E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	896B (512 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	SOT-23-6
Supplier Device Package	SOT-23-6
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f322-e-ot

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC10(L)F320/322 Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	High Endurance Flash (bytes)	I/O'S ⁽²⁾	8-Bit ADC (ch)	Timers (8-Bit)	PWM	Complementary Wave Generator (CWG)	Configurable Logic Cell (CLC)	Fixed Voltage Reference (FVR)	Numerically Controlled Oscillator (NCO)	Debug ⁽¹⁾	XLP
PIC10(L)F320	(1)	256	64	128	4	3	2	2	1	1	1	1	Н	Y
PIC10(L)F322	(1)	512	64	128	4	3	2	2	1	1	1	1	Н	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, Available using Debug Header; E - Emulation, Available using Emulation Header.

2: One pin is input-only.

Data Sheet Index:

1: DS40001585 PIC10(L)F320/322 Data Sheet, 6/8 Pin High Performance, Flash Microcontrollers.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

2.2.3 DEVICE MEMORY MAPS

The memory maps for $\ensuremath{\text{PIC10}(L)F320/322}$ are as shown in Table 2-2.

TABLE 2-2: PIC10(L)F320/322 MEMORY MAP (BANK 0)

INDF ^(*)	00h	PMADRL	20h		40h		60h
TMR0	01h	PMADRH	21h				
PCL	02h	PMDATL	22h				
STATUS	03h	PMDATH	23h				
FSR	04h	PMCON1	24h				
PORTA	05h	PMCON2	25h				
TRISA	06h	CLKRCON	26h				
LATA	07h	NCO1ACCL	27h				
ANSELA	08h	NCO1ACCH	28h				
WPUA	09h	NCO1ACCU	29h				
PCLATH	0Ah	NCO1INCL	2Ah				
INTCON	0Bh	NCO1INCH	2Bh				
PIR1	0Ch	Reserved	2Ch				
PIE1	0Dh	NCO1CON	2Dh				
OPTION_REG	0Eh	NCO1CLK	2Eh	General		General	
PCON	0Fh	Reserved	2Fh	Purpose		Purpose	
OSCCON	10h	WDTCON	30h	registers		registers	
TMR2	11h	CLC1CON	31h	32 Bytes		32 Bytes	
PR2	12h	CLC1SEL1	32h				
T2CON	13h	CLC1SEL2	33h				
PWM1DCL	14h	CLC1POL	34h				
PWM1DCH	15h	CLC1GLS0	35h				
PWM1CON	16h	CLC1GLS1	36h				
PWM2DCL	17h	CLC1GLS2	37h				
PWM2DCH	18h	CLC1GLS3	38h				
PWM2CON	19h	CWG1CON0	39h				
IOCAP	1Ah	CWG1CON1	3Ah				
IOCAN	1Bh	CWG1CON2	3Bh				
IOCAF	1Ch	CWG1DBR	3Ch				
FVRCON	1Dh	CWG1DBF	3Dh				
ADRES	1Eh	VREGCON	3Eh				
ADCON	1Fh	BORCON	3Fh		5Fh		7Fh

Legend: = Unimplemented data memory locations, read as '0'.

* = Not a physical register.

5.0 RESETS

There are multiple ways to reset this device:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- Low-Power Brown-Out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- · Programming mode exit

To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

5.1 Power-On Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

5.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Word.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

5.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Word. The four operating modes are:

- BOR is always on
- BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 5-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Register 3-1.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 5-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Device Operation upon: Release of POR/Wake- up from Sleep
11	х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
	T.	Awake	Active	Weite for DOD ready (DODDDY = 1)
10	X	Sleep	Disabled	Walls for BOR ready (BORRDY = 1)
0.1	1	х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
UT	0	х	Disabled	
00	Х	х	Disabled	Begins immediately (BORRDY = x)

TABLE 5-1: BOR OPERATING MODES

Note 1: In these specific cases, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

5.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Word are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

5.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Word are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

5.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Word are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device startup is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

5.3 Register Definition: BOR Control

REGISTER 5-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS ⁽¹⁾	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit <u>If BOREN <1:0> in Configuration Word $\neq 01$:</u> SBOREN is read/write, but has no effect on the BOR.
	<u>If BOREN <1:0> in Configuration Word = 01</u> : 1 = BOR enabled 0 = BOR disabled
bit 6	BORFS: Brown-out Reset Fast Start bit ⁽¹⁾ If BOREN<1:0> = <u>11 (Always on) or BOREN<1:0> = 00 (Always off)</u> BORFS is Read/Write, but has no effect.
	<u>If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):</u> 1 = Band gap is forced on always (covers Sleep/wake-up/operating cases) 0 = Band gap operates normally, and may turn off
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Word.

TABLE 9-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	
PIC10(L)F320	16	16	
PIC10(L)F322	10	10	

9.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FIGURE 9-1:

FLASH PROGRAM MEMORY READ FLOWCHART

EXAMPLE 9-1: FLASH PROGRAM MEMORY READ

* This code block will read 1 word of program

- * memory at the memory address:
- PROG_ADDR_HI: PROG_ADDR_LO
- * data will be returned in the variables;
- * PROG_DATA_HI, PROG_DATA_LO

BANKSEL MOVLW MOVWF MOVLW	PMADRL PROG_ADDR_LO PMADRL PROG_ADDR_HI	<pre>; not required on devices with 1 Bank of SFRs ; ; Store LSB of address ;</pre>
MOVWF	PMADRH	; Store MSB of address
BCF	PMCON1 CEGS	: Do not select Configuration Space
DCF	DMCON1 DD	: Initiate mod
BSF	PMCON1, RD	, IIIIIIale read
NOP		; Ignored (Figure 9-2)
NOP		; Ignored (Figure 9-2)
MOVF	PMDATL,W	; Get LSB of word
MOVWF	PROG_DATA_LO	; Store in user location
MOVF	PMDATH,W	; Get MSB of word
MOVWF	PROG_DATA_HI	; Store in user location

REGISTER 10-3: LATA: PORTA DATA LATCH REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u		
_	—	—	—	_	LATA2	LATA1	LATA0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-3 Unimplemented: Read as '0'.

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from LATx register return register values, not I/O pin values.

REGISTER 10-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	_		—	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'.

bit 2-0 ANSA<2:0>: Analog Select between Analog or Digital Function on Pins RA<2:0>, respectively

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.
- 0 = Digital I/O. Pin is assigned to port or Digital special function.
- **Note 1:** Setting a pin to an analog input automatically disables the digital input circuitry. Weak pull-ups, if available, are unaffected. The corresponding TRIS bit must be set to Input mode by the user in order to allow external control of the voltage on the pin.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7	•		·			•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxG4D4T:	Gate 4 Data 4 1	rue (non-inve	rted) bit			
	1 = Icxd4T is	gated into lcxg	j 4				
	0 = Icxd4T is	not gated into	lcxg4				
bit 6	LCxG4D4N:	Gate 4 Data 4	Negated (inve	rted) bit			
	1 = lcxd4N is	gated into lcx	j4 Jova4				
h:+ C				ate al \ la it			
DIL 5	$1 = \log d3T$ is	acted into love		ited) bit			
	0 = lcxd3T is	not gated into ick	lcxa4				
bit 4	LCxG4D3N:	Gate 4 Data 3	Negated (inve	rted) bit			
	1 = Icxd3N is	gated into Icx	q4	,			
	0 = 1 cxd3N is not gated into 1cxg4						
bit 3	LCxG4D2T: Gate 4 Data 2 True (non-inverted) bit						
	1 = Icxd2T is gated into Icxg4						
	0 = lcxd2T is	not gated into	lcxg4				
bit 2	LCxG4D2N:	Gate 4 Data 2	Negated (inver	rted) bit			
	1 = lcxd2N is	gated into lcx	g4 Jove 4				
b :4 4		not gated into	icxg4	ate al \ la it			
DIT	LCXG4D11: 0	sate 4 Data 1	rue (non-inve	rted) bit			
	1 = 1cxd1T is 0 = 1cxd1T is	not gated into icx	lcxa4				
bit 0	LCxG4D1N:	Gate 4 Data 1	Negated (inve	rted) bit			
	1 = lcxd1N is	ated into lcxo	14				
	0 = lcxd1N is	not gated into	lcxg4				

REGISTER 19-8: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

20.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCOx) module is a timer that uses the overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the resolution of division does not vary with the divider value. The NCOx is most useful for applications that requires frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCOx include:

- 16-bit increment function
- Fixed Duty Cycle (FDC) mode
- Pulse Frequency (PF) mode
- Output pulse width control
- Multiple clock input sources
- Output polarity control
- Interrupt capability

Figure 20-1 is a simplified block diagram of the NCOx module.

20.1 NCOx OPERATION

The NCOx operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCOx output. This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 20-1.

The NCOx output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCOx output is then distributed internally to other peripherals and optionally output to a pin. The accumulator overflow also generates an interrupt.

The NCOx output creates an instantaneous frequency, which may cause uncertainty. This output depends on the ability of the receiving circuit (i.e., CWG or external resonant converter circuitry) to average the instantaneous frequency to reduce uncertainty.

20.1.1 NCOx CLOCK SOURCES

Clock sources available to the NCOx include:

- HFINTOSC
- Fosc
- LC1OUT
- NCO1CLK pin

The NCOx clock source is selected by configuring the NxCKS<1:0> bits in the NCOxCLK register.

20.1.2 ACCUMULATOR

The Accumulator is a 20-bit register. Read and write access to the Accumulator is available through three registers:

- NCOxACCL
- NCOxACCH
- NCOxACCU

EQUATION 20-1:

2'

n = Accumulator width in bits

20.1.3 ADDER

The NCOx Adder is a full adder, which operates asynchronously to the clock source selected. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

20.1.4 INCREMENT REGISTERS

The Increment value is stored in two 8-bit registers making up a 16-bit increment. In order of LSB to MSB they are:

- NCOxINCL
- NCOxINCH

Both of the registers are readable and writable. The Increment registers are double-buffered to allow for value changes to be made without first disabling the NCOx module.

The buffer loads are immediate when the module is disabled. Writing to the MS register first is necessary because then the buffer is loaded synchronously with the NCOx operation after the write is executed on the lower increment register.

Note: The increment buffer registers are not useraccessible.

21.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces a complementary waveform with dead-band delay from a selection of input sources.

The CWG module has the following features:

- · Selectable dead-band clock source control
- Selectable input sources
- Output enable control
- Output polarity control
- Dead-band control with Independent 6-bit rising and falling edge dead-band counters
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

23.0 INSTRUCTION SET SUMMARY

The PIC10(L)F320/322 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 23-1, while the various opcode fields are summarized in Table 23-1.

Table 23-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

23.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the IOCIF flag.

TABLE 23-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 23-1: GENERAL FORMAT FOR INSTRUCTIONS

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since Status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVW OPTION_REG F
	Before Instruction $OPTION_REG = 0xFF$ W = 0x4F After Instruction $OPTION_REG = 0x4F$ W = 0x4F

MOVLW	Move literal to W		
Syntax:	[<i>label</i>] MOVLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \rightarrow (W)$		
Status Affected:	None		
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.		
Words:	1		
Cycles:	1		
Example:	MOVLW 0x5A		
	After Instruction		
	W = 0x5A		

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

RLF	Rotate Left f through Carry		
Syntax:	[<i>label</i>] RLF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	See description below		
Status Affected:	С		
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example:	RLF REG1,0		
	Before Instruction		
	REG1 = 1110 0110		
	C = 0		
	REGI = 1100 0110 M = 1100 1100		
	C = 1		

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBLW	Subtract W	from literal	
Syntax:	[label] SU	JBLW k	
Operands:	$0 \le k \le 255$		
Operation:	$k -(W) \to (W)$	N)	
Status Affected:	C, DC, Z		
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.		
	Result	Condition	
	C = 0	W > k	

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	W<3:0> ≤ k<3:0>

TABLE 24-2: SUPPLY VOLTAGE (IDD)^(1,2) (CONTINUED)

PIC10LF3	320/322	Standard Operating Conditions (unless otherwise stated)						
PIC10F320/322								
Param	Device	Min	Tunt	Мох	Unito		Conditions	
No.	Characteristics	IVIII.	ואני	IVIAX.	Units	Vdd	Note	
D017		_	213	290	μA	1.8	Fosc = 500 kHz	
		—	264	360	μA	3.0	HFINTOSC mode	
D017		_	272	368	μA	2.3	Fosc = 500 kHz	
		—	310	422	μA	3.0	HFINTOSC mode	
		—	372	515	μA	5.0		
D018		_	0.33	0.50	mA	1.8	Fosc = 8 MHz	
		—	0.43	0.70	mA	3.0	HFINTOSC mode	
D018		_	0.45	1.0	mA	2.3	Fosc = 8 MHz	
		—	0.56	1.1	mA	3.0	HFINTOSC mode	
		—	0.64	1.2	mA	5.0]	
D019		—	0.46	1.1	mA	1.8	Fosc = 16 MHz	
		—	0.73	1.2	mA	3.0	HFINTOSC mode	
D019			0.60	1.1	mA	2.3	Fosc = 16 MHz	
			0.76	1.2	mA	3.0	HFINTOSC mode	
			0.85	1.3	mA	5.0		

Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

••••••								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
		Program Memory Programming Specifications						
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)	
D111	IDDP	Supply Current during Programming	—	—	10	mA		
D112		VDD for Bulk Erase	2.7	-	VDD max.	V		
D113	VPEW	VDD for Write or Row Erase	Vdd min.	—	VDD max.	V		
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	-	—	1.0	mA		
D115	IDDPGM	Current on VDD during Erase/Write			5.0	mA		
		Program Flash Memory						
D121	EР	Cell Endurance	10K	—		E/W	-40°C to +85°C (Note 1)	
D122	Vpr	VDD for Read	VDD min.	-	VDD max.	V		
D123	TIW	Self-timed Write Cycle Time	_	2	2.5	ms		
D124	TRETD	Characteristic Retention	40	-	—	Year	Provided no other specifications are violated	
D125	EHEFC	High-Endurance Flash Cell	100K	-	_	E/W	$0^{\circ}C \le TA \le 60$, lower byte last 128 addresses	

Standard Operating Conditions (unless otherwise stated)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

TABLE 24-12: A/D CONVERTER (ADC) CHARACTERISTICS:

Standard	Operating	Conditions (unless	otherwise stated	١
otuniaana	operating	oonaniono j	(4111033	other mise stated	,

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD01	NR	Resolution	_	_	8	bit			
AD02	EIL	Integral Error			±1.7	LSb	VREF = 3.0V		
AD03	Edl	Differential Error	_		±1	LSb	No missing codes VREF = 3.0V		
AD04	EOFF	Offset Error			±2.5	LSb	VREF = 3.0V		
AD05	Egn	Gain Error	_		±2.0	LSb	VREF = 3.0V		
AD06	VREF	Reference Voltage	1.8		Vdd	V	VREF = (VREF+ minus VREF-)		
AD07	VAIN	Full-Scale Range	Vss		VREF	V			
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

TABLE 24-13: A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param No.	Param No. Sym. Characteristic		Min.	Тур†	Max.	Units	Conditions		
AD130*	Tad	A/D Clock Period	1.0	—	6.0	μS	Tosc-based		
		A/D Internal FRC Oscillator Period	1.0	1.6	6.0	μS	ADCS<1:0> = 11 (ADRC mode)		
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	-	9.5		Tad	Set GO/DONE bit to conversion complete		
AD132*	TACQ	Acquisition Time		5.0	_	μS			
AD133*	THCD	Holding Capacitor Disconnect Time	_	1/2 TAD	_		Fosc-based		
				1/2 TAD + 1TCY			ADCS<2:0> = x11 (ADC FRC mode)		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.