

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorPICCore Size8-BitSpeed16MHzConnectivity-PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O3Program Memory Size4488 (256 x 14)Program Memory TypeFLASHEEPROM Size-AtM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6Purchase URLhttps://www.exfl.com/product-detail/microchip-technology/pic10lf320t-e-ot	Details	
Core Size8-BitSpeed16MHzConnectivity-PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O3Program Memory Size448B (256 x 14)Program Memory TypeFLASHEEPROM Size-RAM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Product Status	Active
Speed16MHzConnectivity-PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O3Program Memory Size448B (256 x 14)Program Memory TypeFLASHEEPROM Size-RAM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Core Processor	PIC
Connectivity-PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O3Program Memory Size448B (256 x 14)Program Memory TypeFLASHEEPROM Size-RAM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Surplier Device PackageSOT-23-6	Core Size	8-Bit
PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O3Program Memory Size448B (256 x 14)Program Memory TypeFLASHEEPROM Size-RAM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6SOT-23-6SOT-23-6	Speed	16MHz
Number of I/O3Program Memory Size448B (256 x 14)Program Memory TypeFLASHEEPROM Size-RAM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Connectivity	-
Program Memory Size448B (256 x 14)Program Memory TypeFLASHEEPROM Size-RAM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Number of I/O	3
EEPROM Size-RAM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Program Memory Size	448B (256 x 14)
RAM Size64 x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	EEPROM Size	-
Data ConvertersA/D 3x8bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	RAM Size	64 x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Operating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Data Converters	A/D 3x8b
Mounting TypeSurface MountPackage / CaseSOT-23-6Supplier Device PackageSOT-23-6	Oscillator Type	Internal
Package / Case SOT-23-6 Supplier Device Package SOT-23-6	Operating Temperature	-40°C ~ 125°C (TA)
Supplier Device Package SOT-23-6	Mounting Type	Surface Mount
	Package / Case	SOT-23-6
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic10lf320t-e-ot	Supplier Device Package	SOT-23-6
	Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10lf320t-e-ot

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
Bank 0	(Continued)										
20h	PMADRL				PMA	ADR<7:0>				0000 0000	0000 0000
21h	PMADRH	—	_		_		_	_	PMADR8	0	(
22h	PMDATL				PMI	DAT<7:0>				xxxx xxxx	uuuu uuuu
23h	PMDATH	—	_		-	PMD	AT<13:8>			xx xxxx	uu uuuu
24h	PMCON1	—	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 0000	1000 q000
25h	PMCON2		Pro	ogram Mem	ory Control R	egister 2 (not	a physical reg	gister)		0000 0000	0000 0000
26h	CLKRCON	—	CLKROE	—	—	—	—	—	—	-0	-0
27h	NCO1ACCL				NCO1 Acc	cumulator <7:	0>			0000 0000	0000 0000
28h	NCO1ACCH				NCO1 Acc	umulator <15	:8>			0000 0000	0000 0000
29h	NCO1ACCU		_	_			NCO1 Accum	ulator <1916>		0000	0000
2Ah	NCO1INCL				NCO1 In	crement <7:0>	>			0000 0001	0000 0001
2Bh	NCO1INCH				NCO1 Inc	crement <15:8	>			0000 0000	0000 0000
2Ch	—	Unimpleme	nted				1		1	—	—
2Dh	NCO1CON	N1EN	N10E	N1OUT	N1POL		_	—	N1PFM	00000	00x00
2Eh	NCO1CLK		N1PWS<2:0>		—	—	—	N1CKS	6<1:0>	00000	00000
2Fh	Reserved				R	eserved			1	XXXX XXXX	uuuu uuuu
30h	WDTCON	—	—		1	WDTPS<4:0)>		SWDTEN	01 0110	01 0110
31h	CLC1CON	LC1EN	LC10E	LC10UT	LC1INTP	LC1INTN	L	C1MODE<2:0	>	00x0 - 000	00x0 -000
32h	CLC1SEL0	—	L	.C1D2S<2:0	>	—		LC1D1S<2:0>		-xxx -xxx	-uuu -uuu
33h	CLC1SEL1	—	L	.C1D4S<2:0	>	_		LC1D3S<2:0>		-xxx -xxx	-uuu -uuu
34h	CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
35h	CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuuu
36h	CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
37h	CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
38h	CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
39h	CWG1CON0	G1EN	G10EB	G10EA	G1POLB	G1POLA	—	—	G1CS0	0000 00	0000 00
3Ah	CWG1CON1	G1ASD	LB<1:0>	G1ASD	LA<1:0>	_	—	G1IS<	<1:0>	xxxxxx	uuuuuu
3Bh	CWG1CON2	G1ASE	G1ARSEN	-	—	_	_	G1ASDCLC1	G1ASDFLT	xxxx	uuuu
3Ch	CWG1DBR	—	—			CWG1	DBR<5:0>	•	•	xx xxxx	uu uuuu
3Dh	CWG1DBF	—	—			CWG1	DBF<5:0>			xx xxxx	uu uuuu
3Eh	VREGCON		_	_	_	_	_	VREGPM1	Reserved	01	01
3Fh	BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY	10q	uuu

SPECIAL FUNCTION REGISTER SUMMARY (BANK 0) (CONTINUED) TABLE 2-3

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

REGISTER 3-1: CONFIG: CONFIGURATION WORD (CONTINUED)

bit 5	PWRTE: Power-up Timer Enable bit ⁽¹⁾ 1 = PWRT disabled 0 = PWRT enabled
bit 4-3	WDTE<1:0>: Watchdog Timer Enable bit 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register 00 = WDT disabled
bit 2-1	BOREN<1:0>: Brown-out Reset Enable bits 11 = Brown-out Reset enabled; SBOREN bit is ignored 10 = Brown-out Reset enabled while running, disabled in Sleep; SBOREN bit is ignored 01 = Brown-out Reset controlled by the SBOREN bit in the BORCON register 00 = Brown-out Reset disabled; SBOREN bit is ignored
bit 0	FOSC: Oscillator Selection bit1 = EC on CLKIN pin0 = INTOSC oscillator I/O function available on CLKIN pin
Note 1:	Enabling Brown-out Reset does not automatically enable Power-up Timer.

- 2: Once enabled, code-protect can only be disabled by bulk erasing the device.
- **3:** See VBOR parameter for specific trip point voltages.

6.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 7.0 "Power-Down Mode (Sleep)" for more details.

6.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

6.5 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software.

Temporary holding registers W_TEMP and STATUS_TEMP should be placed in the last 16 bytes of GPR (see Table 1-2). This makes context save and restore operations simpler. The code shown in Example 6-1 can be used to:

- Store the W register
- · Store the STATUS register
- · Execute the ISR code
- Restore the Status (and Bank Select Bit register)
- · Restore the W register
- Note: These devices do not require saving the PCLATH. However, if computed GOTOS are used in both the ISR and the main code, the PCLATH must be saved and restored in the ISR.

EXAMPLE 6-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to TEMP register ;Swap status to be saved into W
MOLTHE		;Swaps are used because they do not affect the status bits
MOVWF :	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:(ISR)		;Insert user code here
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

16.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with Timer0. The prescaler assignment is controlled by the PSA bit of the OPTION_REG register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION REG register.

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

16.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the							
	processor from Sleep since the timer is							
	frozen during Sleep.							

16.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in **Section 24.0** "**Electrical Specifications**".

19.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR registers will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

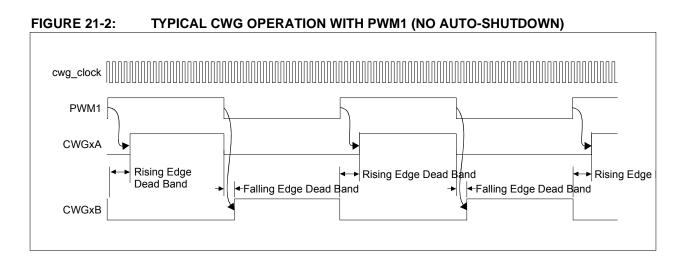
To fully enable the interrupt, set the following bits:

- LCxON bit of the CLCxCON register
- CLCxIE bit of the associated PIE registers
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

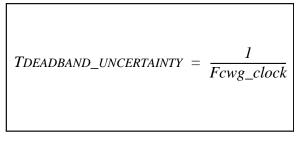
The CLCxIF bit of the associated PIR registers must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

19.3 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.


19.4 Operation During Sleep

The selection, gating, and logic functions are not affected by Sleep. Operation will continue provided that the source signals are also not affected by Sleep.


U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u				
_		LCxD4S<2:0>(1)	—	L	_CxD3S<2:0>(1)				
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
u = Bit is unchanged x = Bit is unknown				-n/n = Value	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is se	t	'0' = Bit is clea	ared								
bit 7	Unimpleme	ented: Read as '	0'								
bit 6-4	LCxD4S<2	LCxD4S<2:0>: Input Data 4 Selection Control bits ⁽¹⁾									
	111 = CLCxIN[7] is selected for lcxd4.										
	110 = CLCxIN[6] is selected for lcxd4.										
	101 = CLC	101 = CLCxIN[5] is selected for lcxd4									
	100 = CLC	xIN[4] is selected	d for lcxd4.								
		xIN[3] is selected									
		010 = CLCxIN[2] is selected for lcxd4.									
		001 = CLCxIN[1] is selected for lcxd4.									
	000 = CLC	xIN[0] is selected	d for lcxd4.								
bit 3	Unimpleme	ented: Read as '	0'								
bit 2-0	LCxD3S<2:0>: Input Data 3 Selection Control bits ⁽¹⁾										
	111 = CLC	xIN[7] is selected	d for lcxd3.								
	110 = CLC	110 = CLCxIN[6] is selected for lcxd3.									
	101 = CLC	101 = CLCxIN[5] is selected for lcxd3.									
	100 = CLC	xIN[4] is selected	d for lcxd3.								
	011 = CLC	xIN[3] is selected	d for lcxd3.								
	010 = CLC	xIN[2] is selected	d for Icxd3.								
	001 = CLC	xIN[1] is selected	d for lcxd3.								
	000 = CLC	xIN[0] is selected	d for lcxd3.								

REGISTER 19-4: CLCxSEL1: MULTIPLEXER DATA 3 AND 4 SELECT REGISTER

Note 1: See Table 19-1 for signal names associated with inputs.

EQUATION 21-1: DEAD-BAND DELAY TIME UNCERTAINTY

EXAMPLE 21-1: DEAD-BAND DELAY TIME UNCERTAINTY

$$Fcwg_clock = 16 MHz$$

Therefore:
$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$
$$= \frac{1}{16 MHz}$$
$$= 625 ns$$

21.9 Auto-shutdown Control

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software.

21.9.1 SHUTDOWN

The Shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

21.9.1.1 Software Generated Shutdown

Setting the GxASE bit of the CWGxCON2 register will force the CWG into the shutdown state.

When auto-restart is disabled, the shutdown state will persist as long as the GxASE bit is set.

When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the next rising edge event. See Figure 21-6.

21.9.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes high, the CWG outputs will immediately go to the selected override levels without software delay. Any combination of two input sources can be selected to cause a shutdown condition. The two sources are:

- LC10UT
- CWG1FLT

Shutdown inputs are selected using the GxASDS0 and GxASDS1 bits of the CWGxCON2 register. (Register 21-3).

Note:	Shutdown inputs are level sensitive, not
	edge sensitive. The shutdown state can-
	not be cleared, except by disabling auto-
	shutdown, as long as the shutdown input
	level persists.

21.10 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep, provided that the CWG module is enabled, the input source is active, and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, the CPU will go idle during Sleep, but the CWG will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

21.12 CWG Control Registers

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0				
GxEN	GxOEB	GxOEA	GxPOLB	GxPOLA	_	_	GxCS0				
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'					
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets				
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion					
bit 7	GxEN: CWG	x Enable bit									
		1 = Module is enabled									
	0 = Module i										
bit 6		GxOEB: CWGxB Output Enable bit									
		 CWGxB is available on appropriate I/O pin CWGxB is not available on appropriate I/O pin 									
bit 5				le l/O pin							
DIL 5		GxOEA: CWGxA Output Enable bit 1 = CWGxA is available on appropriate I/O pin									
		0 = CWGxA is available on appropriate I/O pin									
bit 4		NGxB Output F									
		1 = Output is inverted polarity									
	0 = Output is	s normal polarit	y								
bit 3	GxPOLA: CV	NGxA Output F	olarity bit								
		1 = Output is inverted polarity									
		s normal polarit	•								
bit 2-1	Unimplemented: Read as '0'										
bit 0		Gx Clock Source	e Select bit								
	1 = HFINTO	SC									

REGISTER 21-1: CWGxCON0: CWG CONTROL REGISTER 0

REGISTER 21-3: CWGxCON2: CWG CONTROL REGISTER 2

R/W/HC/HS-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
GxASE	GxARSEN	—	_	—	_	GxASDCLC1	GxASDFLT
bit 7							bit 0

Legend:		
HC = Bit is cleared by hard	lware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	 GxASE: Auto-Shutdown Event Status bit 1 = An Auto-Shutdown event has occurred. GxOEB/GxOEA Output Controls overridden, Outputs disabled. 0 = No Auto-Shutdown event has occurred, or an Auto-restart has occurred. GxOEB/GxOEA Output Controls enabled.
bit 6	GxARSEN: Auto-Restart Enable bit 1 = Auto-restart is enabled 0 = Auto-restart is disabled
bit 5-2	Unimplemented: Read as '0'
bit 1	GxASDCLC1: CWG Auto-shutdown Source Enable bit 1 1 = Shutdown when LC1OUT is high 0 = LC1OUT has no effect on shutdown
bit 0	GxASDFLT: CWG Auto-shutdown Source Enable bit 0 1 = <u>Shutdown</u> when CWG1FLT input is low 0 = CWG1FLT input has no effect on shutdown

REGISTER 21-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	_		CWGxDBR<5:0>						
bit 7		·					bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'			
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Val					R/Value at all c	ther Resets			
'1' = Bit is set '0' = Bit is cleared q = Value depends on condition									

bit 7-6 Unimplemented: Read as '0'

bit 5-0	CWGxDBR<5:0>: Complementary Waveform Generator (CWGx) Rising Counts bits
	11 1111 = 63-64 counts of dead band
	11 1110 = 62-63 counts of dead band
	•

- •
- ٠
- 00 0010 = 2-3 counts of dead band
- 00 0001 = 1-2 counts of dead band

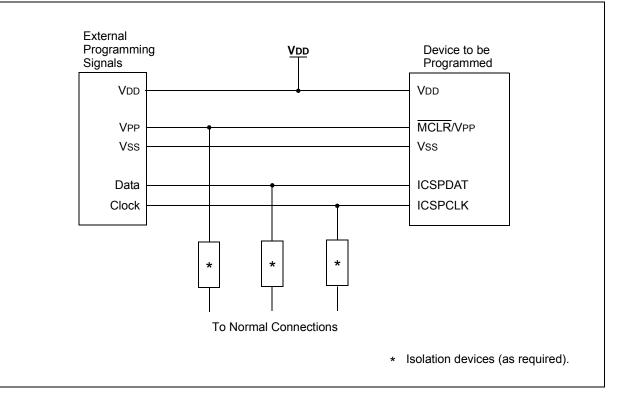
00 0000 = 0 counts of dead band

REGISTER 21-5: CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			CWGxD	BF<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'


bit 5-0 CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling Counts bits

- 11 1111 = 63-64 counts of dead band
- 11 1110 = 62-63 counts of dead band
- •
- •
- 00 0010 = 2-3 counts of dead band
- 00 0001 = 1-2 counts of dead band
- 00 0000 = 0 counts of dead band. Dead-band generation is bypassed.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 22-3 for more information.

FIGURE 22-3: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING

TABLE 23-2: INSTRUCTION SET

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode)	Status	Notes
		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1, 2, 3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	_	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1, 2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010		ffff	C, DC, Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110		ffff	-, -,	1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
		BIT-ORIENTED FILE F			NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1, 2
BSF	f, b	Bit Set f	1	01	01bb	bfff			1, 2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb		ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
	,	LITERAL AND CO	.,	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	_	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk			
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk		C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk		Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

MOVF	Move f				
Syntax:	[<i>label</i>] MOVF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(f) \rightarrow (dest)$				
Status Affected:	Z				
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since Status flag Z is affected.				
Words:	1				
Cycles:	1				
Example:	MOVF FSR, 0				
	After Instruction W = value in FSR register Z = 1				

MOVWF	Move W to f				
Syntax:	[<i>label</i>] MOVWF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$(W) \rightarrow (f)$				
Status Affected:	None				
Description:	Move data from W register to register 'f'.				
Words:	1				
Cycles:	1				
Example:	MOVW OPTION_REG F				
	Before Instruction $OPTION_REG = 0xFF$ W = 0x4F After Instruction $OPTION_REG = 0x4F$ W = 0x4F				

MOVLW	Move literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.				
Words:	1				
Cycles:	1				
Example:	MOVLW 0x5A				
	After Instruction W = 0x5A				

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

RLF	Rotate Left f through Carry				
Syntax:	[<i>label</i>] RLF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:					
Words: Cycles:	← C ← Register f ←				
	← C ← Register f ← 1				
Cycles:	Register f ← C ← Register f ← 1				
Cycles:	REG1 = 1110 0110				
Cycles:	Register f I 1 RLF REG1,0 Before Instruction REG1 = 1110 0110 C = 0				
Cycles:	Register f 1 1 RLF REG1,0 Before Instruction REG1 = C = 0 After Instruction				
Cycles:	Register f C Register f 1 1 1 RLF REG1,0 Before Instruction REG1 = 1110 0110 C = 0 After Instruction REG1 = 1110 0110 REG1 = 1110 0110				
Cycles:	Register f 1 1 RLF REG1,0 Before Instruction REG1 = C = 0 After Instruction				

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{W}DT \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

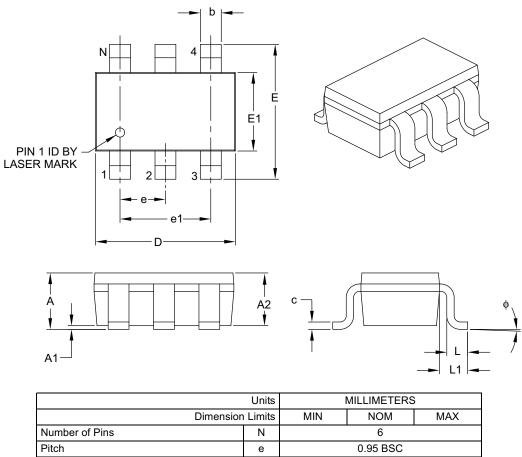
SUBLW	Subtract W from literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k - (W) \to (W)$				
Status Affected:	C, DC, Z				
Description:	complemen	ster is subtracted (2's t method) from the 8-bit e result is placed in the			
Result Co		Condition			
	C = 0	W > k			

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	W<3:0> ≤ k<3:0>

TABLE 27-1:8-LEAD 2x3 DFN (MC) TOP
MARKING

Part Number	Marking
PIC10F322(T)-I/MC	BAA
PIC10F322(T)-E/MC	BAB
PIC10F320(T)-I/MC	BAC
PIC10F320(T)-E/MC	BAD
PIC10LF322(T)-I/MC	BAF
PIC10LF322(T)-E/MC	BAG
PIC10LF320(T)-I/MC	BAH
PIC10LF320(T)-E/MC	BAJ

TABLE 27-2:6-LEAD SOT-23 (OT)PACKAGE TOP MARKING


Part Number	Marking
PIC10F322(T)-I/OT	LA/LJ
PIC10F322(T)-E/OT	LB/LK
PIC10F320(T)-I/OT	LC
PIC10F320(T)-E/OT	LD
PIC10LF322(T)-I/OT	LE
PIC10LF322(T)-E/OT	LF
PIC10LF320(T)-I/OT	LG
PIC10LF320(T)-E/OT	LH

27.2 Package Details

The following sections give the technical details of the packages.

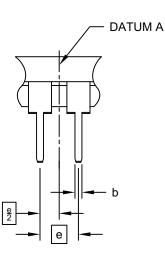
6-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

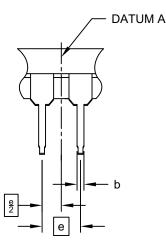
OTILIS				
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		6	
Pitch	е		0.95 BSC	
Outside Lead Pitch	e1	1.90 BSC		
Overall Height	А	0.90	-	1.45
Molded Package Thickness	A2	0.89	-	1.30
Standoff	A1	0.00	-	0.15
Overall Width	E	2.20	-	3.20
Molded Package Width	E1	1.30	-	1.80
Overall Length	D	2.70	-	3.10
Foot Length	L	0.10	-	0.60
Footprint	L1	0.35	-	0.80
Foot Angle	ф	0°	-	30°
Lead Thickness	С	0.08	-	0.26
Lead Width	b	0.20	-	0.51

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.


2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-028B

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-018D Sheet 2 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ X /XX XXX T T T T Tape and Reel Temperature Package Pattern Option Range	Examples: a) PIC10LF320T - I/OT Tape and Reel.
Device:	PIC10F320, PIC10LF320, PIC10F322, PIC10LF322	Industrial temperature, SOT-23 package b) PIC10F322 - I/P Industrial temperature PDIP package c) PIC10F322 - E/MC
Tape and Reel Option: Temperature Range:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾ I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	Extended temperature, DFN package
Package:	OT = SOT-23 P = PDIP MC = DFN	Note 1: Tape and Reel identifier only appears in the catalog part number description. This
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.