
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	448B (256 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	SOT-23-6
Supplier Device Package	SOT-23-6
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f320-i-ot

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC10(L)F320/322 Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	High Endurance Flash (bytes)	I/O'S ⁽²⁾	8-Bit ADC (ch)	Timers (8-Bit)	PWM	Complementary Wave Generator (CWG)	Configurable Logic Cell (CLC)	Fixed Voltage Reference (FVR)	Numerically Controlled Oscillator (NCO)	Debug ⁽¹⁾	XLP
PIC10(L)F320	(1)	256	64	128	4	3	2	2	1	1	1	1	Н	Y
PIC10(L)F322	(1)	512	64	128	4	3	2	2	1	1	1	1	Н	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, Available using Debug Header; E - Emulation, Available using Emulation Header.

2: One pin is input-only.

Data Sheet Index:

1: DS40001585 PIC10(L)F320/322 Data Sheet, 6/8 Pin High Performance, Flash Microcontrollers.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

6.6 Interrupt Control Registers

REGISTER 6-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncl	hanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		nterrupt Enable					
		all active interru	pts				
L:1 0	0 = Disables	•					
bit 6	•	eral Interrupt E all active periph		2			
		all peripheral in		,			
bit 5	TMROIE: Tim	er0 Overflow Ir	terrupt Enabl	e bit			
		he Timer0 inter					
		the Timer0 inte	•				
bit 4		ternal Interrupt					
		he INT externa the INT externa					
bit 3		upt-on-Change	-	ble bit			
		the interrupt-on-					
	0 = Disables	the interrupt-on	-change inter	rupt			
bit 2		er0 Overflow In		bit			
		gister has overf gister did not ov					
bit 1	-	ternal Interrupt					
		external interrupt					
		external interru		Jr			
bit 0	IOCIF: Interru	upt-on-Change	Interrupt Flag	bit ⁽¹⁾			
		least one of the					
	0 = None of t	he interrupt-on-	change pins l	have changed	state		
	e IOCIF Flag bi ve been cleared		nd cleared wh	en all the Inter	rupt-on-Change	e flags in the IO	CAF register

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

Name	Bit 7	Bit 6 Bit 5 Bit 4		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF<2:0>			—	LFIOFR	HFIOFS	26
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	13
WDTCON				١	WDTPS<4:0>			SWDTEN	48

TABLE 8-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 8-4:	SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page		
CONFIG	13:8		_	_	WRT	WRT<1:0>		LPBOR	LVP	20		
CONFIG	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		WDTE<1:0>		WDTE<1:0> BOREN<1:0>		FOSC	20

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

12.3 FVR Control Registers

REGISTER 12-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	—	—	ADFVR<1:0>		
bit 7	•				•		bit C	
Legend:								
R = Readable	R = Readable bit W = Writable bit				mented bit, read	as '0'		
u = Bit is uncl	hanged	x = Bit is unk	nown	-n/n = Value	at POR and BOI	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared	q = Value de	pends on condit	ion		
bit 7		d Voltage Refe		bit				
		Itage Reference Itage Reference						
bit 6		ed Voltage Re	-	-				
		Itage Referenc Itage Referenc			enabled			
bit 5		erature Indicato ture Indicator i)				
		ture Indicator i						
bit 4	TSRNG: Tem	perature Indica	ator Range Se	lection bit ⁽³⁾				
		′оо - 4Vт (High	υ,					
		′DD - 2V⊤ (Low	•					
bit 3-2	•	ted: Read as '						
bit 1-0	11 = ADC Fix	ADC Fixed V ed Voltage Re	ference Peripl	neral output is	4x (4.096V) ⁽²⁾			
	01 = ADC Fix	ed Voltage Re d Voltage Re d Voltage Re	ference Peripl	neral output is	1x (1.024V)			
	RRDY indicates							

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 14.0 "Temperature Indicator Module" for additional information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG			ADFVR<1:0>		78

Legend: Shaded cells are not used with the Fixed Voltage Reference.

R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u				
WPUEN ⁽¹⁾	INTEDG	TOCS	T0SE	PSA		PS<2:0>					
bit 7							bit C				
Legend:											
R = Readable	bit	W = Writable	bit		mented bit, read						
u = Bit is uncha	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7	WPUEN: Wea	ak Pull-up Enal	ble bit ⁽¹⁾								
		l-ups are disab l-ups are enabl		al PORT latch	values						
bit 6	INTEDG: Interrupt Edge Select bit										
	 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin 										
bit 5	TOCS: TMR0	: TMR0 Clock Source Select bit									
		on T0CKI pin struction cycle	clock (Fosc/4	4)							
bit 4	TOSE: TMR0	TMR0 Source Edge Select bit									
		t on high-to-lov t on low-to-higł									
bit 3	PSA: Prescaler Assignment bit										
		is inactive and is assigned to) module						
bit 2-0	PS<2:0>: Pre	escaler Rate Se	elect bits								
	Bit	Value TMR0 F	Rate								
	0 0 1 1 1	000 1:2 001 1:4 010 1:8 011 1:1 000 1:3 001 1:6 100 1:1 11 1:2	6 2 4 28								

REGISTER 16-1: OPTION_REG: OPTION REGISTER

Note 1: $\overline{\text{WPUEN}}$ does not disable the pull-up for the $\overline{\text{MCLR}}$ input when $\overline{\text{MCLR}} = 1$.

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	40
OPTION_REG	WPUEN	INTEDG	TOCS	T0SE	PSA			95	
TMR0	Timer0 module Register								40
TRISA	—	—	—	—	—	TRISA2	TRISA1	TRISA0	69

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

18.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 18-4.

EQUATION 18-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 64)	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 18-2:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz))
-------------	--	---------------	---

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 64)	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

18.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

18.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to **Section 4.0** "**Oscillator Module**" for additional details.

18.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

19.5 CLC Control Registers

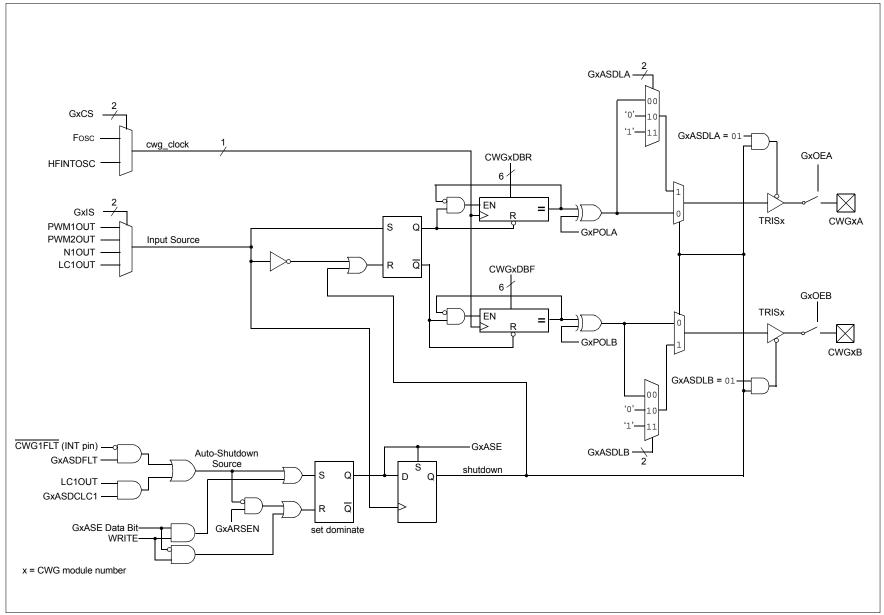
REGISTER 19-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
LCxEN	LCxOE	LCxOUT	LCxINTP	LCxINTN		LCxMODE<2:0	>
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	OR/Value at all o	other Reset
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxEN: Conf	figurable Logic	Cell Enable b	it			
 1 = Configurable Logic Cell is enabled and mixing input signals 0 = Configurable Logic Cell is disabled and has logic zero output 							
bit 6	1 = Configurable Logic Cell port pin output enabled						
0 = Configurable Logic Cell port pin output disabled bit 5 LCxOUT: Configurable Logic Cell Data Output bit Dead only logic cell output data affect CyDOL completed from law outputs							
bit 4	Read-only: logic cell output data, after LCxPOL; sampled from lcx_out wire. LCxINTP: Configurable Logic Cell Positive Edge Going Interrupt Enable bit 1 = CLCxIF will be set when a rising edge occurs on lcx_out 0 = CLCxIF will not be set						
bit 3	 LCxINTN: Configurable Logic Cell Negative Edge Going Interrupt Enable bit 1 = CLCxIF will be set when a falling edge occurs on lcx_out 0 = CLCxIF will not be set 						
bit 2-0	111 = Cell is 110 = Cell is 101 = Cell is	4-input AND OR-XOR	arent latch with vith R Flop with R	h S and R	de bits		

R/W-x/u	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxPOL	—	—	—	LCxG4POL	LCxG3POL	LCxG2POL	LCxG1POL
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Reset
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxPOL: LCO	OUT Polarity C	ontrol bit				
		ut of the logic c					
	0 = The outp	ut of the logic c	ell is not inve	rted			
bit 6-4	Unimplemen	ted: Read as 'o)'				
bit 3	LCxG4POL:	Gate 4 Output I	Polarity Contr	ol bit			
		ut of gate 4 is i		applied to the	logic cell		
	•	ut of gate 4 is r					
bit 2		Gate 3 Output I	•				
	•	ut of gate 3 is iı ut of gate 3 is r		applied to the	logic cell		
bit 1	•	•		ol bit			
DIL	LCxG2POL: Gate 2 Output Polarity Control bit						
	 1 = The output of gate 2 is inverted when applied to the logic cell 0 = The output of gate 2 is not inverted 						
bit 0	LCxG1POL: Gate 1 Output Polarity Control bit						
		ut of gate 1 is i	•		logic cell		
		ut of gate 1 is r			-		

REGISTER 19-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7						•	bit 0
Legend:							
R = Readable		W = Writable		•	nented bit, read		
u = Bit is uncha	anged	x = Bit is unkn		-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		Gate 4 Data 4 T	rue (non-inver	rted) bit			
		gated into lcxg		ned) bit			
		not gated into					
bit 6	LCxG4D4N:	Gate 4 Data 4 M	Vegated (inver	rted) bit			
	1 = lcxd4N is gated into lcxg4						
	0 = Icxd4N is	not gated into	lcxg4				
bit 5	LCxG4D3T: G	Gate 4 Data 3 T	rue (non-inver	rted) bit			
		gated into lcxg					
		not gated into	•				
bit 4		Gate 4 Data 3 M	•	rted) bit			
		gated into loxo					
1.1.0		not gated into	•				
bit 3		Sate 4 Data 2 T		rted) bit			
		gated into lcxg not gated into					
bit 2		Gate 4 Data 2 M	•	rted) bit			
SR 2		gated into lcxc					
		not gated into					
bit 1	LCxG4D1T: G	Gate 4 Data 1 T	rue (non-inver	rted) bit			
	1 = lcxd1T is	gated into lcxg	4				
	0 = lcxd1T is not gated into lcxg4						
bit 0	LCxG4D1N: Gate 4 Data 1 Negated (inverted) bit						
	1 = Icxd1N is gated into Icxg4						
	0 = Icxd1N is	not gated into	lova/				


REGISTER 19-8: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
CLC1CON	LC1EN	LC10E	LC10UT	LC1INTP	LC1INTN	L	C1MODE<2:0	>	110
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	114
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	115
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	116
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	117
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	111
CLC1SEL0	—		LC1D2S<2:0>		_		LC1D1S<2:0>		112
CLC1SEL1	—		LC1D4S<2:0>		_		LC1D3S<2:0>		113
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	40
PIE1	_	ADIE		NCO1IE	CLC1IE	_	TMR2IE	_	41
PIR1	_	ADIF	_	NCO1IF	CLC1IF	_	TMR2IF	_	42
TRISA	_	_	_	_	_	TRISA2	TRISA1	TRISA0	69

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Legend: — = unimplemented read as '0'. Shaded cells are not used for CLC module.

FIGURE 21-1: CWG BLOCK DIAGRAM

21.11 Configuring the CWG

The following steps illustrate how to properly configure the CWG to ensure a synchronous start:

- 1. Ensure that the TRIS control bits corresponding to CWGxA and CWGxB are set so that both are configured as inputs.
- 2. Clear the GxEN bit, if not already cleared.
- 3. Set desired dead-band times with the CWGxDBR and CWGxDBF registers.
- 4. Setup the following controls in CWGxCON2 auto-shutdown register:
 - Select desired shutdown source.
 - Select both output overrides to the desired levels (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state).
 - Set the GxASE bit and clear the GxARSEN bit.
- 5. Select the desired input source using the CWGxCON1 register.
- 6. Configure the following controls in CWGxCON0 register:
 - · Select desired clock source.
 - · Select the desired output polarities.
 - Set the output enables for the outputs to be used.
- 7. Set the GxEN bit.
- Clear TRIS control bits corresponding to CWGxA and CWGxB to be used to configure those pins as outputs.
- If auto-restart is to be used, set the GxARSEN bit and the GxASE bit will be cleared automatically. Otherwise, clear the GxASE bit to start the CWG.

21.11.1 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown input is true, are controlled by the GxASDLA and GxASDLB bits of the CWGxCON1 register (Register 21-2). GxASDLA controls the CWG1A override level and GxASDLB controls the CWG1B override level. The control bit logic level corresponds to the output logic drive level while in the shutdown state. The polarity control does not apply to the override level.

21.11.2 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to have resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the GxARSEN bit of the CWGxCON2 register. Waveforms of software controlled and automatic restarts are shown in Figure 21-5 and Figure 21-6.

21.11.2.1 Software controlled restart

When the GxARSEN bit of the CWGxCON2 register is cleared, the CWG must be restarted after an auto-shut-down event by software.

The CWG will resume operation on the first rising edge event after the GxASE bit is cleared. Clearing the shutdown state requires all selected shutdown inputs to be low, otherwise the GxASE bit will remain set.

21.11.2.2 Auto-Restart

When the GxARSEN bit of the CWGxCON2 register is set, the CWG will restart from the auto-shutdown state automatically.

After the shutdown event clears, the GxASE bit will clear automatically and the CWG will resume operation on the first rising edge event.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label]BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label]CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{f}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INT- CON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

RETLW	Return with literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	CALL TABLE;W contains ;table offset ;value GOTO DONE
TABLE	• • ADDWF PC ;W = offset
	RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ;End of table
DONE	
	Before Instruction W = 0x07 After Instruction W = value of k8
RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS\toPC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruc- tion.

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	
Words: Cycles:	← C ← Register f ←
	← C ← Register f ← 1
Cycles:	Register f ← C ← Register f ← 1
Cycles:	REG1 = 1110 0110
Cycles:	Register f I 1 RLF REG1,0 Before Instruction REG1 = 1110 0110 C = 0
Cycles:	Register f 1 1 RLF REG1,0 Before Instruction REG1 = C = 0 After Instruction
Cycles:	Register f C Register f 1 1 1 RLF REG1,0 Before Instruction REG1 = 1110 0110 C = 0 After Instruction REG1 = 1110 0110 REG1 = 1110 0110
Cycles:	Register f 1 1 RLF REG1,0 Before Instruction REG1 = C = 0 After Instruction

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{W}DT \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

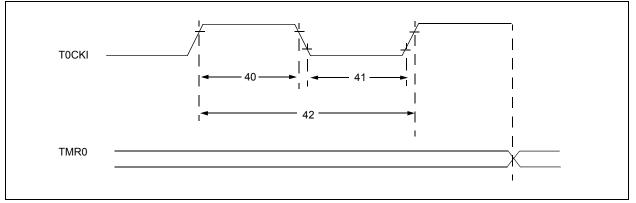
SUBLW	Subtract W from literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k - (W) \to (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.				
	Result	Condition			
	C = 0	W > k			

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	W<3:0> ≤ k<3:0>

24.2 Standard Operating Conditions

The standard operating co	onditions for any device are defined as:	
Operating Voltage: Operating Temperature:	$\label{eq:VDDMIN} \begin{array}{l} \forall VDDMIN \leq VDD \leq VDDMAX \\ TA_MIN \leq TA \leq TA_MAX \end{array}$	
VDD — Operating Supply	/ Voltage ⁽¹⁾	
PIC10LF320/322		
VDDMIN (FO	$\cos c \le 16 \text{ MHz}$)	+1.8V
VDDMIN (16	6 MHz < Fosc ≤ 20 MHz)	+2.5V
VDDMAX		+3.6V
PIC10F320/322		
VDDMIN (Fo	$\cos c \le 16 \text{ MHz}$)	+2.3V
VDDMIN (16	6 MHz < Fosc ≤ 20 MHz)	+2.5V
VDDMAX		+5.5V
TA — Operating Ambient	t Temperature Range	
Industrial Temperatu	ure	
TA_MIN		40°C
Та_мах		+85°C
Extended Temperat	ture	
TA_MIN		-40°C
Та_мах		+125°C

Note 1: See Parameter D001, DC Characteristics: Supply Voltage.


TABLE 24-9: RESET, WATCHDOG TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2 5	_	_	μs μs	VDD = 3.3-5V, -40°C to +85°C VDD = 3.3-5V
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V 1:16 Prescaler used
33*	TPWRT	Power-up Timer Period, $\overrightarrow{PWRTE} = 0$	40	64	140	ms	
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	_	—	2.0	μS	
35	VBOR	Brown-out Reset Voltage ⁽¹⁾	2.55	2.70	2.85	V	BORV = 0
			2.30 1.80	2.40 1.90	2.55 2.05	V V	BORV = 1 (PIC10F320/322) BORV = 1 (PIC10LF320/322)
36*	VHYST	Brown-out Reset Hysteresis	0	25	50	mV	-40°C to +85°C
37*	TBORDC	Brown-out Reset DC Response Time	1	3	5	μS	$VDD \leq VBOR$
38	Vlpbor	Low-Power Brown-Out Reset Voltage	1.8	2.1	2.5	V	LPBOR = 1

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 24-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 24-10: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteris	tic	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20	—		ns	
			With Prescaler	10			ns	
41*	TT0L	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20			ns	
			With Prescaler	10			ns	
42*	T⊤0P	T0CKI Period		Greater of: 20 or <u>Tcy + 40</u>	—		ns	N = prescale value (2, 4,, 256)
				N				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

26.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ X /XX XXX T T T T Tape and Reel Temperature Package Pattern Option Range	Examples: a) PIC10LF320T - I/OT Tape and Reel.
Device:	PIC10F320, PIC10LF320, PIC10F322, PIC10LF322	Industrial temperature, SOT-23 package b) PIC10F322 - I/P Industrial temperature PDIP package c) PIC10F322 - E/MC
Tape and Reel Option: Temperature Range:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾ I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	Extended temperature, DFN package
Package:	OT = SOT-23 P = PDIP MC = DFN	Note 1: Tape and Reel identifier only appears in the catalog part number description. This
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.