E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	- ·
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	448B (256 x 14)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f320-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC10(L)F320/322 are described within this data sheet. They are available in 6/8-pin packages. Figure 1-1 shows a block diagram of the PIC10(L)F320/322 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1:DEVICE PERIPHERALSUMMARY

Peripheral	PIC10(L)F320	PIC10(L)F322		
Analog-to-Digital Converter	(ADC)	•	•	
Configurable Logic Cell (CL	•	•		
Complementary Wave Gene	•	•		
Fixed Voltage Reference (F	٠	•		
Numerically Controlled Osci	Numerically Controlled Oscillator (NCO)			
Temperature Indicator		٠	•	
PWM Modules				
	PWM1	٠	•	
	•	•		
Timers				
	Timer0	•	•	
	Timer2	٠	•	

R/W-0/0	R/W-0/0	R/W-0/0	R-1/q	R-1/q	R/W-x/u	R/W-x/u	R/W-x/u
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7	IRP: Reserve	d ⁽²⁾					
bit 6-5	<u>RP</u> <1:0>: Re	served ⁽²⁾					
bit 4	TO: Time-out	bit					
	1 = After pow 0 = A WDT ti	/er-up, CLRWDT me-out occurre	' instruction o d	r sleep instru	ction		
bit 3	PD: Power-De	own bit					
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 						
bit 2	bit 2 Z : Zero bit						
	1 = The resu	lt of an arithme	tic or logic op	eration is zero			
	0 = The resu	It of an arithme	tic or logic op	eration is not z	zero (4	IN IN	
bit 1	DC: Digit Car	ry/Borrow bit (₽	DDWF, ADDLW	, SUBLW, SUBW	IF instructions) ⁽¹	')	
	 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result 						
bit 0	C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾						
	1 = A carry-o	ut from the Mo	st Significant	bit of the resul	toccurred		
	0 = No carry-	out from the M	ost Significan	t bit of the resu	ult occurred		
Note 1. For B	orrow the nota	rity is reversed	A subtraction	n is executed b	w adding the tw	o's complemen	nt of the

REGISTER 2-1: STATUS: STATUS REGISTER

- **Note 1:** For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the source register.
 - 2: Maintain as '0'.

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper five bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower eight bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

For more information refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

2.3.2 STACK

All devices have an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1:	There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.
2:	There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-4.

A simple program to clear RAM location 40h-7Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1:	INDIRECT ADDRESSING
--------------	---------------------

	MOVLW	0x40	;initialize pointer		
	MOVWF	FSR	;to RAM		
NEXT	CLRF	INDF	;clear INDF register		
	INCF	FSR	;inc pointer		
	BTFSS	FSR,7	;all done?		
	GOTO	NEXT	;no clear next		
CONTINUE			;yes continue		

register. User software should ensure the appropriate interrupt flag bits are clear prior

to enabling an interrupt.

U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0		
_	ADIF	_	NCO1IF	CLC1IF	_	TMR2IF			
bit 7			I.	1			bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	Unimplemen	ted: Read as ')'						
bit 6	ADIF: A/D Co	onverter Interru	pt Flag bit						
	1 = The A/D conversion completed								
	0 = 1 ne A/D conversion is not complete								
bit 5	Unimplemented: Read as '0'								
bit 4	NCO1IF: Nun	nerically Contro	olled Oscillato	r Interrupt Flag	g bit				
	1 = NCOTOV 0 = No NCOT	ernow occurre 1 overflow	a (must be cle	eared in soπwa	ire)				
bit 3	CLC1IF: Con	figurable Logic	Block Rising	Edge Interrupt	Flag bit				
	1 = CLC inte	rrupt occurred	(must be clea	red in software	e)				
	0 = No CLC	Interrupt	•						
bit 2	Unimplemen	ted: Read as ')'						
bit 1	TMR2IF: TMF	R2 to PR2 Mate	h Interrupt Fl	ag bit					
	1 = TMR2 to	PR2 match oc	curred (must l	be cleared in s	oftware)				
	0 = No TMR2	2 to PR2 match							
	Note: The ma	atch must occu	r the number of .	of times specif	led by the TMR2	2 postscaler (Re	egister 17-1).		
bit 0	Unimplemen	ted: Read as ')'						
Note: Inte	errupt flag bits a	re set when an	interrupt						
COI	ndition occurs, re	egardless of the	e state of						
lts	corresponding e	enable bit or th							
Inte	Interrupt Enable bit, GIE, of the INTCON								

REGISTER 6-3: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

9.0 FLASH PROGRAM MEMORY CONTROL

The Flash program memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 9-bit address of the program memory location being read.

The write time is controlled by an on-chip timer. The write/ erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

The Flash program memory can be protected in two ways; by code protection (CP bit in Configuration Word) and write protection (WRT<1:0> bits in Configuration Word).

Code protection $(\overline{CP} = 0)^{(1)}$, disables access, reading and writing, to the Flash program memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash program memory, Configuration bits and User IDs.

Write protection prohibits self-write and erase to a portion or all of the Flash program memory as defined by the bits WRT<1:0>. Write protection does not affect a device programmers ability to read, write or erase the device.

Note 1:	Code	protection	of	the	entire	Flash		
	progra	m m <u>em</u> ory	ar	ray is	s enab	led by		
	clearing the \overline{CP} bit of Configuration Word.							

9.1 PMADRL and PMADRH Registers

The PMADRH:PMADRL register pair can address up to a maximum of 512 words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register.

9.1.1 PMCON1 AND PMCON2 REGISTERS

PMCON1 is the control register for Flash program memory accesses.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all '0's.

To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash program memory.

9.2 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair.

See Table 9-1 for Erase Row size and the number of write latches for Flash program memory.

Note: If the user wants to modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, new data and retained data can be written into the write latches to reprogram the row of Flash program memory. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations.

EXAMPLE 9-1: FLASH PROGRAM MEMORY READ

* This code block will read 1 word of program

- * memory at the memory address:
- PROG_ADDR_HI: PROG_ADDR_LO
- * data will be returned in the variables;
- * PROG_DATA_HI, PROG_DATA_LO

BANKSEL MOVLW MOVWF MOVLW	PMADRL PROG_ADDR_LO PMADRL PROG_ADDR_HI	<pre>; not required on devices with 1 Bank of SFRs ; ; Store LSB of address ;</pre>
MOVWF	PMADRH	; Store MSB of address
BCF	PMCON1 CEGS	: Do not select Configuration Space
DCF	DMCON1 DD	: Initiate mod
BSF	PMCON1, RD	, IIIILIALE FEAU
NOP		; Ignored (Figure 9-2)
NOP		; Ignored (Figure 9-2)
MOVF	PMDATL,W	; Get LSB of word
MOVWF	PROG_DATA_LO	; Store in user location
MOVF	PMDATH,W	; Get MSB of word
MOVWF	PROG_DATA_HI	; Store in user location

10.2 Register Definitions: PORTA

REGISTER 10-1: PORTA: PORTA REGISTER

U-0	U-0	U-0	U-0	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x
—	—	—	—	RA3	RA2	RA1	RA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RA<3:0>: PORTA I/O Value bits (RA3 is read-only)

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from PORTx register return actual I/O pin values.

REGISTER 10-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	—	(1)	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'.
bit 3	Unimplemented: Read as '1'.
bit 2-0	TRISA<2:0>: RA<2:0> Port I/O Tri-State Control bits
	1 = Port output driver is disabled0 = Port output driver is enabled

Note 1: Unimplemented, read as '1'.

11.0 INTERRUPT-ON-CHANGE

The PORTA pins can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual PORTA pin, or combination of PORTA pins, can be configured to generate an interrupt. The Interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 11-1 is a block diagram of the IOC module.

11.1 Enabling the Module

To allow individual PORTA pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

11.2 Individual Pin Configuration

For each PORTA pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated IOCAPx bit of the IOCAP register is set. To enable a pin to detect a falling edge, the associated IOCANx bit of the IOCAN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both the IOCAPx bit and the IOCANx bit of the IOCAP and IOCAN registers, respectively.

11.3 Interrupt Flags

The IOCAFx bits located in the IOCAF register are status flags that correspond to the interrupt-on-change pins of PORTA. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCAFx bits.

11.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 11-1: CLEARING INTERRUPT FLAGS

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

11.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCAF register will be updated prior to the first instruction executed out of Sleep.

13.0 INTERNAL VOLTAGE REGULATOR (IVR)

The Internal Voltage Regulator (IVR), which provides operation above 3.6V is available on:

- PIC10F320
- PIC10F322

This circuit regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. When VDD approaches the regulated voltage, the IVR output automatically tracks the input voltage.

The IVR operates in one of three power modes based on user configuration and peripheral selection. The operating power modes are:

- High
- Low
- Power-Save Sleep mode

Power modes are selected automatically depending on the device operation, as shown in Table 13-1. Tracking mode is selected automatically when VDD drops below the safe operating voltage of the core.

Note:	IVR is disabled in Tracking mode, but will
	consume power. See Section 24.0
	"Electrical Specifications" for more
	information.

TABLE 13-1: IVR POWER MODES - REGULATED

VREGPM1 Bit	Sleep Mode	Memory Bias Power Mode	IVR Power Mode
		EC Mode or INTOSC = 16 MHz (HP Bias)	High
x	No	INTOSC = 1 to 8 MHz (MP Bias)	riigii
		INTOSC = 31 kHz to 500 kHz (LP Bias)	Low
0	Yes	Don't Care	Low
1	Vee	No HFINTOSC	Dower Sove(1)
	165	No Peripherals	FUWEI SAVE

Note 1: Forced to Low-Power mode by any of the following conditions:

- BOR is enabled
- HFINTOSC is an active peripheral source
- Self-write is active
- ADC is in an active conversion

15.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-3. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (511 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

sumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - I}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} (1 - \frac{1}{(2^{n+1}) - I}) ; combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

As

$$Tc = -CHOLD(RIC + RSS + RS) ln(1/511)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) ln(0.001957)$
= $1.12\mu s$

Therefore:

$$TACQ = 2\mu s + 1.12\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.37\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7		•				•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG3D4T: (Gate 3 Data 4 1	rue (non-inve	rted) bit			
	1 = lcxd4T is	gated into loxe	13 Iova3				
bit 6		Gate 3 Data 4 I	Vegated (inve	rted) hit			
bit o	1 = lcxd4N is	aated into Icxo	13				
	0 = lcxd4N is	not gated into	lcxg3				
bit 5	LCxG3D3T: (Gate 3 Data 3 1	rue (non-inve	rted) bit			
	1 = Icxd3T is	gated into lcxg	13				
	0 = Icxd3T is	not gated into	lcxg3				
bit 4 LCxG3D3N: Gate 3 Data 3 Negated (inverted) bit							
	1 = Icxd3N is gated into Icxg3 0 = Icxd3N is not gated into Icxg3						
bit 3	LCxG3D2T: Gate 3 Data 2 True (non-inverted) bit						
	1 = Icxd2T is gated into Icxg3						
	0 = Icxd2T is	not gated into	lcxg3				
bit 2	LCxG3D2N:	Gate 3 Data 2 I	Negated (inve	rted) bit			
	1 = lcxd2N is	gated into Icx	j3 Java2				
hit 1	0 = 10002 N is	not gated into	icxg3 True (nen inve	rtad) bit			
DILI							
	0 = lcxd1T is	not gated into	lcxg3				
bit 0	LCxG3D1N:	Gate 3 Data 1	Vegated (inve	rted) bit			
	1 = Icxd1N is	gated into Icx	j3				
	0 = Icxd1N is	not gated into	lcxg3				

REGISTER 19-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7			·				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxG4D4T:	Gate 4 Data 4 1	rue (non-inve	rted) bit			
	1 = Icxd4T is	gated into lcxg	j 4				
	0 = Icxd4T is	not gated into	lcxg4				
bit 6	LCxG4D4N:	Gate 4 Data 4	Negated (inve	rted) bit			
	1 = lcxd4N is	gated into lcx	g4 Joya4				
h:+ C				ate al \ la it			
DIL 5	$1 = \log d3T$ is	acted into love		ited) bit			
	0 = lcxd3T is	not gated into ick	lcxa4				
bit 4	CxG4D3N: Gate 4 Data 3 Negated (inverted) bit						
	1 = Icxd3N is	gated into Icx	q4	,			
	0 = Icxd3N is	not gated into	lcxg4				
bit 3	LCxG4D2T: Gate 4 Data 2 True (non-inverted) bit						
	1 = Icxd2T is	gated into lcxg	j 4				
	0 = lcxd2T is	not gated into	lcxg4				
bit 2	LCxG4D2N:	Gate 4 Data 2	Negated (inver	rted) bit			
	1 = lcxd2N is	gated into lcx	g4 Jove4				
b :4 4	0 = 1000 solution is not gated into locg4						
DIT	LUXG4D11: Gate 4 Data 1 Irue (non-inverted) bit						
	1 = 1cxd1T is 0 = 1cxd1T is	not gated into icx	lcxa4				
bit 0	LCxG4D1N:	Gate 4 Data 1	Negated (inve	rted) bit			
	1 = lcxd1N is	ated into lcxo	14				
	0 = Icxd1N is	not gated into	lcxg4				

REGISTER 19-8: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

20.8 NCOx Control Registers

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	
NxEN	NxOE	NxOUT	NxPOL	_	_	—	NxPFM	
bit 7			•		-	1	bit 0	
Legend:								
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, read as	s 'O'		
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	/alue at all other	Resets	
'1' = Bit is set		'0' = Bit is clear	red					
bit 7	NXEN: NCOX E	Enable bit						
	1 = NCOx mod	odule is enabled						
		ule is disabled						
DIT 6	NXOE: NCOX $($	Jutput Enable bi	t					
	0 = NCOx outp	ut pin is disabled	ł					
bit 5	NxOUT: NCOx	Output bit						
	1 = NCOx outp	ut is high						
	0 = NCOx outp	ut is low						
bit 4	bit 4 NxPOL: NCOx Polarity bit							
	1 = NCOx outp 0 = NCOx outp	ut signal is active	e-low (inverted)	rted)				
hit 3-1		d. Read as '0'						
DIT U	1 = NCOx oper	ates in Pulse Frequenc	cy mode bit					

REGISTER 20-1: NCOxCON: NCOx CONTROL REGISTER

0 = NCOx operates in Fixed Duty Cycle mode

REGISTER 20-2: NCOxCLK: NCOx INPUT CLOCK CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
NxPWS<2:0>(1,2)		—	—	—	NxCK	S<1:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	NxPWS<2:0>: NCOx Output Pulse Width Select bits ^(1, 2)
	111 = 128 NCOx clock periods
	110 = 64 NCOx clock periods
	101 = 32 NCOx clock periods
	100 = 16 NCOx clock periods
	011 = 8 NCOx clock periods
	010 = 4 NCOx clock periods
	001 = 2 NCOx clock periods
	000 = 1 NCOx clock periods
bit 4-2	Unimplemented: Read as '0'
bit 1-0	NxCKS<1:0>: NCOx Clock Source Select bits
	11 = LC10UT
	10 = HFINTOSC (16 MHz)
	01 = FOSC
	00 = NCO1CLK pin
Noto 1:	NVPWS applies only when operating in Pulse Frequency mode

Note 1: NxPWS applies only when operating in Pulse Frequency mode.

2: If NCOx pulse width is greater than NCOx overflow period, operation is undefined.

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since Status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVW OPTION_REG F
	Before Instruction $OPTION_REG = 0xFF$ W = 0x4F After Instruction $OPTION_REG = 0x4F$ W = 0x4F

MOVLW	Move literal to W							
Syntax:	[<i>label</i>] MOVLW k							
Operands:	$0 \le k \le 255$							
Operation:	$k \rightarrow (W)$							
Status Affected:	None							
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.							
Words:	1							
Cycles:	1							
Example:	MOVLW 0x5A							
After Instruction								
	W = 0x5A							

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

24.2 Standard Operating Conditions

The standard operating co	nditions for any device are defined as:	
Operating Voltage:	$V\text{DDMIN} \leq V\text{DD} \leq V\text{DDMAX}$	
Operating Temperature:	$TA_MIN \le TA \le TA_MAX$	
VDD — Operating Supply	Voltage ⁽¹⁾	
PIC10LF320/322		
VDDMIN (FO	$\operatorname{Dsc} \leq 16 \text{ MHz}$)	+1.8V
VDDMIN (16	$MHz < Fosc \le 20 MHz$)	+2.5V
VDDMAX		+3.6V
PIC10F320/322		
VDDMIN (FO	$\operatorname{Dsc} \leq 16 \; \mathrm{MHz}$)	+2.3V
VDDMIN (16	$MHz < Fosc \le 20 MHz$)	+2.5V
VDDMAX		+5.5V
TA — Operating Ambient	Temperature Range	
Industrial Temperatu	Ire	
TA_MIN		40°C
Та_мах		+85°C
Extended Temperat	ure	
TA_MIN		40°C
Та_мах		+125°C

Note 1: See Parameter D001, DC Characteristics: Supply Voltage.

PIC10LF320/322			Standard Operating Conditions (unless otherwise stated)					
PIC10F320/322								
Param Device					Conditions			
No.	Characteristics	Min.	Тур†	Max. Units	Vdd	Note		
D013		-	34	45	μΑ	1.8	Fosc = 500 kHz	
		—	60	105	μA	3.0	EC mode	
D013		—	76	101	μA	2.3	Fosc = 500 kHz	
		_	110	148	μA	3.0	EC mode	
		—	153	211	μA	5.0	7	
D014		—	190	290	μA	1.8	Fosc = 8 MHz	
		_	350	500	μA	3.0	EC mode	
D014		—	290	430	μA	2.3	Fosc = 8 MHz	
		—	395	600	μΑ	3.0	EC mode	
		—	480	775	μA	5.0	7	
D015		—	0.8	1.3	mA	3.0	Fosc = 20 MHz	
		—	1.1	1.8	mA	3.6	EC mode	
D015		—	0.8	1.4	mA	3.0	Fosc = 20 MHz	
		—	1.1	1.8	mA	5.0	EC mode	
D016		—	2.2	4.1	μA	1.8	Fosc = 32 kHz	
		—	3.9	6.5	μA	3.0	LFINTOSC mode, 85°C	
D016		_	31	44	μA	2.3	Fosc = 32 kHz	
		—	40	57	μA	3.0	LFINTOSC mode, 85°C	
		—	71	117	μA	5.0		
D016A		_	3.2	4.5	μA	1.8	Fosc = 32 kHz	
		_	4.8	7.0	μA	3.0	LFINTOSC mode, 125°C	
D016A		_	31	44	μA	2.3	Fosc = 32 kHz	
		_	40	57	μA	3.0	LFINTOSC mode, 125°C	
		_	71	117	μA	5.0		

TABLE 24-2: SUPPLY VOLTAGE (IDD)^(1,2)

Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

6-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.95 BSC		
Contact Pad Spacing	С		2.80	
Contact Pad Width (X6)	Х			0.60
Contact Pad Length (X6)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2028A

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

END VIEW

Microchip Technology Drawing No. C04-018D Sheet 1 of 2

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support