

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	448B (256 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f320-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC10(L)F320/322

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
Bank 0		÷								÷	
00h	INDF	Addres	sing this loca	ition uses co	ntents of FS	R to address of	data memory	(not a physical	register)	xxxx xxxx	xxxx xxxx
01h	TMR0				Timer0 M	lodule Registe	er			xxxx xxxx	uuuu uuuu
02h	PCL			Progra	m Counter (F	PC) Least Sigr	nificant Byte		-	0000 0000	0000 0000
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR			Indi	rect Data Me	mory Address	s Pointer			xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	—	_	RA3	RA2	RA1	RA0	xxxx	uuuu
06h	TRISA	—	—	—	_	(1)	TRISA2	TRISA1	TRISA0	1111	1111
07h	LATA	—	—	—	_	_	LATA2	LATA1	LATA0	xxx	uuu
08h	ANSELA	—	—	—	_	_	ANSA2	ANSA1	ANSA0	111	111
09h	WPUA	—	—	—	-	WPUA3	WPUA2	WPUA1	WPUA0	1111	1111
0Ah	PCLATH	—	—	—	-	_	—	—	PCLH0	0	0
0Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 000u
0Ch	PIR1	—	ADIF	—	NCO1IF	CLC1IF	_	TMR2IF	—	-0-0 0-0-	-0-0 0-0-
0Dh	PIE1	—	ADIE	—	NCO1IE	CLC1IE		TMR2IE	—	-0-0 0-0-	-0-0 0-0-
0Eh	OPTION_REG	WPUEN	INTEDG	TOCS	T0SE	PSA		PS<2:0>		1111 1111	uuuu uuuu
0Fh	PCON	—	—	—	-	_	—	POR	BOR	qq	uu
10h	OSCCON	—		IRCF<2:0>		HFIOFR	—	LFIOFR	HFIOFS	-110 0-00	-110 0-00
11h	TMR2				Timer2 M	lodule Registe	er			0000 0000	0000 0000
12h	PR2				Timer2 F	Period Registe	r			1111 1111	1111 1111
13h	T2CON	—		TOUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	-000 0000	-000 0000
14h	PWM1DCL	PWM1D	CL<1:0>	—	-	_	—	—	—	xx	uu
15h	PWM1DCH				PWM	1DCH<7:0>				xxxx xxxx	uuuu uuuu
16h	PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL	_	_	—	—	0000	0000
17h	PWM2DCL	PWM2D	CL<1:0>	—	-	_	—	—	—	xx	uu
18h	PWM2DCH				PWM	2DCH<7:0>				xxxx xxxx	uuuu uuuu
19h	PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	_	—	—	—	0000	0000
1Ah	IOCAP	—	—	—	-	IOCAP3	IOCAP2	IOCAP1	IOCAP0	0000	0000
1Bh	IOCAN	—	—	—	-	IOCAN3	IOCAN2	IOCAN1	IOCAN0	0000	0000
1Ch	IOCAF	—	—	—	-	IOCAF3	IOCAF2	IOCAF1	IOCAF0	0000	0000
1Dh	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVF	<1:0>	0x0000	0x0000
1Eh	ADRES				A/D Re	sult Register				xxxx xxxx	uuuu uuuu
1Fh	ADCON		ADCS<2:0>			CHS<2:0>		GO/ DONE	ADON	0000 0000	0000 0000

TABLE	2-3: SF	ECIAL F	N REGI	STER SL	JMMARY	(BANK (I)
							_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

EXAMPLE 9-3: WRITING TO FLASH PROGRAM MEMORY

```
; This write routine assumes the following:
         A valid starting address (the least significant bits = '00')
  ;
         is loaded in ADDRH:ADDRL
  ;
         ADDRH, ADDRL and DATADDR are all located in data memory
   ;
  BANKSEL
              PMADRH
  MOVE ADDRH, W
                 ;Load initial address
  MOVWF PMADRH
                  ;
  MOVF
        ADDRL,W
                  ;
  MOVWF PMADRL
                  ;
        DATAADDR,W ;Load initial data address
  MOVE
  MOVWF FSR
                  ;
LOOP MOVF INDF,W
                 ;Load first data byte into lower
  MOVWF PMDATL
                 ;
  INCF
      FSR,F
                 ;Next byte
                 ;Load second data byte into upper
  MOVF
        INDF,W
       PMDATH
  MOVWF
                  ;
  INCF
        FSR,F
                  ;
  BANKSEL PMCON1
  BSF PMCON1,WREN ;Enable writes
       INTCON,GIE ;Disable interrupts (if using)
  BCF
  BTFSC INTCON,GIE ;See AN576
  GOTO
       $-2
  ;
        Required Sequence
               ;Start of required write sequence:
  MOVLW 55h
  MOVWF
        PMCON2
                  ;Write 55h
  MOVLW
        0AAh
                 ;Write OAAh
  MOVWF
        PMCON2
        PMCON1,WR ;Set WR bit to begin write
  BSF
  NOP
                  ;Required to transfer data to the buffer
  NOP
                  ;registers
  BCF
       PMCON1,WREN ;Disable writes
        INTCON,GIE ; Enable interrupts (comment out if not using interrupts)
  BSF
  BANKSEL PMADRL
  MOVF
        PMADRL, W
        PMADRL, F
  INCF
                  ;Increment address
  ANDLW 0x03
                  ;Indicates when sixteen words have been programmed
  SUBLW 0x03
                  ;Change value for different size write blocks
                  ;0x0F = 16 words
                  ;0x0B = 12 words
                  ;0x07 = 8 words
                  ;0x03 = 4 words
        STATUS, Z
                  ;Exit on a match,
  BTFSS
  GOTO
        LOOP
                  ;Continue if more data needs to be written
```

9.5 Write Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 9-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

U-1 ⁽¹⁾	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-0/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpleme	nted bit, read as	s 'O'	
S = Bit can	only be set	x = Bit is unk	nown	-n/n = Value at F	POR and BOR/	/alue at all othe	er Resets
'1' = Bit is s	et	'0' = Bit is cle	ared	HC = Bit is clear	red by hardware	;	
bit 7	Unimplemen	ted: Read as	'1'				
bit 6	CFGS: Config	guration Select	t bit				
	1 = Access C	Configuration, I	Jser ID and De	evice ID Registers	5		
hit 5	U - Access F						
DIL 5	1 = Only the	addressed pro	only bites	write latch is load	ded/undated on	the next WR c	ommand
	0 = The addr	essed program	n memory write	e latch is loaded/	updated and a	write of all pro	gram memory
	write latc	hes will be init	iated on the ne	ext WR command			
bit 4	FREE: Progra	am Flash Eras	e Enable bit				
	1 = Performs	an erase ope	ration on the n	ext WR comman	d (hardware cle	ared upon com	pletion)
h :+ 0	0 = Performs	an write oper	ation on the ne	xt WR command			
DIT 3	1 = Condition	gram/Erase El indicates an	improper pro	aram or erase s	equence attem	nt or terminat	ion (hit is set
	automatio	cally on any se	et attempt (write	e '1') of the WR b	pit).		
	0 = The prog	ram or erase of	operation comp	leted normally.			
bit 2	WREN: Progr	am/Erase Ena	able bit				
	1 = Allows pr	ogram/erase o	cycles				
1.11.4		rogramming/e	rasing of progr	am Flash			
DIT 1	WR: Write Co	ntroi dit program Flag	sh program/era	se operation			
	The oper	ation is self-tir	ned and the bit	is cleared by ha	rdware once op	eration is com	olete.
	The WR	bit can only be	e set (not cleare	ed) in software.			
	0 = Program/	erase operation	on to the Flash	is complete and	inactive.		
bit 0	RD: Read Co	ntrol bit					
	1 = Initiates a	a program Fla: et (not cleared	sh read. Read	takes one cycle.	RD is cleared	in hardware. I	he RD bit can
	0 = Does not	initiate a prog	ram Flash read	d.			
Note 1: Ս	Jnimplemented bit	t, read as '1'.					
2 : (The WRERR bit is WR = 1).	automatically	set by hardwar	e when a progran	n memory write	or erase opera	tion is started

REGISTER 9-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Prog	gram Memory	/ Control Regis	ter 2		
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimpler	nented bit, read	l as '0'	
S = Bit can only	/ be set	x = Bit is unkn	iown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 9-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	40
PMCON1	_	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	65
PMCON2	Program Memory Control Register 2							66	
PMADRL	PMADR<7:0>							64	
PMADRH	_	_	_	_	-	_	_	PMADR8	64
PMDATL	PMDAT<7:0>							63	
PMDATH	— — PMDAT<13:8>							63	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory module.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	—	—	WRT<1:0>		BORV	LPBOR	LVP	20
CONFIG	7:0	CP	MCLR	PWRTE	WDTE<1:0>		BORE	N<1:0>	FOSC	20

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

10.2 Register Definitions: PORTA

REGISTER 10-1: PORTA: PORTA REGISTER

U-0	U-0	U-0	U-0	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
—	—	—	—	RA3	RA2	RA1	RA0		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RA<3:0>: PORTA I/O Value bits (RA3 is read-only)

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from PORTx register return actual I/O pin values.

REGISTER 10-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	—	(1)	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'.
bit 3	Unimplemented: Read as '1'.
bit 2-0	TRISA<2:0>: RA<2:0> Port I/O Tri-State Control bits
	1 = Port output driver is disabled0 = Port output driver is enabled

Note 1: Unimplemented, read as '1'.

REGISTER 10-3: LATA: PORTA DATA LATCH REGISTER

U-0	U-0	U-0 U-0 U-0 F				R/W-x/u	R/W-x/u		
_	—	—	—	_	LATA2	LATA1	LATA0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-3 Unimplemented: Read as '0'.

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from LATx register return register values, not I/O pin values.

REGISTER 10-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	_		—	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'.

bit 2-0 ANSA<2:0>: Analog Select between Analog or Digital Function on Pins RA<2:0>, respectively

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.
- 0 = Digital I/O. Pin is assigned to port or Digital special function.
- **Note 1:** Setting a pin to an analog input automatically disables the digital input circuitry. Weak pull-ups, if available, are unaffected. The corresponding TRIS bit must be set to Input mode by the user in order to allow external control of the voltage on the pin.

11.0 INTERRUPT-ON-CHANGE

The PORTA pins can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual PORTA pin, or combination of PORTA pins, can be configured to generate an interrupt. The Interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 11-1 is a block diagram of the IOC module.

11.1 Enabling the Module

To allow individual PORTA pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

11.2 Individual Pin Configuration

For each PORTA pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated IOCAPx bit of the IOCAP register is set. To enable a pin to detect a falling edge, the associated IOCANx bit of the IOCAN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both the IOCAPx bit and the IOCANx bit of the IOCAP and IOCAN registers, respectively.

11.3 Interrupt Flags

The IOCAFx bits located in the IOCAF register are status flags that correspond to the interrupt-on-change pins of PORTA. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCAFx bits.

11.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 11-1: CLEARING INTERRUPT FLAGS

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

11.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCAF register will be updated prior to the first instruction executed out of Sleep.

12.3 FVR Control Registers

REGISTER 12-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	—	—	ADFV	R<1:0>
bit 7		•		·			bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value de	pends on condit	ion	
bit 7	bit 7 FVREN: Fixed Voltage Reference Enable bit 1 = Fixed Voltage Reference is enabled 0 = Fixed Voltage Reference is disabled						
bit 6	 FVRRDY: Fixed Voltage Reference Ready Flag bit⁽¹⁾ 1 = Fixed Voltage Reference output is ready for use 0 = Fixed Voltage Reference output is not ready or not enabled 						
bit 5	TSEN: Temperature Indicator Enable bit ⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled						
bit 4	t 4 TSRNG: Temperature Indicator Range Selection bit ⁽³⁾ 1 = VOUT = VDD - 4VT (High Range) 0 = VOUT = VDD - 2VT (Low Range)						
bit 3-2	Unimplemen	ted: Read as '	C '				
bit 1-0	ADFVR<1:0>: ADC Fixed Voltage Reference Selection bit 11 = ADC Fixed Voltage Reference Peripheral output is 4x (4.096V) ⁽²⁾ 10 = ADC Fixed Voltage Reference Peripheral output is 2x (2.048V) ⁽²⁾ 01 = ADC Fixed Voltage Reference Peripheral output is 1x (1.024V) 00 = ADC Fixed Voltage Reference Peripheral output is off.						
Note 1: F	VRRDY indicates	the true state	of the FVR.				

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 14.0 "Temperature Indicator Module" for additional information.

TABLE 12-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE
--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG			ADFVR<1:0>		78

Legend: Shaded cells are not used with the Fixed Voltage Reference.

15.2.5 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUX register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 15.4 "A/D Acquisition Requirements".

15.3 ADC Register Definitions

The following registers are used to control the operation of the ADC.

REGISTER 15-1: ADCON: A/D CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	ADCS<2:0>			CHS<2:0>		GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	OR/Value at all o	other Resets
'1' = Bit is set '0' = Bit is cleared							
bit 7-5	ADCS<2:0>: 111 = FRC 110 = Fosc/6 101 = Fosc/7 100 = Fosc/7 011 = FRC 010 = Fosc/7 001 = Fosc/7 001 = Fosc/7 001 = Fosc/7	A/D Conversio 64 16 4 32 8	n Clock Selec	t bits			
bit 4-2	-2 CHS<2:0>: Analog Channel Select bits 111 = FVR (Fixed Voltage Reference) Buffer Output ⁽²⁾ 110 = Temperature Indicator ⁽¹⁾ 101 = Reserved. No channel connected. 100 = Reserved. No channel connected. 011 = Reserved. No channel connected. 010 = AN2 001 = AN1 000 = AN0						
bit 1 bit 0	 t 1 GO/DONE: A/D Conversion Status bit <u>If ADON = 1</u>: 1 = A/D conversion in progress (Setting this bit starts the A/D conversion) 0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete.) If this bit is cleared while a conversion is in progress, the conversion will stop and the results of the conversion up to this point will be transferred to the result registers, but the ADIF interrupt flag bit wi not be set. <u>If ADON = 0</u>: 0 = A/D conversion not in progress t 0 ADON: ADC Enable bit ADON: ADC Enable						when the A/D results of the upt flag bit will
Note 1: See	0 = ADC is di	isabled and con	Indicator Mo	erating current	information.		

2: See Section 12.0 "Fixed Voltage Reference (FVR)" for more information.

18.0 PULSE-WIDTH MODULATION (PWM) MODULE

The PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers:

- PR2
- T2CON
- PWMxDCH
- PWMxDCL
- PWMxCON

Figure 18-1 shows a simplified block diagram of PWM operation.

Figure 18-2 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up this module for PWM operation, refer to **Section 18.1.9** "Setup for PWM Operation using PWMx Pins".

FIGURE 18-2: PWM OUTPUT

18.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Clear the PWMxDCH register and bits <7:6> of the PWMxDCL register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
- Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the PWMxOE bit of the PWMxCON register.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - **2:** For operation with other peripherals only, disable PWMx pin outputs.

	TABLE 24-8:	CLKR AND I/O TIMING PARAMET	ERS
--	-------------	-----------------------------	-----

Standar	Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_	_	70	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	_	72	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	20	ns		
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	_	_	ns		
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)	50	—	—	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	—	ns		
OS18*	TioR	Port output rise time	_	40 15	72 32	ns	$\begin{array}{l} VDD = 1.8V \\ 3.3V \leq VDD \leq 5.0V \end{array}$	
OS19*	TioF	Port output fall time	—	28 15	55 30	ns	$\begin{array}{l} VDD\texttt{D}\texttt{=}1.8V\\ 3.3V\leqVDD\leq5.0V \end{array}$	
OS20*	Tinp	INT pin input high or low time	25			ns		
OS21*	Tioc	Interrupt-on-change new input level time	25			ns		

1	
	Cton double on continue Constitions (contrast of constants of the second
	Standard Unorating Conditions (IInjoss otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

FIGURE 24-9: BROWN-OUT RESET TIMING AND CHARACTERISTICS

FIGURE 24-12: A/D CONVERSION TIMING (NORMAL MODE)

FIGURE 24-13: A/D CONVERSION TIMING (SLEEP MODE)

26.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

can be found on the outer packaging for this package.

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support