E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	896B (512 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	SOT-23-6
Supplier Device Package	SOT-23-6
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10f322-i-ot

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- the arithmetic status of the ALU
- · the Reset status
- the bank select bits for data memory (SRAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as `000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (see Section 23.0 "Instruction Set Summary").

- **Note 1:** Bits IRP and RP1 of the STATUS register are not used by the PIC10(L)F320 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C and DC bits</u> operate as a Borrow and Digit Borrow out bit, respectively, in subtraction.

3.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data memory protection are controlled independently. Internal access to the program memory and data memory are unaffected by any code protection setting.

3.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Word. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 3.4** "Write **Protection**" for more information.

3.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Word define the size of the program memory block that is protected.

3.5 User ID

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 3.6 "Device ID and Revision ID**" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC10(L)F320/322 Flash Memory Programming Specification" (DS41572).

5.11 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)

The PCON register bits are shown in Register 5-2.

5.12 Register Definition: Power Control

REGISTER 5-2: PCON: POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HC-q/u	R/W/HC-q/u
			_			POR	BOR
bit 7							bit 0

Legend:					
HC = Bit is cleared by hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition			

bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
bit 0	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) BOR: Brown-out Reset Status bit
	 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

TABLE 5-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	BORFS						BORRDY	30
PCON	_	_			_	_	POR	BOR	34
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	13
WDTCON	_	_	WDTPS<4:0>					SWDTEN	48

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

TABLE 5-6: SUMMARY OF CONFIGURATION WORD WITH RESETS

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		_	_	WRT	<1:0>	BORV	LPBOR	LVP	20
CONFIG	7:0	CP	MCLRE	PWRTE	WDTE	<1:0>	BORE	N<1:0>	FOSC	20

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Reset.

8.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- · Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

8.6 Watchdog Control Register

REGISTER 8-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
	_			WDTPS<4:0>			SWDTEN
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6 Unimplemented: Read as '0'							
bit 5-1	WDTPS<4:0>	-: Watchdog Tir	mer Period Se	elect bits ⁽¹⁾			
	Bit Value = P	Prescale Rate					
	11111 = Re	served. Results	s in minimum	interval (1:32)			
	•						
	•						
	10011 = Re	served. Results	s in minimum	interval (1:32)			
	10010 = 1.8	388608 (2 ²³) (1	Interval 256s	nominal)			
	10010 = 1.0 10001 = 1.4	194304 (2 ²²) (I	Interval 128s	nominal)			
	10000 = 1:2	097152 (2 ²¹) (I	Interval 64s n	ominal)			
	01111 = 1:1	048576 (2 ²⁰) (I	Interval 32s n	ominal)			
	01110 = 1:5	24288 (2 ¹⁹) (In	iterval 16s no	minal)			
	01101 = 1:2	.62144 (2 ¹⁸) (In	iterval 8s non	ninal)			
	01100 = 1:1	31072 (2 ¹⁷) (In	iterval 4s non	ninal)			
	01011 = 1:6	5536 (Interval	2s nominal) (Reset value)			
	01010 = 1:3	2768 (Interval	1s nominal)				
	01001 = 11	0384 (Interval	512 ms nomin	1ai)			
	01000 - 1.0 00111 = 1.4	.096 (Interval 1	28 ms nomina	al)			
	00110 = 1.2	048 (Interval 6	4 ms nominal)			
	00101 = 1:1	024 (Interval 3)	2 ms nominal)			
	00100 = 1:5	12 (Interval 16	ms nominal)	,			
	00011 = 1:2	56 (Interval 8 n	ns nominal)				
	00010 = 1:1	28 (Interval 4 n	ns nominal)				
	00001 = 1:6	4 (Interval 2 m	s nominal)				
	00000 = 1:3	2 (Interval 1 m	s nominal)				
bit 0	SWDTEN: So	oftware Enable/	Disable for W	atchdog Timer	bit		
	If WDTE<1:0>	<u>> = 00</u> :					
	This bit is igno	ored.					
	IT WDIE<1:0>	<u>> = 01</u> :					
		urned off					
		ameu oli > = 1x [.]					
	This bit is iand	ored.					

9.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 9-7: FLASH PROGRAM MEMORY MODIFY FLOWCHART

REGISTER 9-3: PMADRL: PROGRAM MEMORY ADDRESS LOW

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PMAD	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 PMADR<7:0>: Program Memory Read Address low bits

REGISTER 9-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	
—	—	—	_	—	—	—	PMADR8	
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	= Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-1 Unimplemented: Read as '0'

bit 0 PMADR8: Program Memory Read Address High bit

U-1 ⁽¹⁾	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-0/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpleme	nted bit, read as	s 'O'	
S = Bit can	only be set	x = Bit is unk	nown	-n/n = Value at F	POR and BOR/	/alue at all othe	er Resets
'1' = Bit is s	et	'0' = Bit is cle	ared	HC = Bit is clear	red by hardware	;	
bit 7	Unimplemen	ted: Read as	'1'				
bit 6	CFGS: Config	guration Select	t bit				
	1 = Access C	Configuration, I	Jser ID and De	evice ID Registers	5		
hit 5	U - Access F						
DIL 5	1 = Only the	addressed pro	only bites	write latch is load	ded/undated on	the next WR c	ommand
	0 = The addr	essed program	n memory write	e latch is loaded/	updated and a	write of all pro	gram memory
	write latc	hes will be init	iated on the ne	ext WR command			
bit 4	FREE: Progra	am Flash Eras	e Enable bit				
	1 = Performs	an erase ope	ration on the n	ext WR comman	d (hardware cle	ared upon com	pletion)
h :+ 0	0 = Performs	an write oper	ation on the ne	xt WR command			
DIT 3	1 = Condition	gram/Erase El indicates an	improper pro	aram or erase s	equence attem	nt or terminat	ion (hit is set
	automatio	cally on any se	et attempt (write	e '1') of the WR b	pit).		
	0 = The prog	ram or erase of	operation comp	leted normally.			
bit 2	WREN: Progr	am/Erase Ena	able bit				
	1 = Allows pr	ogram/erase o	cycles				
1.11.4		rogramming/e	rasing of progr	am Flash			
DIT 1	WR: Write Co	ntroi dit program Flag	sh program/era	se operation			
	The oper	a program Flas	ned and the bit	is cleared by ha	rdware once op	eration is com	olete.
	The WR	bit can only be	e set (not cleare	ed) in software.			
	0 = Program/	erase operation	on to the Flash	is complete and	inactive.		
bit 0	RD: Read Co	ntrol bit					
	1 = Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD b only be set (not cleared) in software.						he RD bit can
	0 = Does not	initiate a prog	ram Flash read	d.			
Note 1: Ս	Jnimplemented bit	t, read as '1'.					
2 : (The WRERR bit is WR = 1).	automatically	set by hardwar	e when a progran	n memory write	or erase opera	tion is started

REGISTER 9-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

10.2 Register Definitions: PORTA

REGISTER 10-1: PORTA: PORTA REGISTER

U-0	U-0	U-0	U-0	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x
—	—	—	—	RA3	RA2	RA1	RA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RA<3:0>: PORTA I/O Value bits (RA3 is read-only)

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from PORTx register return actual I/O pin values.

REGISTER 10-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	—	(1)	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'.
bit 3	Unimplemented: Read as '1'.
bit 2-0	TRISA<2:0>: RA<2:0> Port I/O Tri-State Control bits
	1 = Port output driver is disabled0 = Port output driver is enabled

Note 1: Unimplemented, read as '1'.

13.0 INTERNAL VOLTAGE REGULATOR (IVR)

The Internal Voltage Regulator (IVR), which provides operation above 3.6V is available on:

- PIC10F320
- PIC10F322

This circuit regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. When VDD approaches the regulated voltage, the IVR output automatically tracks the input voltage.

The IVR operates in one of three power modes based on user configuration and peripheral selection. The operating power modes are:

- High
- Low
- Power-Save Sleep mode

Power modes are selected automatically depending on the device operation, as shown in Table 13-1. Tracking mode is selected automatically when VDD drops below the safe operating voltage of the core.

Note:	IVR is disabled in Tracking mode, but will
	consume power. See Section 24.0
	"Electrical Specifications" for more
	information.

TABLE 13-1: IVR POWER MODES - REGULATED

VREGPM1 Bit	VREGPM1 Bit Sleep Mode Memory Bias Power Mode		IVR Power Mode
x No		EC Mode or INTOSC = 16 MHz (HP Bias)	High
		INTOSC = 1 to 8 MHz (MP Bias)	riigii
		INTOSC = 31 kHz to 500 kHz (LP Bias)	Low
0	Yes	Don't Care	Low
1		No HFINTOSC	Dower Sove(1)
	165	No Peripherals	FUWEI SAVE

Note 1: Forced to Low-Power mode by any of the following conditions:

- BOR is enabled
- HFINTOSC is an active peripheral source
- Self-write is active
- ADC is in an active conversion

15.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-3. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (511 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

sumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} (1 - \frac{1}{(2^{n+1}) - 1}) ; combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

As

$$Tc = -CHOLD(RIC + RSS + RS) ln(1/511)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) ln(0.001957)$
= $1.12\mu s$

Therefore:

$$TACQ = 2\mu s + 1.12\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.37\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7			·				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxG4D4T:	Gate 4 Data 4 1	rue (non-inve	rted) bit			
	1 = Icxd4T is	gated into lcxg	j 4				
	0 = Icxd4T is	not gated into	lcxg4				
bit 6	LCxG4D4N:	Gate 4 Data 4	Negated (inve	rted) bit			
	1 = lcxd4N is	gated into lcx	g4 Joya4				
h:+ C				ate al \ la it			
DIL 5	$1 = \log d3T$ is	acted into love		ned) bit			
	0 = lcxd3T is	not gated into ick	lcxa4				
bit 4	LCxG4D3N:	Gate 4 Data 3	Negated (inve	rted) bit			
	1 = Icxd3N is	gated into Icx	q4	,			
	0 = Icxd3N is	not gated into	lcxg4				
bit 3	LCxG4D2T: 0	Gate 4 Data 2 1	rue (non-inve	rted) bit			
	1 = Icxd2T is	gated into lcxg	j 4				
	0 = lcxd2T is	not gated into	lcxg4				
bit 2	LCxG4D2N:	Gate 4 Data 2	Negated (inver	rted) bit			
	1 = lcxd2N is	gated into lcx	g4 Jove4				
b :4 4		not gated into	icxg4	ate al \ la it			
DIT	LCXG4D11: 0	sate 4 Data 1	rue (non-inve	rted) bit			
	1 = 1cxd1T is 0 = 1cxd1T is	not gated into icx	lcxa4				
bit 0	LCxG4D1N:	Gate 4 Data 1	Negated (inve	rted) bit			
	1 = lcxd1N is	ated into lcxo	14				
	0 = Icxd1N is	not gated into	lcxg4				

REGISTER 19-8: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

21.1 Fundamental Operation

The CWG generates a two output complementary waveform from one of four selectable input sources.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 21.5 "Dead-Band Control"**. A typical operating waveform, with dead band, generated from a single input signal is shown in Figure 21-2.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 21.9 "Auto-shutdown Control"**.

21.2 Clock Source

The CWG module allows the following clock sources to be selected:

- · Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the G1CS0 bit of the CWGxCON0 register (Register 21-1).

21.3 Selectable Input Sources

The CWG can generate the complementary waveform for the following input sources:

- PWM1
- PWM2
- N1OUT
- LC1OUT

The input sources are selected using the GxIS<1:0> bits in the CWGxCON1 register (Register 21-2).

21.4 Output Control

Immediately after the CWG module is enabled, the complementary drive is configured with both CWGxA and CWGxB drives cleared.

21.4.1 OUTPUT ENABLES

Each CWG output pin has individual output enable control. Output enables are selected with the GxOEA and GxOEB bits of the CWGxCON0 register. When an output enable control is cleared, the module asserts no control over the pin. When an output enable is set, the override value or active PWM waveform is applied to the pin per the port priority selection. The output pin enables are dependent on the module enable bit, GxEN. When GxEN is cleared, CWG output enables and CWG drive levels have no effect.

21.4.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the GxPOLA and GxPOLB bits of the CWGxCON0 register.

21.5 Dead-Band Control

Dead-band control provides for non-overlapping output signals to prevent shoot-through current in power switches. The CWG contains two 6-bit dead-band counters. One dead-band counter is used for the rising edge of the input source control. The other is used for the falling edge of the input source control.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers (Register 21-4 and Register 21-5, respectively).

21.6 Rising Edge Dead Band

The rising edge dead band delays the turn-on of the CWGxA output from when the CWGxB output is turned off. The rising edge dead-band time starts when the rising edge of the input source signal goes true. When this happens, the CWGxB output is immediately turned off and the rising edge dead-band delay time starts. When the rising edge dead-band delay time is reached, the CWGxA output is turned on.

The CWGxDBR register sets the duration of the deadband interval on the rising edge of the input source signal. This duration is from 0 to 64 counts of dead band.

Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present.

If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

TABLE 23-2: INSTRUCTION SET

Mnemo	onic,	Description	Cyclos		14-Bit	Opcode)	Status	Notos
Opera	nds	Description	Cycles	MSb			LSb	Affected	NOLES
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1, 2, 3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	_	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1, 2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
		BIT-ORIENTED FILE REGIST		ATION	IS				
BCF	f. b	Bit Clear f	1	01	00bb	bfff	ffff		1.2
BSF	f. b	Bit Set f	1	01	01bb	bfff	ffff		1.2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	_	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

TABLE 24-9:RESET, WATCHDOG TIMER, POWER-UP TIMER AND BROWN-OUT RESET
PARAMETERS

Standa	Standard Operating Conditions (unless otherwise stated)										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
30	ТмсL	MCLR Pulse Width (low)	2 5	_	_	μs μs	VDD = 3.3-5V, -40°C to +85°C VDD = 3.3-5V				
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V 1:16 Prescaler used				
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	64	140	ms					
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		-	2.0	μS					
35	VBOR	Brown-out Reset Voltage ⁽¹⁾	2.55	2.70	2.85	V	BORV = 0				
			2.30	2.40	2.55	V	BORV = 1 (PIC10F320/322)				
			1.80	1.90	2.05	V	BORV = 1 (PIC10LF320/322)				
36*	VHYST	Brown-out Reset Hysteresis	0	25	50	mV	-40°C to +85°C				
37*	TBORDC	Brown-out Reset DC Response Time	1	3	5	μS	$VDD \leq VBOR$				
38	VLPBOR	Low-Power Brown-Out Reset Voltage	1.8	2.1	2.5	V	LPBOR = 1				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 24-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 24-10: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Standar	Standard Operating Conditions (unless otherwise stated)										
Param No.	Sym.	Characteris	tic	Min.	Тур†	Max.	Units	Conditions			
40*	Тт0Н	T0CKI High Pulse Width	No Prescaler	0.5 TCY + 20	—	—	ns				
			With Prescaler	10	—	—	ns				
41*	TT0L	T0CKI Low Pulse Width	No Prescaler	0.5 TCY + 20	—	—	ns				
			With Prescaler	10		—	ns				
42*	TT0P	T0CKI Period		Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (2, 4,, 256)			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

TABLE 24-11: 0	CONFIGURATION L	OGIC CELL ((CLC) C	HARACTERISTI	ICS
----------------	-----------------	-------------	---------	--------------	-----

Standard	Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
CLC01*	TCLCIN	CLC input time	—	7		ns				
CLC02*	TCLC	CLC module input to output propagation time	_	24	_	ns	VDD = 1.8V			
				12		ns	Vdd > 3.6V			
CLC03*	TCLCOUT	CLC output time Rise Time	_	OS18			(Note 1)			
		Fall Time	_	OS19			(Note 1)			
CLC04*	FCLCMAX	CLC maximum switching frequency	_	45		MHz				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1:See Table 24-8 for OS18 and OS19 rise and fall times.

27.2 Package Details

The following sections give the technical details of the packages.

6-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		6	
Pitch	е		0.95 BSC	
Outside Lead Pitch	e1		1.90 BSC	
Overall Height	A	0.90	-	1.45
Molded Package Thickness	A2	0.89	-	1.30
Standoff	A1	0.00	-	0.15
Overall Width	E	2.20	-	3.20
Molded Package Width	E1	1.30	-	1.80
Overall Length	D	2.70	-	3.10
Foot Length	L	0.10	-	0.60
Footprint	L1	0.35	-	0.80
Foot Angle	ф	0°	-	30°
Lead Thickness	С	0.08	_	0.26
Lead Width	b	0.20	_	0.51

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-028B

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	8			
Pitch	е	0.50 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	2.00 BSC			
Overall Width	Е	3.00 BSC			
Exposed Pad Length	D2	1.30	-	1.55	
Exposed Pad Width	E2	1.50	—	1.75	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	_	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123C