notes: 1. Only 0 can be written, to clear the flag. Alternately,												
SCMR is 1)				use	the bi	it cle	ear in	struct	ion	to cle	ear the	fla	g.	
			2.	etu:	Ele	me	ntary	Time	Uni	t: (tin	ne for	trar	nsfer	of 1
				bit)										
14.3.9 Bit Rate Register	565	Table a	ame	endec	ł									
(BRR)							Opera	ating Free	quenc	cy op (Mi	Hz)			
Table 14.3 BRR Setting	s			8			9.83	04		10			12	
for Various Bit Rates		Bit Rate	n	N	Error	n	N	Error	n	N	Error	n	N	Error
(Asynchronous Mode)		9600	0	25	0.16	0	31	0.00	0	32	-1.36	0	38	0.16
		19200	0	12	0.16	0	15	0.00	0	15	-1.73	0	19	-2.34
		31250	0	7	0.00	0	9	-1.70	0	9	0.00	0	11	0.00
		38400	—	—	—	0	7	0.00	0	7	-1.73	0	9	-2.34
							Opera	atina Free	auena	cvol(Mi	Hz)			
				12.2	88		14		440114	14.74	,	16		
		Bit Rate (bit/s)	n	N	Error	n	N	Error	n	N	Error	n	N	Error
		9600	0	39	0.00	0	45	-0.93	0	47	0.00	0		0.16
		19200	0	19	0.00	0	22	-0.93	0	23	0.00	0	25	0.16
		31250	0	11	2.40	0	13	0.00	0	14	-1.70	0	15	0.00
		38400	0	9	0.00	—	—	—	0	11	0.00	0	12	0.16

		Pin No.			
Туре	Symbol	TFP-120	QFP-128 ^{*1}	I/O	Function
System control	RES	77	85	Input	Reset pin. When this pin is driven low, the chip is reset.
	STBY	88	96	Input	When this pin is driven low, a transition is made to hardware standby mode.
	EMLE	30	34	Input	Enables emulator. This pin should be connected to the power supply (0 V).
Address bus	A23 to A0	29 to 23, 21 to 18, 16 to 9, 7 to 3	33 to 27, 25 to 22, 20 to 13, 11 to 7	Output	Address output pins.
Data bus	D15 to D0	68 to 61, 59, 57 to 51	76 to 69, 65, 63 to 57	Input/ output	These pins constitute a bidirectional data bus.
Bus control	CS7 to CS0	29,71,70, 106, 92 to 89	33,79,78, 116,102, 101,98,97	Output	Signals that select division areas 7 to 0 in the external address space.
	ĀS	75	83	Output	When this pin is low, it indicates that address output on the address bus is valid.
	RD	74	82	Output	When this pin is low, it indicates that the external address space is being read.
	HWR	73	81	Output	Strobe signal indicating that external address space is to be written, and the upper half (D15 to D8) of the data bus is enabled. Write enable signal for accessing
					the DRAM space.
	LWR	72	80	Output	Strobe signal indicating that external address space is to be written, and the lower half (D7 to D0) of the data bus is enabled.
	BREQ	108	118	Input	The external bus master requests the bus to this LSI.
	BREQO	106	116	Input	External bus request signal when the internal bus master accesses the external space in external bus release state.

6.6.4 Pins Used for DRAM Interface

Table 6.6 shows the pins used for DRAM interfacing and their functions. Since the $\overline{CS2}$, $\overline{CS5}$ pins are in the input state after a reset, set the corresponding DDR to 1 when $\overline{RAS2}$, $\overline{RAS5}$ signals are output.

Table 6.6 DRAM Interface Pins

Pin	With DRAM Setting	Name	I/O	Function
HWR	WE	Write enable	Output	Write enable for DRAM space access
CS2	RAS2	Row address strobe 2/ row address strobe	Output	Row address strobe when area 2 is designated as DRAM space or row address strobe when areas 2 to 5 are designated as continuous DRAM space
CS3	RAS3	Row address strobe 3	Output	Row address strobe when area 3 is designated as DRAM space
UCAS	UCAS	Upper column address strobe	Output	Upper column address strobe for 16-bit DRAM space access or column address strobe for 8-bit DRAM space access
LCAS	LCAS	Lower column address strobe	Output	Lower column address strobe signal for 16-bit DRAM space access
RD, OE	OE	Output enable	Output	Output enable signal for DRAM space access
WAIT	WAIT	Wait	Input	Wait request signal
A15 to A0	A15 to A0	Address pins	Output	Row address/column address multiplexed output
D15 to D0	D15 to D0	Data pins	I/O	Data input/output pins

Figure 6.39 Example of Timing when Precharge Time after Self-Refreshing Is Extended by 2 States

Refreshing and All-Module-Clocks-Stopped Mode: In this LSI, if the ACSE bit is set to 1 in MSTPCRH, and then a SLEEP instruction is executed with the setting for all peripheral module clocks to be stopped (MSTPCR = H'FFFF, EXMSTPCR = H'FFFF) or for operation of the 8-bit timer module alone (MSTPCR = H'FFFE, EXMSTPCR = H'FFFF), and a transition is made to the sleep state, the all-module-clocks-stopped mode is entered, in which the bus controller and I/O port clocks are also stopped. As the bus controller clock is also stopped in this mode, CBR refreshing is not executed. If DRAM is connected externally and DRAM data is to be retained in sleep mode, the ACSE bit must be cleared to 0 in MSTPCRH.

6.6.13 DMAC Single Address Transfer Mode and DRAM Interface

When burst mode is selected on the DRAM interface, the \overline{DACK} output timing can be selected with the DDS bit in DRAMCR. When DRAM space is accessed in DMAC single address mode at the same time, these bits select whether or not burst access is to be performed.

Section 7 DMA Controller (DMAC)

This LSI has a built-in DMA controller (DMAC) which can carry out data transfer on up to 4 channels.

7.1 Features

- Choice of short address mode or full address mode
 - Short address mode
 - Maximum of 4 channels can be used
 - Dual address mode or single address mode can be selected
 - In dual address mode, one of the two addresses, transfer source and transfer destination, is specified as 24 bits and the other as 16 bits
 - In single address mode, transfer source or transfer destination address only is specified as 24 bits
 - In single address mode, transfer can be performed in one bus cycle
 - Choice of sequential mode, idle mode, or repeat mode for dual address mode and single address mode
 - Full address mode
 - Maximum of 2 channels can be used
 - Transfer source and transfer destination addresses as specified as 24 bits
 - Choice of normal mode or block transfer mode
- 16-Mbyte address space can be specified directly
- Byte or word can be set as the transfer unit
- Activation sources: internal interrupt, external request, auto-request (depending on transfer mode)

Six 16-bit timer-pulse unit (TPU) compare match/input capture interrupts

Serial communication interface (SCI_0, SCI_1) transmission complete interrupt, reception complete interrupt

A/D converter conversion end interrupt

External request

Auto-request

• Module stop mode can be set

9.4 Port 4

Port 4 is an 8-bit input-only port. Port 4 has the following register.

• Port 4 register (PORT4)

9.4.1 Port 4 Register (PORT4)

PORT4 is an 8-bit read-only register that shows port 4 pin states.

PORT4 cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	P47	*	R	The pin states are always read from this register.
6	P46	*	R	
5	P45	*	R	
4	P44	*	R	
3	P43	*	R	
2	P42	*	R	
1	P41	*	R	
0	P40	*	R	

Note: * Determined by the states of pins P47 to P40.

9.5.3 Port 5 Register (PORT5)

PORT5 shows the pin states. PORT5 cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description				
7	_	Undefined	R	Reserved				
to 4				Undefined values are read from these bits.				
3	P53	*	R	If bits P53 to P50 are read while P5DDR bits are set				
2	P52	*	R	to 1, the P5DR values are read. If a port 5 read is performed while P5DDB bits are cleared to 0, the				
1	P51	*	R	pin states are read.				
0	P50	*	R					
Neter	to: * Determined by the states of size DE2 to DE2							

Note: * Determined by the states of pins P53 to P50.

9.5.4 Pin Functions

Port 5 pins also function as the pins for SCI I/Os, A/D converter inputs, and interrupt inputs. The correspondence between the register specification and the pin functions is shown below.

• P53/ADTRG/IRQ3

The pin function is switched as shown below according to the combination of bits TRGS1 and TRGS0 in the A/D control register (ADCR), bit ITS3 in ITSR, and bit P53DDR.

P53DDR	0	1				
Pin function	P53 input	P53 output				
	ADTRG input*1					
	IRQ3 inter	rupt input ^{*2}				

Notes: 1. $\overline{\text{ADTRG}}$ input when TRGS1 = TRGS0 = 1.

2. $\overline{IRQ3}$ input when ITS3 = 0.

Section 11 Programmable Pulse Generator (PPG)

The programmable pulse generator (PPG) provides pulse outputs by using the 16-bit timer pulse unit (TPU) as a time base. The PPG pulse outputs are divided into 4-bit groups (groups 3 to 0) that can operate both simultaneously and independently. The block diagram of PPG is shown in figure 11.1

11.1 Features

- 16-bit output data
- Four output groups
- Selectable output trigger signals
- Non-overlap mode
- Can operate together with the data transfer controller (DTC) and the DMA controller (DMAC)
- Settable inverted output
- Module stop mode can be set

11.3.2 Output Data Registers H, L (PODRH, PODRL)

PODRH and PODRL store output data for use in pulse output. A bit that has been set for pulse output by NDER is read-only and cannot be modified.

• PODRH	
---------	--

Bit	Bit Name	Initial Value	R/W	Description
7	POD15	0	R/W	Output Data Register 15 to 8
6	POD14	0	R/W	For bits which have been set to pulse output by
5	POD13	0	R/W	NDERH, the output trigger transfers NDRH values
4	POD12	0	R/W	NDERH is set to 1, the CPU cannot write to this
3	POD11	0	R/W	register. While NDERH is cleared, the initial output
2	POD10	0	R/W	value of the pulse can be set.
1	POD9	0	R/W	
0	POD8	0	R/W	

• PODRL

Bit	Bit Name	Initial Value	R/W	Description
7	POD7	0	R/W	Output Data Register 7 to 0
6	POD6	0	R/W	For bits which have been set to pulse output by
5	POD5	0	R/W	NDERL, the output trigger transfers NDRL values
4	POD4	0	R/W	NDERL is set to 1, the CPU cannot write to this
3	POD3	0	R/W	register. While NDERL is cleared, the initial output
2	POD2	0	R/W	value of the pulse can be set.
1	POD1	0	R/W	
0	POD0	0	R/W	

11.4.1 Output Timing

If pulse output is enabled, NDR contents are transferred to PODR and output when the specified compare match event occurs. Figure 11.3 shows the timing of these operations for the case of normal output in groups 2 and 3, triggered by compare match A.

Figure 11.3 Timing of Transfer and Output of NDR Contents (Example)

Bit	Bit Name	Initial Value	R/W	Description			
3	PER	0	R/(W)*	Parity Error			
				Indicates that a parity error occurred while receiving in asynchronous mode and the reception has ended abnormally.			
				[Setting condition]			
				When a parity error is detected during reception			
				If a parity error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Also, subsequent serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.			
				[Clearing condition]			
				When 0 is written to PER after reading PER = 1			
				The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.			
2	TEND	1	R	Transmit End			
				[Setting conditions]			
				• When the TE bit in SCR is 0			
				• When TDRE = 1 at transmission of the last bit of a 1-byte serial transmit character			
				[Clearing conditions]			
				 When 0 is written to TDRE after reading TDRE = 1 			
				 When the DMAC or DTC is activated by a TXI interrupt and writes data to TDR 			
1	MPB	0	R	Multiprocessor Bit			
				MPB stores the multiprocessor bit in the receive data. When the RE bit in SCR is cleared to 0 its previous state is retained.			
0	MPBT	0	R/W	Multiprocessor Bit Transfer			
				MPBT sets the multiprocessor bit to be added to the transmit data.			
Note:	e: * Only 0 can be written, to clear the flag. Alternately, use the bit clear instruction to clear the flag.						

Rev.6.00 Mar. 18, 2009 Page 558 of 980 REJ09B0050-0600

14.3.10 IrDA Control Register (IrCR)

IrCR selects the function of SCI_0.

Bit	Bit Name	Initial Value	R/W	Description
7	IrE	0	R/W	IrDA Enable
				Specifies normal SCI mode or IrDA mode for SCI_0 input/output.
				0: Pins TxD0/IrTxD and RxD0/IrRxD function as TxD0 and RxD0
				1: Pins TxD0/IrTxD and RxD0/IrRxD function as IrTxD and IrRxD
6	IrCKS2	0	R/W	IrDA Clock Select 2 to 0
5	IrCKS1	0	R/W	Specifies the high pulse width in IrTxD output
4	IICKSU	0	H/VV	pulse encoding when the IrDA function is enabled.
				000: Pulse width = $B \times 3/16$ (3/16 of bit rate)
				001: Pulse width = $\phi/2$
				010: Pulse width = $\phi/4$
				011: Pulse width = $\phi/8$
				100: Pulse width = $\phi/16$
				101: Pulse width = $\phi/32$
				110: Pulse width = $\phi/64$
				111: Pulse width = $\phi/128$
3	_	All 0	_	Reserved
to 0				These bits are always read as 0 and cannot be modified.

- The RxD pin is automatically designated as the receive data
- [2] [3] Receive error handling: If a receive error occurs, read the ORER flag in SSR, and after performing the appropriate error handling, clear the ORER flag to 0. Transfer cannot be resumed if the ORER flag is set to 1.
- [4] SCI status check and receive Read SSR and check that the RDRF flag is set to 1, then read the receive data in RDR and clear the RDRF flag to 0. Transition of the RDRF flag from 0 to 1 can also be identified by
- [5] Serial reception continuation

To continue serial reception, before the MSB (bit 7) of the current frame is received, finish reading the RDRF flag, reading RDR, and clearing the RDRF flag to 0. The RDRF flag is cleared automatically when the DMAC or DTC is activated by a receivedata-full interrupt (RXI) request and the RDR value is read.

Figure 14.19 Sample Serial Reception Flowchart

(g) User Boot MAT Information Inquiry

The boot program will return the number of user boot MATs and their addresses.

Command H'24

1 110 4

• Command, H'24, (one byte): Inquiry regarding user boot MAT information

Response

Sizo	Number of area

п 34	Size	Number of areas	
Area-sta	rt addres	SS	Area-last address
•••			
SUM			

- Response, H'34, (one byte): Response to user boot MAT information inquiry
- Size (one byte): The number of bytes that represents the number of areas, area-start addresses, and area-last address
- Number of Areas (one byte): The number of consecutive user boot MAT areas When user boot MAT areas are consecutive, the number of areas returned is H'01.
- Area-start address (four byte): Start address of the area
- Area-last address (four byte): Last address of the area There are as many groups of data representing the start and last addresses as there are areas.
- SUM (one byte): Checksum

(h) User MAT Information Inquiry

The boot program will return the number of user MATs and their addresses.

Command H'25

• Command, H'25, (one byte): Inquiry regarding user MAT information

Response

H'35	Size	Number of areas	
Start address area		ea	Last address area
SUM			

- Response, H'35, (one byte): Response to the user MAT information inquiry
- Size (one byte): The number of bytes that represents the number of areas, area-start address and area-last address
- Number of areas (one byte): The number of consecutive user MAT areas When the user MAT areas are consecutive, the number of areas is H'01.
- Area-start address (four byte): Start address of the area

Register Name	Abbrevia- tion	Bit No.	Address	Module	Data Width	Access States
Smart card mode register_1	SCMR_1	8	H'FF86	SCI_1	8	2
Serial mode register_2	SMR_2	8	H'FF88	SCI_2	8	2
Bit rate register_2	BRR_2	8	H'FF89	SCI_2	8	2
Serial control register_2	SCR_2	8	H'FF8A	SCI_2	8	2
Transmit data register_2	TDR_2	8	H'FF8B	SCI_2	8	2
Serial status register_2	SSR_2	8	H'FF8C	SCI_2	8	2
Receive data register_2	RDR_2	8	H'FF8D	SCI_2	8	2
Smart card mode register_2	SCMR_2	8	H'FF8E	SCI_2	8	2
A/D data register A	ADDRA	16	H'FF90	A/D	16	2
A/D data register B	ADDRB	16	H'FF92	A/D	16	2
A/D data register C	ADDRC	16	H'FF94	A/D	16	2
A/D data register D	ADDRD	16	H'FF96	A/D	16	2
A/D data register E	ADDRE	16	H'FF98	A/D	16	2
A/D data register F	ADDRF	16	H'FF9A	A/D	16	2
A/D data register G	ADDRG	16	H'FF9C	A/D	16	2
A/D data register H	ADDRH	16	H'FF9E	A/D	16	2
A/D control/status register	ADCSR	8	H'FFA0	A/D	16	2
A/D control register	ADCR	8	H'FFA1	A/D	16	2
D/A data register 2	DADR2	8	H'FFA8	D/A	8	2
D/A data register 3	DADR3	8	H'FFA9	D/A	8	2
D/A control register 23	DACR23	8	H'FFAA	D/A	8	2
Timer control register_0	TCR_0	8	H'FFB0	TMR_0	16	2
Timer control register_1	TCR_1	8	H'FFB1	TMR_1	16	2
Timer control/status register_0	TCSR_0	8	H'FFB2	TMR_0	16	2
Timer control/status register_1	TCSR_1	8	H'FFB3	TMR_1	16	2
Time constant register_A0	TCORA_0	8	H'FFB4	TMR_0	16	2
Time constant register_A1	TCORA_1	8	H'FFB5	TMR_1	16	2
Time constant register_B0	TCORB_0	8	H'FFB6	TMR_0	16	2
Time constant register_B1	TCORB_1	8	H'FFB7	TMR_1	16	2
Timer counter_0	TCNT_0	8	H'FFB8	TMR_0	16	2
Timer counter_1	TCNT_1	8	H'FFB9	TMR_1	16	2

Figure 25.9 Basic Bus Timing: Two-State Access (CS Assertion Period Extended)

Figure 25.16 DRAM Access Timing: Three-State Access (RAST = 1)

Figure 25.22 External Bus Release Timing

Figure 25.23 External Bus Request Output Timing

Table 25.20 Bus Timing (2)

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $AV_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 \text{ V}$, $\phi = 8 \text{ MHz}$ to 33 MHz, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item	Symbol	Min	Мах	Unit	Test Conditions
WR delay time 1	t _{wRD1}	_	15	ns	Figures 25.6 to
WR delay time 2	t _{wrd2}	_	15	ns	25.19
WR pulse width 1	t _{wsw1}	$1.0 imes t_{_{cyc}} - 13$	_	ns	
WR pulse width 2	t _{wsw2}	$1.5 imes t_{\text{cyc}}$ –13	_	ns	
Write data delay time	t _{wDD}	_	20	ns	
Write data setup time 1	t _{wDS1}	$0.5 imes t_{_{cyc}}$ –13	_	ns	
Write data setup time 2	t _{wDS2}	$1.0 imes t_{_{cyc}}$ –13	_	ns	
Write data setup time 3	t _{wds3}	$1.5 imes t_{_{cyc}}$ –13	_	ns	
Write data hold time 1	t _{wDH1}	$0.5 \times t_{_{cyc}} -\!\! 8$	_	ns	
Write data hold time 2	t _{wDH2}	$1.0 imes t_{_{cyc}}$ –8	_	ns	
Write data hold time 3	t _{wDH3}	$1.5 \times t_{_{cyc}} -\!\! 8$	_	ns	
Write command setup time 1	t _{wcs1}	$0.5 imes t_{_{cyc}}$ –10	_	ns	
Write command setup time 2	t _{wcs2}	$1.0 imes t_{_{cyc}}$ –10	_	ns	
Write command hold time 1	t _{wcH1}	$0.5 \times t_{_{cyc}} - 10$	_	ns	
Write command hold time 2	t _{wcH2}	$1.0 imes t_{_{cyc}} - 10$	_	ns	
Read command setup time 1	t _{RCS1}	$1.5 imes t_{_{cyc}}$ –10	_	ns	
Read command setup time 2	t _{RCS2}	$2.0 imes t_{_{cyc}}$ -10	_	ns	
Read command hold time	t _{RCH}	$0.5 imes t_{_{cyc}} - 10$	_	ns	
CAS delay time 1	t _{CASD1}	_	15	ns	
CAS delay time 2	t _{CASD2}	_	15	ns	
CAS setup time 1	t _{csr1}	$0.5 imes t_{_{cyc}}$ -10	_	ns	
CAS setup time 2	t _{csr2}	$1.5 imes t_{_{cyc}}$ –10	_	ns	
CAS pulse width 1	t _{casw1}	$1.0 imes t_{_{cyc}}$ –20	_	ns	
CAS pulse width 2	t _{casw2}	$1.5 imes t_{_{cyc}}$ –20	_	ns	
CAS precharge time 1	t _{cpw1}	$1.0 imes t_{_{cyc}}$ –20	_	ns	
CAS precharge time 2	t _{CPW2}	$1.5 imes t_{_{cyc}}$ –20	_	ns	
OE delay time 1	t _{oed1}	_	15	ns	
OE delay time 2	t _{oed2}	_	15	ns	

Appendix

A. I/O Port States in Each Pin State

Port Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus Release State	Program Execution State Sleep Mode
Port 1	1, 2. 4, 7	Т	Т	Кеер	Кеер	I/O port
Port 2	1, 2. 4, 7	Т	Т	Кеер	Keep	I/O port
P34 to P30	1, 2. 4, 7	Т	Т	Кеер	Кеер	I/O port
P35/(OE)	1, 2. 4, 7	Τ	Τ	$[OPE = 0, \\ \overline{OE} (CKE) \\ output] \\ T \\ [OPE = 1, \\ \overline{OE} output] \\ H \\ [Other than the above] \\ Keep$	[OE (CKE) output] T [Other than the above] Keep	[OE output] OE (CKE) [Other than the above] I/O port
Port 4	1, 2. 4, 7	Т	Т	Т	Т	Input port
P53 to P50	1, 2. 4, 7	Т	Т	Кеер	Кеер	I/O port
Port 8	1, 2. 4, 7	Т	Т	Кеер	Кеер	I/O port
P95/DA3	1, 2. 4, 7	Т	Т	[DAOE3 = 1] Keep [DAOE3 = 0] T	Кеер	Input port
P94/DA2	1, 2. 4, 7	Т	т	[DAOE2 = 1] Keep [DAOE2 = 0] T	Кеер	Input port