E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	448B (256 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10lf320-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.1 Power-On Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

5.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Word.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

5.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Word. The four operating modes are:

- BOR is always on
- BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 5-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Register 3-1.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 5-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Device Operation upon: Release of POR/Wake- up from Sleep		
11	х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)		
1.0	T.	Awake	Active	Weite for DOD ready (DODDDY = 1)		
10	X	Sleep	Disabled	Waits for BOR ready (BORRDY = 1)		
0.1	1	х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)		
UT	0	х	Disabled			
00	Х	х	Disabled	Begins immediately (BORRDY = x)		

TABLE 5-1: BOR OPERATING MODES

Note 1: In these specific cases, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

5.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Word are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

5.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Word are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

5.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Word are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device startup is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

5.11 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)

The PCON register bits are shown in Register 5-2.

5.12 Register Definition: Power Control

REGISTER 5-2: PCON: POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HC-q/u	R/W/HC-q/u
			_			POR	BOR
bit 7							bit 0

Legend:		
HC = Bit is cleared by har	dware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
bit 0	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) BOR: Brown-out Reset Status bit
	 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

TABLE 5-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	BORFS						BORRDY	30
PCON	_	_			_	_	POR	BOR	34
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	13
WDTCON	_	_	WDTPS<4:0>				SWDTEN	48	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

TABLE 5-6: SUMMARY OF CONFIGURATION WORD WITH RESETS

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		_	_	WRT	<1:0>	BORV	LPBOR	LVP	20
CONFIG	7:0	CP	MCLRE	PWRTE	E WDTE<1:0>		BOREN<1:0>		FOSC	20

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Reset.

6.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Context Saving during Interrupts

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 6-1.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF<2:0>		HFIOFR	_	LFIOFR	HFIOFS	26
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	13
WDTCON	—	—		١	VDTPS<4:0	>		SWDTEN	48

TABLE 8-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 8-4:	SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	WRT	<1:0>	BORV	LPBOR	LVP	20
CONFIG	7:0	CP	MCLRE	PWRTE	WDTE	<1:0>	BORE	N<1:0>	FOSC	20

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	
PIC10(L)F320	16	16	
PIC10(L)F322	10	10	

9.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FIGURE 9-1:

FLASH PROGRAM MEMORY READ FLOWCHART

EXAMPLE 9-1: FLASH PROGRAM MEMORY READ

* This code block will read 1 word of program

- * memory at the memory address:
- PROG_ADDR_HI: PROG_ADDR_LO
- * data will be returned in the variables;
- * PROG_DATA_HI, PROG_DATA_LO

BANKSEL MOVLW MOVWF MOVLW	PMADRL PROG_ADDR_LO PMADRL PROG_ADDR_HI	<pre>; not required on devices with 1 Bank of SFRs ; ; Store LSB of address ;</pre>
MOVWF	PMADRH	; Store MSB of address
BCF	PMCON1 CEGS	: Do not select Configuration Space
DCF	DMCON1 DD	: Initiate mod
BSF	PMCON1, RD	, IIIIIIale read
NOP		; Ignored (Figure 9-2)
NOP		; Ignored (Figure 9-2)
MOVF	PMDATL,W	; Get LSB of word
MOVWF	PROG_DATA_LO	; Store in user location
MOVF	PMDATH,W	; Get MSB of word
MOVWF	PROG_DATA_HI	; Store in user location

9.2.2 FLASH MEMORY UNLOCK SEQUENCE

Note: A delay of at least 100 μs is required after Power-On Reset (POR) before executing a Flash memory unlock sequence.

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 9-3:

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

9.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 9-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

FIGURE 9-4:

FLASH PROGRAM MEMORY ERASE FLOWCHART

9.5 Write Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 9-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

13.0 INTERNAL VOLTAGE REGULATOR (IVR)

The Internal Voltage Regulator (IVR), which provides operation above 3.6V is available on:

- PIC10F320
- PIC10F322

This circuit regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. When VDD approaches the regulated voltage, the IVR output automatically tracks the input voltage.

The IVR operates in one of three power modes based on user configuration and peripheral selection. The operating power modes are:

- High
- Low
- Power-Save Sleep mode

Power modes are selected automatically depending on the device operation, as shown in Table 13-1. Tracking mode is selected automatically when VDD drops below the safe operating voltage of the core.

Note:	IVR is disabled in Tracking mode, but will
	consume power. See Section 24.0
	"Electrical Specifications" for more
	information.

TABLE 13-1: IVR POWER MODES - REGULATED

VREGPM1 Bit	Sleep Mode	Memory Bias Power Mode	IVR Power Mode
		EC Mode or INTOSC = 16 MHz (HP Bias)	High
x	No	INTOSC = 1 to 8 MHz (MP Bias)	riigii
	-	INTOSC = 31 kHz to 500 kHz (LP Bias)	Low
0	Yes	Don't Care	Low
1	Vee	No HFINTOSC	Dower Sove(1)
	165	No Peripherals	FUWEI SAVE

Note 1: Forced to Low-Power mode by any of the following conditions:

- BOR is enabled
- HFINTOSC is an active peripheral source
- Self-write is active
- ADC is in an active conversion

REGISTER 18-2:	PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PWMxD	CH<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplen	nented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 **PWMxDCH<7:0>:** PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL Register.

REGISTER 18-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxD0	CL<7:6>	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **PWMxDCL<7:6>:** PWM Duty Cycle Least Significant bits These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH Register.

bit 5-0 Unimplemented: Read as '0'

TABLE 18-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA			—			ANSA2	ANSA1	ANSA0	70
LATA		-	_	-		LATA2	LATA1	LATA0	70
PORTA			_		RA3	RA2	RA1	RA0	69
PR2	Timer2 module Period Register						96		
PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL		_	_	-	102
PWM1DCH	PWM1DCH<7:0>						103		
PWM1DCL	PWM1D	CL<7:6>	—	_	_	_	_	-	103
PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL		_	_	-	102
PWM2DCH	PWM2DCH<7:0>						103		
PWM2DCL	PWM2DCL<7:6>				103				
T2CON	- TOUTPS<3:0> TMR2ON T2CKPS<1:0>						97		
TMR2	Timer2 module Register						96		
TRISA						TRISA2	TRISA1	TRISA0	69

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

21.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces a complementary waveform with dead-band delay from a selection of input sources.

The CWG module has the following features:

- · Selectable dead-band clock source control
- Selectable input sources
- Output enable control
- Output polarity control
- Dead-band control with Independent 6-bit rising and falling edge dead-band counters
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

REGISTER 21-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
_	_		CWGxDBR<5:0>					
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	inged	x = Bit is unknown -n/n = Value at POR and BOR/Value a				R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared q = Value depends on condition					

bit 7-6 Unimplemented: Read as '0'

bit 5-0	CWGxDBR<5:0>: Complementary Waveform Generator (CWGx) Rising Counts bits
	11 1111 = 63-64 counts of dead band
	11 1110 = 62-63 counts of dead band

- •
- •

00 0010 = 2-3 counts of dead band

00 0001 = 1-2 counts of dead band

00 0000 = 0 counts of dead band

REGISTER 21-5: CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			CWGxD	BF<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

Uninplemented. Read as a	bit 7-6	Unimplemented: Read as '0
--------------------------	---------	---------------------------

bit 5-0 CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling Counts bits

- 11 1111 = 63-64 counts of dead band
- 11 1110 = 62-63 counts of dead band
- •
- •
- 00 0010 = 2-3 counts of dead band
- 00 0001 = 1-2 counts of dead band
- 00 0000 = 0 counts of dead band. Dead-band generation is bypassed.

ADDLW	Add literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

23.2	Instruction	Descriptions
------	-------------	--------------

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W
Syntax:	[label] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
	Before Instruction
	REG1 = 1110 0110
	C = 0
	REGI = 1100 0110 M = 1100 1100
	C = 1

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBLW	Subtract W from literal			
Syntax:	[label] SU	JBLW k		
Operands:	$0 \le k \le 255$			
Operation:	$k - (W) \rightarrow (W)$			
Status Affected:	C, DC, Z			
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.			
	Result	Condition		
	C = 0	W > k		

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	W<3:0> ≤ k<3:0>

FIGURE 24-12: A/D CONVERSION TIMING (NORMAL MODE)

FIGURE 24-13: A/D CONVERSION TIMING (SLEEP MODE)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	$[X]^{(1)} - X /XX$ T Tape and Reel Temperature Package	XXX	Examples:
	Option Range		Tape and Reel, Industrial temperature, SOT-23 package
Device:	PIC10F320, PIC10LF320, PIC10F322, PIC10L	F322	b) PIC10F322 - I/P Industrial temperature PDIP package
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾		c) PIC10F322 - E/MC Extended temperature, DFN package
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)		
Package:	OT = SOT-23 P = PDIP MC = DFN		Note 1: Tape and Reel identifier only appears in the catalog part number description. This
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)		identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.