

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	896B (512 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VFDFN Exposed Pad
Supplier Device Package	8-DFN (2x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f322-i-mc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Word
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 2-1: DEVICE SIZES AND ADDRESSES

2.1	Program	Memory	Organization
A	i i ogi um	moniory	organization

The mid-range core has a 13-bit program counter capable of addressing 8K x 14 program memory space. This device family only implements up to 512 words of the 8K program memory space. Table 2-1 shows the memory sizes implemented for the PIC10(L)F320/322 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 2-1, and 2-2).

Device	Program Memory Space (Words)	Last Program Memory Address	High-Endurance Flash Memory Address Range ⁽¹⁾		
PIC10(L)F320	256	00FFh	0080h-00FFh		
PIC10(L)F322	512	01FFh	0180h-01FFh		

Note 1: High-endurance Flash applies to low byte of each address in the range.

2.2.3 DEVICE MEMORY MAPS

The memory maps for $\ensuremath{\text{PIC10}(L)F320/322}$ are as shown in Table 2-2.

TABLE 2-2: PIC10(L)F320/322 MEMORY MAP (BANK 0)

INDF ^(*)	00h	PMADRL	20h		40h		60h
TMR0	01h	PMADRH	21h				
PCL	02h	PMDATL	22h				
STATUS	03h	PMDATH	23h				
FSR	04h	PMCON1	24h				
PORTA	05h	PMCON2	25h				
TRISA	06h	CLKRCON	26h				
LATA	07h	NCO1ACCL	27h				
ANSELA	08h	NCO1ACCH	28h				
WPUA	09h	NCO1ACCU	29h				
PCLATH	0Ah	NCO1INCL	2Ah				
INTCON	0Bh	NCO1INCH	2Bh				
PIR1	0Ch	Reserved	2Ch				
PIE1	0Dh	NCO1CON	2Dh				
OPTION_REG	0Eh	NCO1CLK	2Eh	General		General	
PCON	0Fh	Reserved	2Fh	Purpose		Purpose	
OSCCON	10h	WDTCON	30h	registers		registers	
TMR2	11h	CLC1CON	31h	32 Bytes		32 Bytes	
PR2	12h	CLC1SEL1	32h				
T2CON	13h	CLC1SEL2	33h				
PWM1DCL	14h	CLC1POL	34h				
PWM1DCH	15h	CLC1GLS0	35h				
PWM1CON	16h	CLC1GLS1	36h				
PWM2DCL	17h	CLC1GLS2	37h				
PWM2DCH	18h	CLC1GLS3	38h				
PWM2CON	19h	CWG1CON0	39h				
IOCAP	1Ah	CWG1CON1	3Ah				
IOCAN	1Bh	CWG1CON2	3Bh				
IOCAF	1Ch	CWG1DBR	3Ch				
FVRCON	1Dh	CWG1DBF	3Dh				
ADRES	1Eh	VREGCON	3Eh				
ADCON	1Fh	BORCON	3Fh		5Fh		7Fh

Legend: = Unimplemented data memory locations, read as '0'.

* = Not a physical register.

6.6 Interrupt Control Registers

REGISTER 6-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	GIE: Global Ir 1 = Enables a 0 = Disables a	nterrupt Enable III active interru all interrupts	bit pts				
bit 6	PEIE: Periphe 1 = Enables a 0 = Disables a	eral Interrupt E III active periph all peripheral in	nable bit eral interrupts terrupts	3			
bit 5	TMR0IE: Time 1 = Enables tl 0 = Disables t	er0 Overflow Ir he Timer0 inter he Timer0 inte	iterrupt Enabl rupt rrupt	e bit			
bit 4	INTE: INT Ext 1 = Enables to 0 = Disables to	ternal Interrupt he INT externa the INT externa	Enable bit I interrupt al interrupt				
bit 3	bit 3 IOCIE: Interrupt-on-Change Interrupt Enable bit 1 = Enables the interrupt-on-change interrupt 0 = Disables the interrupt-on-change interrupt						
bit 2	TMR0IF: Time 1 = TMR0 reg 0 = TMR0 reg	er0 Overflow In jister has overf jister did not ov	terrupt Flag b lowed ⁄erflow	pit			
bit 1	INTF: INT Ext 1 = The INT e 0 = The INT e	ternal Interrupt external interrup external interrup	Flag bit ot occurred ot did not occi	ur			
bit 0	IOCIF: Interru 1 = When at l 0 = None of th	ipt-on-Change east one of the ne interrupt-on-	Interrupt Flag interrupt-on- change pins	bit ⁽¹⁾ change pins ch have changed	anged state state		
Note 1: T h	he IOCIF Flag bit ave been cleared	is read-only ar by software.	nd cleared wh	en all the Inter	rupt-on-Change	e flags in the IO	CAF register

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF<2:0>		HFIOFR	_	LFIOFR	HFIOFS	26
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	13
WDTCON	—	—	WDTPS<4:0>				SWDTEN	48	

TABLE 8-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 8-4:	SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	WRT	<1:0>	BORV	LPBOR	LVP	20
CONFIG	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		BORE	N<1:0>	FOSC	20

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

EXAMPLE 9-2: ERASING ONE ROW OF PROGRAM MEMORY

; This row erase routine assumes the following:

; 1. A valid address within the erase row is loaded in ADDRH:ADDRL

; 2. ADDRH and ADDRL are located in shared data memory $0\,\mathrm{x}70$ - $0\,\mathrm{x}7F$ (common RAM)

	BCF	INTCON,GIE	; Disable ints so required sequences will execute properly
	BANKSEL	PMADRL	; not required on devices with 1 Bank of SFRs
	MOVF	ADDRL,W	; Load lower 8 bits of erase address boundary
	MOVWF	PMADRL	
	MOVF	ADDRH,W	; Load upper 6 bits of erase address boundary
	MOVWF	PMADRH	
	BCF	PMCON1,CFGS	; Not configuration space
	BSF	PMCON1, FREE	; Specify an erase operation
	BSF	PMCON1,WREN	; Enable writes
	MOVLW	55h	; Start of required sequence to initiate erase
_ a)	MOVWF	PMCON2	; Write 55h
nce	MOVLW	0AAh	i
ine Ine	MOVWF	PMCON2	; Write AAh
Sec. 2	BSF	PMCON1,WR	; Set WR bit to begin erase
- 05	NOP		; NOP instructions are forced as processor starts
	NOP		; row erase of program memory.
L			;
			; The processor stalls until the erase process is complete
			; after erase processor continues with 3rd instruction
	BCF	PMCON1,WREN	; Disable writes
	BSF	INTCON,GIE	; Enable interrupts

EXAMPLE 9-3: WRITING TO FLASH PROGRAM MEMORY

```
; This write routine assumes the following:
         A valid starting address (the least significant bits = '00')
  ;
         is loaded in ADDRH:ADDRL
  ;
         ADDRH, ADDRL and DATADDR are all located in data memory
   ;
  BANKSEL
              PMADRH
  MOVE ADDRH, W
                 ;Load initial address
  MOVWF PMADRH
                  ;
  MOVF
        ADDRL,W
                  ;
  MOVWF PMADRL
                  ;
        DATAADDR,W ;Load initial data address
  MOVE
  MOVWF FSR
                  ;
LOOP MOVF INDF,W
                 ;Load first data byte into lower
  MOVWF PMDATL
                 ;
  INCF
      FSR,F
                 ;Next byte
                 ;Load second data byte into upper
  MOVF
        INDF,W
       PMDATH
  MOVWF
                  ;
  INCF
        FSR,F
                  ;
  BANKSEL PMCON1
  BSF PMCON1,WREN ;Enable writes
       INTCON,GIE ;Disable interrupts (if using)
  BCF
  BTFSC INTCON,GIE ;See AN576
  GOTO
       $-2
  ;
        Required Sequence
               ;Start of required write sequence:
  MOVLW 55h
  MOVWF
        PMCON2
                  ;Write 55h
  MOVLW
        0AAh
                 ;Write OAAh
  MOVWF
        PMCON2
        PMCON1,WR ;Set WR bit to begin write
  BSF
  NOP
                  ;Required to transfer data to the buffer
  NOP
                  ;registers
  BCF
       PMCON1,WREN ;Disable writes
        INTCON,GIE ; Enable interrupts (comment out if not using interrupts)
  BSF
  BANKSEL PMADRL
  MOVF
        PMADRL, W
        PMADRL, F
  INCF
                  ;Increment address
  ANDLW 0x03
                  ;Indicates when sixteen words have been programmed
  SUBLW 0x03
                  ;Change value for different size write blocks
                  ;0x0F = 16 words
                  ;0x0B = 12 words
                  ;0x07 = 8 words
                  ;0x03 = 4 words
        STATUS, Z
                  ;Exit on a match,
  BTFSS
  GOTO
        LOOP
                  ;Continue if more data needs to be written
```

10.1 PORTA Registers

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 10-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 10-1 shows how to initialize PORTA.

Reading the PORTA register (Register 10-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The TRISA register (Register 10-2) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

10.1.1 WEAK PULL-UPS

Each of the PORTA pins has an individually configurable internal weak pull-up. Control bits WPUA<3:0> enable or disable each pull-up (see Register 10-5). Each weak pull-up is automatically turned off when the port pin is configured as an output. <u>All pull-ups are dis-</u> abled on a Power-on Reset by the WPUEN bit of the OPTION_REG register.

10.1.2 ANSELA REGISTER

The ANSELA register (Register 10-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

10.1.3 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 10-1.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 10-1.

Pin Name	Function Priority ⁽¹⁾
RA0	ICSPDAT
	CWG1A
	PWM1
	RA0
RA1	CWG1B
	PWM2
	CLC1
	RA1
RA2	NCO1
	CLKR
	RA2
RA3	None

TABLE 10-1: PORTA OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 15-2: ADRES: ADC RESULT REGISTER

bit 7-0 ADRES<7:0>: ADC Result Register bits 8-bit result

18.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Clear the PWMxDCH register and bits <7:6> of the PWMxDCL register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
- Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the PWMxOE bit of the PWMxCON register.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - **2:** For operation with other peripherals only, disable PWMx pin outputs.

FIGURE 21-1: CWG BLOCK DIAGRAM

21.9 Auto-shutdown Control

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software.

21.9.1 SHUTDOWN

The Shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

21.9.1.1 Software Generated Shutdown

Setting the GxASE bit of the CWGxCON2 register will force the CWG into the shutdown state.

When auto-restart is disabled, the shutdown state will persist as long as the GxASE bit is set.

When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the next rising edge event. See Figure 21-6.

21.9.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes high, the CWG outputs will immediately go to the selected override levels without software delay. Any combination of two input sources can be selected to cause a shutdown condition. The two sources are:

- LC10UT
- CWG1FLT

Shutdown inputs are selected using the GxASDS0 and GxASDS1 bits of the CWGxCON2 register. (Register 21-3).

Note:	Shutdown inputs are level sensitive, not
	edge sensitive. The shutdown state can-
	not be cleared, except by disabling auto-
	shutdown, as long as the shutdown input
	level persists.

21.10 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep, provided that the CWG module is enabled, the input source is active, and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, the CPU will go idle during Sleep, but the CWG will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer	
Syntax:	[label] CLRWDT	
Operands:	None	
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$	
Status Affected:	TO, PD	
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.	

CALL	Call Subroutine	
Syntax:	[<i>label</i>] CALL k	
Operands:	$0 \leq k \leq 2047$	
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>	
Status Affected:	None	
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.	

COMF	Complement f			
Syntax:	[<i>label</i>] COMF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(\overline{f}) \rightarrow (destination)$			
Status Affected:	Z			
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.			

CLRF	Clear f	
Syntax:	[label]CLRF f	
Operands:	$0 \leq f \leq 127$	
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	
Status Affected:	Z	
Description:	The contents of register 'f' are cleared and the Z bit is set.	

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)
D111	IDDP	Supply Current during Programming	—	—	10	mA	
D112		VDD for Bulk Erase	2.7	-	VDD max.	V	
D113	VPEW	VDD for Write or Row Erase	Vdd min.	—	VDD max.	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	-	—	1.0	mA	
D115	IDDPGM	Current on VDD during Erase/Write			5.0	mA	
		Program Flash Memory					
D121	EР	Cell Endurance	10K	—		E/W	-40°C to +85°C (Note 1)
D122	Vpr	VDD for Read	Vdd min.	-	VDD max.	V	
D123	TIW	Self-timed Write Cycle Time	_	2	2.5	ms	
D124	TRETD	Characteristic Retention	40	-	—	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	-	_	E/W	$0^{\circ}C \le TA \le 60$, lower byte last 128 addresses

Standard Operating Conditions (unless otherwise stated)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

24.5 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

1. TppS2ppS

2. TppS

Т				
F	Frequency	Т	Time	
Lowerd	case letters (pp) and their meanings:			
рр				
сс	CCP1	OSC	CLKIN	
ck	CLKR	rd	RD	
CS	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	ТОСКІ	
io	I/O PORT	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	case letters and their meanings:			
S				
F	Fall	Р	Period	
Н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	

FIGURE 24-4: LOAD CONDITIONS

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

can be found on the outer packaging for this package.

TABLE 27-1:8-LEAD 2x3 DFN (MC) TOP
MARKING

Part Number	Marking
PIC10F322(T)-I/MC	BAA
PIC10F322(T)-E/MC	BAB
PIC10F320(T)-I/MC	BAC
PIC10F320(T)-E/MC	BAD
PIC10LF322(T)-I/MC	BAF
PIC10LF322(T)-E/MC	BAG
PIC10LF320(T)-I/MC	BAH
PIC10LF320(T)-E/MC	BAJ

TABLE 27-2:6-LEAD SOT-23 (OT)PACKAGE TOP MARKING

Part Number	Marking
PIC10F322(T)-I/OT	LA/LJ
PIC10F322(T)-E/OT	LB/LK
PIC10F320(T)-I/OT	LC
PIC10F320(T)-E/OT	LD
PIC10LF322(T)-I/OT	LE
PIC10LF322(T)-E/OT	LF
PIC10LF320(T)-I/OT	LG
PIC10LF320(T)-E/OT	LH

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (07/2011)

Original release.

Revision B (02/2014)

Electrical Specifications update and new formats; Minor edits.

Revision C (05/2015)

Updated Figures 7-1 and 11-1. Update Sections 5.4.1, 24.1, and 24.3. Updated Tables 24-2 and 24-9.

Revision D (11/2015)

Updated the "eXtreme Low-Power (XLP) Features" section; added "Memory" section. Updated "Family Types" table; Updated Table 2-1, 24-5, 24-7, 24-9, 24-12 and 24-13; Updated Figure 7-1, 24-6 and section 15.2.5; Other minor corrections.