

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	448B (256 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	SOT-23-6
Supplier Device Package	SOT-23-6
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10lf320t-i-ot

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC10(L)F320/322

1.0 DEVICE OVERVIEW

The PIC10(L)F320/322 are described within this data sheet. They are available in 6/8-pin packages. Figure 1-1 shows a block diagram of the PIC10(L)F320/322 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1:DEVICE PERIPHERALSUMMARY

Peripheral		PIC10(L)F320	PIC10(L)F322
Analog-to-Digital Converter	(ADC)	•	•
Configurable Logic Cell (CL	•	•	
Complementary Wave Gene	•	•	
Fixed Voltage Reference (F	VR)	٠	•
Numerically Controlled Osci	illator (NCO)	٠	•
Temperature Indicator		٠	•
PWM Modules			
	PWM1	٠	•
	PWM2	•	•
Timers			
	Timer0	•	•
	Timer2	٠	•

5.4 Low-Power Brown-out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) is an essential part of the Reset subsystem. Refer to Figure 5-1 to see how the BOR interacts with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit ($\overline{\text{BOR}}$) is changed to indicate that a BOR Reset has occurred. The same bit is set for both the BOR and the LPBOR. Refer to Register 5-2.

5.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Word. When the device is erased, the LPBOR module defaults to enabled.

5.4.1.1 LPBOR Module Output

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. This signal is OR'd together with the Reset signal of the BOR module to provide the generic BOR signal which goes to the PCON register and to the power control block.

5.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE and the LVP bit of Configuration Word (Table 5-2).

TABLE 5-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

5.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

```
Note: A Reset does not drive the \overline{MCLR} pin low.
```

5.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control.

5.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 8.0** "**Watchdog Timer**" for more information.

5.7 Programming Mode ICSP Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

5.8 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of Configuration Word.

5.9 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See **Section 4.0 "Oscillator Module"** for more information.

The Power-up Timer runs independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 FOSC cycles (see Figure 5-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

6.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 register)

The INTCON and PIR1 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The ${\tt RETFIE}$ instruction exits the ISR by popping the previous address from the stack, and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

6.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 6-2 and **Section 6.3 "Interrupts During Sleep"** for more details.

9.2.2 FLASH MEMORY UNLOCK SEQUENCE

Note: A delay of at least 100 μs is required after Power-On Reset (POR) before executing a Flash memory unlock sequence.

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 9-3:

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

U-1 ⁽¹⁾	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-0/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpleme	nted bit, read as	s 'O'	
S = Bit can	only be set	x = Bit is unk	nown	-n/n = Value at F	POR and BOR/	/alue at all othe	er Resets
'1' = Bit is s	et	'0' = Bit is cle	ared	HC = Bit is clear	red by hardware	;	
bit 7	Unimplemen	ted: Read as	'1'				
bit 6	CFGS: Config	guration Select	t bit				
	1 = Access C	Configuration, I	Jser ID and De	evice ID Registers	5		
hit 5	U - Access F						
DIL 5	1 = Only the	addressed pro	only bites	write latch is load	ded/undated on	the next WR c	ommand
	0 = The addr	essed program	n memory write	e latch is loaded/	updated and a	write of all pro	gram memory
	write latc	hes will be init	iated on the ne	ext WR command			
bit 4	FREE: Progra	am Flash Eras	e Enable bit				
	1 = Performs	an erase ope	ration on the n	ext WR comman	d (hardware cle	ared upon com	pletion)
h :+ 0	0 = Performs	an write oper	ation on the ne	xt WR command			
DIT 3	1 = Condition	gram/Erase El indicates an	improper pro	aram or erase s	equence attem	nt or terminat	ion (hit is set
	automatio	cally on any se	et attempt (write	e '1') of the WR b	pit).		
	0 = The prog	ram or erase of	operation comp	leted normally.			
bit 2	WREN: Progr	am/Erase Ena	able bit				
	1 = Allows pr	ogram/erase o	cycles				
1.11.4		rogramming/e	rasing of progr	am Flash			
DIT 1	WR: Write Co	ntroi dit program Flag	sh program/era	se operation			
	The oper	ation is self-tir	ned and the bit	is cleared by ha	rdware once op	eration is com	olete.
	The WR	bit can only be	e set (not cleare	ed) in software.			
	0 = Program/	erase operation	on to the Flash	is complete and	inactive.		
bit 0	RD: Read Co	ntrol bit					
	1 = Initiates a	a program Fla: et (not cleared	sh read. Read	takes one cycle.	RD is cleared	in hardware. I	he RD bit can
	0 = Does not	initiate a prog	ram Flash read	d.			
Note 1: Ս	Jnimplemented bit	t, read as '1'.					
2 : (The WRERR bit is WR = 1).	automatically	set by hardwar	e when a progran	n memory write	or erase opera	tion is started

REGISTER 9-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

REGISTER 10-3: LATA: PORTA DATA LATCH REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u
_	—	—	—	_	LATA2	LATA1	LATA0
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other R			ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-3 Unimplemented: Read as '0'.

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from LATx register return register values, not I/O pin values.

REGISTER 10-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	_		—	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'.

bit 2-0 ANSA<2:0>: Analog Select between Analog or Digital Function on Pins RA<2:0>, respectively

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital Input buffer disabled.
- 0 = Digital I/O. Pin is assigned to port or Digital special function.
- **Note 1:** Setting a pin to an analog input automatically disables the digital input circuitry. Weak pull-ups, if available, are unaffected. The corresponding TRIS bit must be set to Input mode by the user in order to allow external control of the voltage on the pin.

PIC10(L)F320/322

REGISTER	10-5: WPUA	A: WEAK PUI	L-UP POR		R			
U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
—	-	_	_	WPUA3	WPUA2	WPUA1	WPUA0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable		W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is se	et	'0' = Bit is cle	ared					
bit 7-4	Unimplemen	ted: Read as '	0'.					
bit 3-0	WPUA<3:0>:	Weak Pull-up	PORTA Cont	rol bits				
	1 = Weak Pu	ll-up enabled ⁽¹⁾)					
0 = Weak Pull-up disabled.								

Note 1: Enabling weak pull-ups also requires that the WPUEN bit of the OPTION_REG register be cleared (Register 16-1).

12.3 FVR Control Registers

REGISTER 12-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	—	—	ADFV	R<1:0>
bit 7		•					bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value de	pends on condit	ion	
bit 7	FVREN: Fixed 1 = Fixed Vol 0 = Fixed Vol	d Voltage Refe Itage Referenc Itage Referenc	rence Enable e is enabled e is disabled	bit			
bit 6	FVRRDY: Fix 1 = Fixed Vol 0 = Fixed Vol	ed Voltage Rei Itage Referenc Itage Referenc	erence Ready e output is rea e output is not	/ Flag bit ⁽¹⁾ idy for use t ready or not e	enabled		
bit 5	TSEN: Temperat 1 = Temperat 0 = Temperat	erature Indicato ture Indicator is ture Indicator is	or Enable bit ⁽³⁾ s enabled s disabled)			
bit 4	TSRNG: Tem 1 = VOUT = V 0 = VOUT = V	perature Indica ′DD - 4V⊤ (High ′DD - 2V⊤ (Low	ator Range Se Range) Range)	lection bit ⁽³⁾			
bit 3-2	Unimplemen	ted: Read as '	C '				
bit 1-0	ADFVR<1:0> 11 = ADC Fix 10 = ADC Fix 01 = ADC Fix 00 = ADC Fix	: ADC Fixed V ed Voltage Re ed Voltage Re ed Voltage Re ed Voltage Re	oltage Referen ference Periph ference Periph ference Periph ference Periph	nce Selection I neral output is neral output is neral output is neral output is	bit 4x (4.096V) ⁽²⁾ 2x (2.048V) ⁽²⁾ 1x (1.024V) off.		
Note 1: F	VRRDY indicates	the true state	of the FVR.				

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 14.0 "Temperature Indicator Module" for additional information.

TABLE 12-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE
--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG			ADFVR<1:0>		78

Legend: Shaded cells are not used with the Fixed Voltage Reference.

17.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16, 1:64)
- Software programmable postscaler (1:1 to 1:16)

See Figure 17-1 for a block diagram of Timer2.

17.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:64. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle.
- The Timer2 postscaler is incremented.

The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register.

FIGURE 17-1: TIMER2 BLOCK DIAGRAM

The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by clearing the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.

18.2 PWM Register Definitions

REGISTER 18-1: PWMxCON: PWM CONTROL REGISTER

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	U-0	U-0	U-0	U-0
PWMxEN	PWMxOE	PWMxOUT	PWMxPOL	_		_	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PWMxEN: PV	VM Module En	able bit				
	1 = PWM mo	dule is enable	d				
	0 = PWM mo	dule is disable	d				
bit 6	PWMxOE: P\	NM Module Ou	itput Enable bi	t			
	1 = Output to	PWMx pin is e	enabled				
	0 = Output to	PWMx pin is a	disabled				
bit 5	PWMxOUT: F	PWM Module C	output Value bit	t			
bit 4	PWMxPOL: F	PWMx Output F	Polarity Select	bit			
	1 = PWM out	tput is active-lo	W.				
	0 = PWM out	tput is active-hi	gh.				
bit 3-0	Unimplemen	ted: Read as '	0'				

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
_		LCxD2S<2:0>(1)	—	L	.CxD1S<2:0>(1)
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-4	LCxD2S<2:0	0>: Input Data 2	Selection Co	ntrol bits ⁽¹⁾			
	111 = CLCx	(IN[7] is selected	d for Icxd2.				
	110 = CLCx	(IN[6] is selected	d for Icxd2.				
	101 = CLC×	(IN[5] is selected	d for Icxd2.				
	100 = CLCx	(IN[4] is selected	d for lcxd2.				
	011 = CLCx	(IN[3] is selected	d for lcxd2.				
	010 = CLCx	(IN[2] is selected	d for loxd2.				
	001 = CLCx		d for loved?				
hit 2		ntod: Road as '					
bit 2 0		Nedu as	∪ Soloction Co	ntrol hite(1)			
DIL 2-0							
	111 = CLCx	(IN[7] IS SELECTED	d for loved				
	110 = CLCx	(IN[6] is selected	d for level				
	101 = CLCX	(IN[0] is selected	d for levd1				
	$100 = CLC_{X}$	(IN[3] is selected	d for lexd1				
	011 = 010	(IN[2] is selected	d for lexd1				
	0.01 = CLCx	(IN[1] is selected	d for lcxd1				
	000 = CLCx	(IN[0] is selected	d for lcxd1.				

REGISTER 19-3: CLCxSEL0: MULTIPLEXER DATA 1 AND 2 SELECT REGISTER

Note 1: See Table 19-1 for signal names associated with inputs.

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—		LCxD4S<2:0>(1)	—	L	CxD3S<2:0>(1)
bit 7	<u>.</u>						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-4	LCxD4S<2:	0>: Input Data 4	Selection Co	ntrol bits ⁽¹⁾			
	111 = CLC	xIN[7] is selected	d for lcxd4.				
	110 = CLC	xIN[6] is selected	d for lcxd4.				
	101 = CLC	xIN[5] is selected	d for lcxd4				
	100 = CLC	xIN[4] is selected	d for lcxd4.				
	011 = CLC	xIN[3] is selected	d for lcxd4.				
	010 = CLC	xIN[2] is selected	d for lcxd4.				
	001 = CLC	xIN[1] is selected	d for lcxd4.				
	000 = CLC	xIN[0] is selected	d for lcxd4.				
bit 3	Unimpleme	nted: Read as '	0'				
bit 2-0	LCxD3S<2:	0>: Input Data 3	Selection Co	ntrol bits ⁽¹⁾			
	111 = CLC	xIN[7] is selected	d for lcxd3.				
	110 = CLC	xIN[6] is selected	d for lcxd3.				
	101 = CLC	xIN[5] is selected	d for lcxd3.				
	100 = CLC	xIN[4] is selected	d for lcxd3.				
	011 = CLC	xIN[3] is selected	d for lcxd3.				
	010 = CLC	xIN[2] is selected	d for lcxd3.				
	001 = CLC	xIN[1] is selected	d for lcxd3.				
	000 = CLC	xIN[0] is selected	d for lcxd3.				

REGISTER 19-4: CLCxSEL1: MULTIPLEXER DATA 3 AND 4 SELECT REGISTER

Note 1: See Table 19-1 for signal names associated with inputs.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
LCxG1D4T	LCxG1D4N	LCxG1D3T	LCxG1D3N	LCxG1D2T	LCxG1D2N	LCxG1D1T	LCxG1D1N				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7	LCxG1D4T: (Gate 1 Data 4 1	rue (non-inve	rted) bit							
	1 = lcxd4T is	gated into Icxo	j1								
h # 0	0 = 10000000000000000000000000000000000	not gated into	ICXG1								
DIT 6	LCXG1D4N:	Gate 1 Data 4	Negated (Inve	rted) bit							
	1 = 10004 N is 0 = 10004 N is	s gated into icx	lcxa1								
bit 5	LCxG1D3T:	Gate 1 Data 3 1	rue (non-inve	rted) bit							
	1 = Icxd3T is	gated into loxg1									
	0 = Icxd3T is	not gated into	lcxg1								
bit 4	LCxG1D3N: Gate 1 Data 3 Negated (inverted) bit										
	1 = Icxd3N is	gated into lcx	g1								
h # 0		s not gated into	ICXG1								
DIT 3	LCXG1D21: (Jate 1 Data 2 1	rue (non-inve	rted) bit							
	0 = lcxd2T is	not gated into	lcxq1								
bit 2	LCxG1D2N:	Gate 1 Data 2	Negated (inve	rted) bit							
	1 = Icxd2N is	gated into lcx	g1	,							
	0 = Icxd2N is	not gated into	lcxg1								
bit 1	LCxG1D1T: (Gate 1 Data 1 1	rue (non-inve	rted) bit							
	1 = lcxd1T is	gated into lcxg	j 1								
hit O		not gated into	ICX91								
	LCXG1D1N: (Gate 1 Data 1	ivegated (INVel	rteu) Dit							
	1 = 10x0 IN IS 0 = 10x01 N IS	s not gated into icx	lcxq1								
			- 3								

REGISTER 19-5: CLCxGLS0: GATE 1 LOGIC SELECT REGISTER

20.2 FIXED DUTY CYCLE (FDC) MODE

In Fixed Duty Cycle (FDC) mode, every time the Accumulator overflows, the output is toggled. This provides a 50% duty cycle, provided that the increment value remains constant. For more information, see Figure 20-2.

The FDC mode is selected by clearing the NxPFM bit in the NCOxCON register.

20.3 PULSE FREQUENCY (PF) MODE

In Pulse Frequency (PF) mode, every time the Accumulator overflows, the output becomes active for one or more clock periods. See **Section 20.3.1 "OUTPUT PULSE WIDTH CONTROL"** for more information. Once the clock period expires, the output returns to an inactive state. This provides a pulsed output.

The output becomes active on the rising clock edge immediately following the overflow event. For more information, see Figure 20-2.

The value of the active and inactive states depends on the Polarity bit, NxPOL in the NCOxCON register.

The PF mode is selected by setting the NxPFM bit in the NCOxCON register.

20.3.1 OUTPUT PULSE WIDTH CONTROL

When operating in PF mode, the active state of the output can vary in width by multiple clock periods. Various pulse widths are selected with the NxPWS<2:0> bits in the NCOxCLK register.

When the selected pulse width is greater than the Accumulator overflow time frame, then NCOx operation is undefined.

20.4 OUTPUT POLARITY CONTROL

The last stage in the NCOx module is the output polarity. The NxPOL bit in the NCOxCON register selects the output polarity. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

The NCOx output can be used internally by source code or other peripherals. This is done by reading the NxOUT (read-only) bit of the NCOxCON register.

22.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the Program Memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "*PIC10(L)F320/322 Flash Memory Programming Specification*" (DS41572).

22.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

22.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 5.4** "Low-Power **Brown-out Reset (LPBOR)**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

22.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6 connector) configuration. See Figure 22-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 22-2.

PIC10(L)F320/322

MOVF	Move f					
Syntax:	[label] MOVF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(f) \rightarrow (dest)$					
Status Affected:	Z					
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since Status flag Z is					
Words:	1					
Cycles:	1					
Example:	MOVF FSR, 0					
	After Instruction W = value in FSR register Z = 1					

MOVWF	Move W to f						
Syntax:	[label] MOVWF f						
Operands:	$0 \leq f \leq 127$						
Operation:	$(W) \rightarrow (f)$						
Status Affected:	None						
Description:	Move data from W register to register 'f'.						
Words:	1						
Cycles:	1						
Example:	MOVW OPTION_REG F						
	Before Instruction $OPTION_REG = 0xFF$ W = 0x4F After Instruction $OPTION_REG = 0x4F$ W = 0x4F						

MOVLW	Move literal to W							
Syntax:	[<i>label</i>] MOVLW k							
Operands:	$0 \le k \le 255$							
Operation:	$k \rightarrow (W)$							
Status Affected:	None							
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.							
Words:	1							
Cycles:	1							
Example:	MOVLW 0x5A							
	After Instruction							
	W = 0x5A							

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

TABLE 24-9:RESET, WATCHDOG TIMER, POWER-UP TIMER AND BROWN-OUT RESET
PARAMETERS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
30	ТмсL	MCLR Pulse Width (low)	2 5	_	_	μs μs	VDD = 3.3-5V, -40°C to +85°C VDD = 3.3-5V	
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V 1:16 Prescaler used	
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	64	140	ms		
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		-	2.0	μS		
35	VBOR	Brown-out Reset Voltage ⁽¹⁾	2.55	2.70	2.85	V	BORV = 0	
			2.30	2.40	2.55	V	BORV = 1 (PIC10F320/322)	
			1.80	1.90	2.05	V	BORV = 1 (PIC10LF320/322)	
36*	VHYST	Brown-out Reset Hysteresis	0	25	50	mV	-40°C to +85°C	
37*	TBORDC	Brown-out Reset DC Response Time	1	3	5	μS	$VDD \leq VBOR$	
38	VLPBOR	Low-Power Brown-Out Reset Voltage	1.8	2.1	2.5	V	LPBOR = 1	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 24-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 24-10: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteris	Characteristic		Тур†	Max.	Units	Conditions
40*	Тт0Н	T0CKI High Pulse Width	No Prescaler	0.5 TCY + 20	—	—	ns	
			With Prescaler	10	—	—	ns	
41*	TT0L	T0CKI Low Pulse Width	No Prescaler	0.5 TCY + 20	—	—	ns	
			With Prescaler	10		—	ns	
42*	TT0P	T0CKI Period		Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (2, 4,, 256)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

26.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

26.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15