

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	448B (256 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	SOT-23-6
Supplier Device Package	SOT-23-6
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f320t-i-ot

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Word
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 2-1: DEVICE SIZES AND ADDRESSES

2.1	Program	Memory	Organization
A	i i ogi um	moniory	organization

The mid-range core has a 13-bit program counter capable of addressing 8K x 14 program memory space. This device family only implements up to 512 words of the 8K program memory space. Table 2-1 shows the memory sizes implemented for the PIC10(L)F320/322 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 2-1, and 2-2).

Device	Device Program Memory Space (Words)		High-Endurance Flash Memory Address Range ⁽¹⁾
PIC10(L)F320	256	00FFh	0080h-00FFh
PIC10(L)F322	512	01FFh	0180h-01FFh

Note 1: High-endurance Flash applies to low byte of each address in the range.

2.2 Data Memory Organization

The data memory is in one bank, which contains the General Purpose Registers (GPR) and the Special Function Registers (SFR). The RP<1:0> bits of the STATUS register are the bank select bits.

<u>RP1</u> <u>RP0</u>

 $0 \quad 0 \quad \rightarrow \text{Bank 0 is selected}$

The bank extends up to 7Fh (128 bytes). The lower locations of the bank are reserved for the Special Function Registers. Above the Special Function Registers are the General Purpose Registers, implemented as Static RAM.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64×8 in the PIC10(L)F320/322. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-3). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

REGISTER 3-1: CONFIG: CONFIGURATION WORD (CONTINUED)

bit 5	PWRTE: Power-up Timer Enable bit ⁽¹⁾ 1 = PWRT disabled 0 = PWRT enabled
bit 4-3	WDTE<1:0>: Watchdog Timer Enable bit 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register 00 = WDT disabled
bit 2-1	BOREN<1:0>: Brown-out Reset Enable bits 11 = Brown-out Reset enabled; SBOREN bit is ignored 10 = Brown-out Reset enabled while running, disabled in Sleep; SBOREN bit is ignored 01 = Brown-out Reset controlled by the SBOREN bit in the BORCON register 00 = Brown-out Reset disabled; SBOREN bit is ignored
bit 0	FOSC: Oscillator Selection bit1 = EC on CLKIN pin0 = INTOSC oscillator I/O function available on CLKIN pin
Note 1:	Enabling Brown-out Reset does not automatically enable Power-up Timer.

- 2: Once enabled, code-protect can only be disabled by bulk erasing the device.
- **3:** See VBOR parameter for specific trip point voltages.

4.6 External Clock Mode

4.6.1 EC MODE

The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the CLKIN input.

TABLE 4-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON		CLKROE		_		—	_	—	26
OSCCON	_		IRCF<2:0>		HFIOFR	_	LFIOFR	HFIOFS	26

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by ECWG.

TABLE 4-2: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	WRT	<1:0>	BORV	LPBOR	LVP	20
CONFIG	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>	BOREI	N<1:0>	FOSC	20

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 9-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	
PIC10(L)F320	16	16	
PIC10(L)F322	10	10	

9.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FIGURE 9-1:

FLASH PROGRAM MEMORY READ FLOWCHART

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Prog	gram Memory	/ Control Regis	ter 2		
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimpler	nented bit, read	l as '0'	
S = Bit can only	/ be set	x = Bit is unkn	iown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 9-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	40
PMCON1	_	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	65
PMCON2	Program Memory Control Register 2								
PMADRL				PMAD	R<7:0>				64
PMADRH	_	_	_	_	-	_	_	PMADR8	64
PMDATL	PMDAT<7:0>								
PMDATH	_	_			PMDAT	<13:8>			63

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory module.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	—	—	WRT<1:0>		BORV	LPBOR	LVP	20
CONFIG	7:0	CP	MCLR	PWRTE	WDTE	E<1:0>	BORE	N<1:0>	FOSC	20

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

REGISTER 13-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—		—	—	—	VREGPM1	Reserved
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'.

- bit 1 VREGPM1: Voltage Regulator Power Mode Selection bit
 - 1 = Power-Save Sleep mode enabled in Sleep. Draws lowest current in Sleep, slower wake-up.
 - 0 = Low-Power mode enabled in Sleep. Draws higher current in Sleep, faster wake-up.

bit 0 Reserved: Maintain this bit set.

TABLE 15-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock Period (TAD)		Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	16 MHz	8 MHz	4 MHz	1 MHz			
Fosc/2	000	125 ns ⁽¹⁾	250 ns ⁽¹⁾	500 ns ⁽¹⁾	2.0 μs			
Fosc/4	100	250 ns ⁽¹⁾	500 ns ⁽¹⁾	1.0 μs	4.0 μs			
Fosc/8	001	0.5 μs ⁽¹⁾	1.0 μs	2.0 μs	8.0 μs ⁽²⁾			
Fosc/16	101	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽²⁾			
Fosc/32	010	2.0 μs	4.0 μs	8.0 μs ⁽²⁾	32.0 μs ⁽²⁾			
Fosc/64	110	4.0 μs	8.0 μs ⁽²⁾	16.0 μs ⁽²⁾	64.0 μs ⁽²⁾			
FRC	x11	1.0-6.0 μs ^(1,3)	1.0-6.0 μs ^(1,3)	1.0-6.0 μs ^(1,3)	1.0-6.0 μs ^(1,3)			

Legend: Shaded cells are outside of recommended range.

Note 1: These values violate the minimum required TAD time.

2: For faster conversion times, the selection of another clock source is recommended.

3: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

16.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with Timer0. The prescaler assignment is controlled by the PSA bit of the OPTION_REG register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION REG register.

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

16.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

16.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in **Section 24.0** "**Electrical Specifications**".

REGISTER 20-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1			
NCOxINC<7:0>										
bit 7							bit 0			
Logondi										

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<7:0>: NCOx Increment, low byte

REGISTER 20-7: NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
NCOxINC<15:8>									
bit 7 bi									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<15:8>: NCOx Increment, high byte

21.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces a complementary waveform with dead-band delay from a selection of input sources.

The CWG module has the following features:

- · Selectable dead-band clock source control
- Selectable input sources
- Output enable control
- Output polarity control
- Dead-band control with Independent 6-bit rising and falling edge dead-band counters
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

24.3 DC Characteristics

TABLE 24-1: SUPPLY VOLTAGE

PIC10L	PIC10LF320/322			Standard Operating Conditions (unless otherwise stated)				
PIC10F	320/322							
Param. Sym. Characteristic No.			Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage						
			1.8 2.5		3.6 3.6	V V	Fosc \leq 16 MHz: Fosc \leq 20 MHz	
D001			2.3 2.5	_	5.5 5.5	V V	Fosc \leq 16 MHz: Fosc \leq 20 MHz	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾						
			1.5	—		V	Device in Sleep mode	
D002*			1.7			V	Device in Sleep mode	
	VPOR*	Power-on Reset Release Voltage	_	1.6		V		
	VPORR*	Power-on Reset Rearm Voltage	—	0.8	-	V	Device in Sleep mode	
			—	1.7	-	V	Device in Sleep mode	
D003	VFVR	Fixed Voltage Reference Voltage						
		1x gain (1.024V nominal) 2x gain (2.048V nominal) 4x gain (4.096V nominal)	-8	_	+6	%	$ \begin{array}{l} \mbox{Vdd} \geq 2.5 \mbox{V}, \ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +85^{\circ} \mbox{C} \\ \mbox{Vdd} \geq 2.5 \mbox{V}, \ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +85^{\circ} \mbox{C} \\ \mbox{Vdd} \geq 4.75 \mbox{V}, \ -40^{\circ} \mbox{C} \leq \mbox{Ta} \leq +85^{\circ} \mbox{C} \\ \end{array} $	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See Section 5.1 "Power-On Reset (POR)" for details.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

TABLE 24-4: I/O PORTS

Standar	d Operati	ng Conditions (unless otherwi	se stated)			-				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O PORT:								
D032		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D032A			—	_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D033		with Schmitt Trigger buffer	—		0.2 VDD	V	$2.0V \leq V\text{DD} \leq 5.5V$			
D034		MCLR	—		0.2 VDD	V				
	VIH	Input High Voltage								
		I/O ports:								
D040		with TTL buffer	2.0			V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25 VDD + 0.8	_	—	V	$1.8V \le V\text{DD} \le 4.5V$			
D041		with Schmitt Trigger buffer	0.8 VDD	_	—	V	$2.0V \leq V\text{DD} \leq 5.5V$			
D042		MCLR	0.8 VDD		—	V				
	lı∟	Input Leakage Current ⁽²⁾								
D060		I/O ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at			
				± 5	± 1000	nA	high-impedance @ 85°C 125°C			
D061		MCLR	_	± 50	± 200	nA	$Vss \le VPIN \le VDD @ 85^{\circ}C$			
	IPUR	Weak Pull-up Current								
D070*			25 25	100 140	200 300	μA	VDD = 3.3V, VPIN = VSS VDD = 5.0V, VPIN = VSS			
	Vol	Output Low Voltage								
D080		I/O ports	_	_	0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V			
	Voн	Output High Voltage	•							
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V			

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

FIGURE 24-9: BROWN-OUT RESET TIMING AND CHARACTERISTICS

TABLE 24-11: 0	CONFIGURATION L	OGIC CELL ((CLC) C	HARACTERISTI	ICS
----------------	-----------------	-------------	---------	--------------	-----

Standard	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
CLC01*	TCLCIN	CLC input time	—	7		ns			
CLC02*	TCLC	CLC module input to output propagation time	_	24	_	ns	VDD = 1.8V		
				12		ns	Vdd > 3.6V		
CLC03*	TCLCOUT	CLC output time Rise Time	_	OS18			(Note 1)		
		Fall Time	_	OS19			(Note 1)		
CLC04*	FCLCMAX	CLC maximum switching frequency	_	45		MHz			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1:See Table 24-8 for OS18 and OS19 rise and fall times.

TABLE 24-12: A/D CONVERTER (ADC) CHARACTERISTICS:

Standard	Operating	Conditions (unless	otherwise stated	١
otuniaana	operating	oonanions ((4111033	other mise stated	,

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	NR	Resolution	_	_	8	bit		
AD02	EIL	Integral Error			±1.7	LSb	VREF = 3.0V	
AD03	Edl	Differential Error	_		±1	LSb	No missing codes VREF = 3.0V	
AD04	EOFF	Offset Error			±2.5	LSb	VREF = 3.0V	
AD05	Egn	Gain Error	_		±2.0	LSb	VREF = 3.0V	
AD06	VREF	Reference Voltage	1.8	_	Vdd	V	VREF = (VREF+ minus VREF-)	
AD07	VAIN	Full-Scale Range	Vss		VREF	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_		10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

TABLE 24-13: A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD130*	Tad	A/D Clock Period	1.0	—	6.0	μS	Tosc-based	
		A/D Internal FRC Oscillator Period	1.0	1.6	6.0	μS	ADCS<1:0> = 11 (ADRC mode)	
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	-	9.5		Tad	Set GO/DONE bit to conversion complete	
AD132*	TACQ	Acquisition Time		5.0	_	μS		
AD133*	THCD	Holding Capacitor Disconnect Time	_	1/2 TAD	_		Fosc-based	
				1/2 TAD + 1TCY			ADCS<2:0> = x11 (ADC FRC mode)	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

6-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.95 BSC			
Contact Pad Spacing	С		2.80		
Contact Pad Width (X6)	Х			0.60	
Contact Pad Length (X6)	Y			1.10	
Distance Between Pads	G	1.70			
Distance Between Pads	GX	0.35			
Overall Width	Z			3.90	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2028A