

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	896B (512 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VFDFN Exposed Pad
Supplier Device Package	8-DFN (2x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10lf322-e-mc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	6
2.0	Memory Organization	9
3.0	Device Configuration	19
4.0	Oscillator Module	24
5.0	Resets	. 28
6.0	Interrupts	. 35
7.0	Power-Down Mode (Sleep)	44
8.0	Watchdog Timer	. 46
9.0	Flash Program Memory Control	50
10.0	I/O Port	67
11.0	Interrupt-On-Change	. 73
12.0	Fixed Voltage Reference (FVR)	77
13.0	Internal Voltage Regulator (IVR)	. 79
14.0	Temperature Indicator Module	81
15.0	Analog-to-Digital Converter (ADC) Module	. 83
16.0	Timer0 Module	. 93
17.0	Timer2 Module	. 96
18.0	Pulse-Width Modulation (PWM) Module	. 98
19.0	Configurable Logic Cell (CLC)	104
20.0	Numerically Controlled Oscillator (NCO) Module	119
21.0	Complementary Waveform Generator (CWG) Module	129
22.0	In-Circuit Serial Programming ™ (ICSP™)	144
23.0	Instruction Set Summary	147
24.0	Electrical Specifications	156
25.0	DC and AC Characteristics Graphs and Charts	176
26.0	Development Support	177
27.0	Packaging Information	181
Appe	ndix A: Data Sheet Revision History	189

2.2.3 DEVICE MEMORY MAPS

The memory maps for $\ensuremath{\text{PIC10}(L)F320/322}$ are as shown in Table 2-2.

TABLE 2-2: PIC10(L)F320/322 MEMORY MAP (BANK 0)

INDF ^(*)	00h	PMADRL	20h		40h		60h
TMR0	01h	PMADRH	21h				
PCL	02h	PMDATL	22h				
STATUS	03h	PMDATH	23h				
FSR	04h	PMCON1	24h				
PORTA	05h	PMCON2	25h				
TRISA	06h	CLKRCON	26h				
LATA	07h	NCO1ACCL	27h				
ANSELA	08h	NCO1ACCH	28h				
WPUA	09h	NCO1ACCU	29h				
PCLATH	0Ah	NCO1INCL	2Ah				
INTCON	0Bh	NCO1INCH	2Bh				
PIR1	0Ch	Reserved	2Ch				
PIE1	0Dh	NCO1CON	2Dh				
OPTION_REG	0Eh	NCO1CLK	2Eh	General		General	
PCON	0Fh	Reserved	2Fh	Purpose		Purpose	
OSCCON	10h	WDTCON	30h	registers		registers	
TMR2	11h	CLC1CON	31h	32 Bytes		32 Bytes	
PR2	12h	CLC1SEL1	32h				
T2CON	13h	CLC1SEL2	33h				
PWM1DCL	14h	CLC1POL	34h				
PWM1DCH	15h	CLC1GLS0	35h				
PWM1CON	16h	CLC1GLS1	36h				
PWM2DCL	17h	CLC1GLS2	37h				
PWM2DCH	18h	CLC1GLS3	38h				
PWM2CON	19h	CWG1CON0	39h				
IOCAP	1Ah	CWG1CON1	3Ah				
IOCAN	1Bh	CWG1CON2	3Bh				
IOCAF	1Ch	CWG1DBR	3Ch				
FVRCON	1Dh	CWG1DBF	3Dh				
ADRES	1Eh	VREGCON	3Eh				
ADCON	1Fh	BORCON	3Fh		5Fh		7Fh

Legend: = Unimplemented data memory locations, read as '0'.

* = Not a physical register.

4.6 External Clock Mode

4.6.1 EC MODE

The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the CLKIN input.

TABLE 4-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON		CLKROE		_		—	_	—	26
OSCCON	_		IRCF<2:0>		HFIOFR	_	LFIOFR	HFIOFS	26

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by ECWG.

TABLE 4-2: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	WRT	<1:0>	BORV	LPBOR	LVP	20
CONFIG	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>	BOREI	N<1:0>	FOSC	20

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

FIGURE 6	6-2: IN	NTERRUPT	LATENCY					
INTOSC	(), (), (), (), (), (), (), (), (), (),	∩ Q1 Q2 Q3 Q4	∏, ∏, ∏, ∏, ∏, ∏, ∏, ∏, ∏, ∏, ∏, ∏, ∏, ∏	∩ 	∩, ∩, ∩, ∩, ∩, ∩, ∩, ∩, ∩, ∩, ∩, ∩, ∩, ∩	////// 01 02 03 04	∩, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫,	∩ Q1 Q2 Q3 Q4
CLKR			Interru	pt Sampled Q1				
Interrupt								
GIE								
PC	PC-1	PC	PC	+1	0004h	0005h		()
Execute	1 Cycle Instr	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
Interrupt								
GIE								
PC	PC-1	PC	PC+1/FSR ADDR	New PC/ PC+1	0004h	0005h		
Execute-	2 Cycle Instr	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
				1				
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h)
Execute	3 Cycle Instr	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC	+2	0004h	0005h
Execute	3 Cycle Instr	uction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)

6.6 Interrupt Control Registers

REGISTER 6-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0		
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is se	et	'0' = Bit is clea	ared						
bit 7	GIE: Global Ir 1 = Enables a 0 = Disables a	nterrupt Enable III active interru all interrupts	bit pts						
bit 6	bit 6 PEIE: Peripheral Interrupt Enable bit 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts								
bit 5	TMR0IE: Time 1 = Enables tl 0 = Disables t	er0 Overflow Ir he Timer0 inter he Timer0 inte	iterrupt Enabl rupt rrupt	e bit					
bit 4	INTE: INT Ext 1 = Enables to 0 = Disables to	ternal Interrupt he INT externa the INT externa	Enable bit I interrupt al interrupt						
bit 3	IOCIE: Interru 1 = Enables tl 0 = Disables t	ipt-on-Change he interrupt-on- he interrupt-on	Interrupt Ena -change interr -change inter	ble bit rupt rupt					
bit 2	TMR0IF: Time 1 = TMR0 reg 0 = TMR0 reg	er0 Overflow In jister has overf jister did not ov	terrupt Flag b lowed ⁄erflow	pit					
bit 1	INTF: INT Ext 1 = The INT e 0 = The INT e	ternal Interrupt external interrup external interrup	Flag bit ot occurred ot did not occi	ur					
bit 0	IOCIF: Interru 1 = When at l 0 = None of th	ipt-on-Change east one of the ne interrupt-on-	Interrupt Flag interrupt-on- change pins	bit ⁽¹⁾ change pins ch have changed	anged state state				
Note 1: T h	he IOCIF Flag bit ave been cleared	is read-only ar by software.	nd cleared wh	en all the Inter	rupt-on-Change	e flags in the IO	CAF register		

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

8.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1ms. See **Section 24.0 "Electrical Specifications**" for the LFINTOSC tolerances.

8.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word. See Table 8-1.

8.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word are set to '11', the WDT is always on.

WDT protection is active during Sleep.

8.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

8.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 8-1 for more details.

TABLE 8-1: WDT OPERATING MODES

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
10	37	Awake	Active
10	X	Sleep	Disabled
0.1	1	~	Active
UI	0	~	Disabled
00	х	Х	Disabled

TABLE 8-2:WDT CLEARING CONDITIONS

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	
Exit Sleep	
Change INTOSC divider (IRCF bits)	Unaffected

8.3 Time-Out Period

The WDTPS bits of the WDTCON register set the timeout period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is 2 seconds.

8.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail
- WDT is disabled

See Table 8-2 for more information.

8.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See Section 2.0 "Memory Organization" and *Register 2-1* for more information.

9.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 9-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

FIGURE 9-4:

FLASH PROGRAM MEMORY ERASE FLOWCHART

12.3 FVR Control Registers

REGISTER 12-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	—	—	ADFV	R<1:0>
bit 7		•					bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value de	pends on condit	ion	
bit 7	FVREN: Fixed 1 = Fixed Vol 0 = Fixed Vol	d Voltage Refe Itage Referenc Itage Referenc	rence Enable e is enabled e is disabled	bit			
bit 6	FVRRDY: Fix 1 = Fixed Vol 0 = Fixed Vol	ed Voltage Rei Itage Referenc Itage Referenc	erence Ready e output is rea e output is not	/ Flag bit ⁽¹⁾ idy for use t ready or not e	enabled		
bit 5	TSEN: Temperat 1 = Temperat 0 = Temperat	erature Indicato ture Indicator is ture Indicator is	or Enable bit ⁽³⁾ s enabled s disabled)			
bit 4	TSRNG: Tem 1 = Vout = V 0 = Vout = V	perature Indica ′DD - 4V⊤ (High ′DD - 2V⊤ (Low	ator Range Se Range) Range)	lection bit ⁽³⁾			
bit 3-2	Unimplemen	ted: Read as '	C '				
bit 1-0	ADFVR<1:0> 11 = ADC Fix 10 = ADC Fix 01 = ADC Fix 00 = ADC Fix	: ADC Fixed V ed Voltage Re ed Voltage Re ed Voltage Re ed Voltage Re	oltage Referen ference Periph ference Periph ference Periph ference Periph	nce Selection I neral output is neral output is neral output is neral output is	bit 4x (4.096V) ⁽²⁾ 2x (2.048V) ⁽²⁾ 1x (1.024V) off.		
Note 1: F	VRRDY indicates	the true state	of the FVR.				

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 14.0 "Temperature Indicator Module" for additional information.

TABLE 12-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE
--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG			ADFVR<1:0>		78

Legend: Shaded cells are not used with the Fixed Voltage Reference.

18.1 PWMx Pin Configuration

All PWM outputs are multiplexed with the PORT data latch. The user must configure the pins as outputs by clearing the associated TRIS bits.

Note: Clearing the PWMxOE bit will relinquish control of the PWMx pin.

18.1.1 FUNDAMENTAL OPERATION

The PWM module produces a 10-bit resolution output. Timer2 and PR2 set the period of the PWM. The PWMxDCL and PWMxDCH registers configure the duty cycle. The period is common to all PWM modules, whereas the duty cycle is independently controlled.

Note: The Timer2 postscaler is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

All PWM outputs associated with Timer2 are set when TMR2 is cleared. Each PWMx is cleared when TMR2 is equal to the value specified in the corresponding PWMxDCH (8 MSb) and PWMxDCL<7:6> (2 LSb) registers. When the value is greater than or equal to PR2, the PWM output is never cleared (100% duty cycle).

Note: The PWMxDCH and PWMxDCL registers are double buffered. The buffers are updated when Timer2 matches PR2. Care should be taken to update both registers before the timer match occurs.

18.1.2 PWM OUTPUT POLARITY

The output polarity is inverted by setting the PWMxPOL bit of the PWMxCON register.

18.1.3 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 18-1.

EQUATION 18-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- · TMR2 is cleared
- The PWM output is active. (Exception: When the PWM duty cycle = 0%, the PWM output will remain inactive.)
- The PWMxDCH and PWMxDCL register values are latched into the buffers.

Note:	The Timer2 postscaler has no effect on the
	PWM operation.

18.1.4 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDCH and PWMxDCL register pair. The PWMxDCH register contains the eight MSbs and the PWMxDCL<7:6>, the two LSbs. The PWMxDCH and PWMxDCL registers can be written to at any time.

Equation 18-2 is used to calculate the PWM pulse width.

Equation 18-3 is used to calculate the PWM duty cycle ratio.

EQUATION 18-2: PULSE WIDTH

 $Pulse Width = (PWMxDCH:PWMxDCL<7:6>) \bullet$

TOSC • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

EQUATION 18-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(PWMxDCH:PWMxDCL<7:6>)}{4(PR2+1)}$

The 8-bit timer TMR2 register is concatenated with the two Least Significant bits of 1/Fosc, adjusted by the Timer2 prescaler to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

20.2 FIXED DUTY CYCLE (FDC) MODE

In Fixed Duty Cycle (FDC) mode, every time the Accumulator overflows, the output is toggled. This provides a 50% duty cycle, provided that the increment value remains constant. For more information, see Figure 20-2.

The FDC mode is selected by clearing the NxPFM bit in the NCOxCON register.

20.3 PULSE FREQUENCY (PF) MODE

In Pulse Frequency (PF) mode, every time the Accumulator overflows, the output becomes active for one or more clock periods. See **Section 20.3.1 "OUTPUT PULSE WIDTH CONTROL"** for more information. Once the clock period expires, the output returns to an inactive state. This provides a pulsed output.

The output becomes active on the rising clock edge immediately following the overflow event. For more information, see Figure 20-2.

The value of the active and inactive states depends on the Polarity bit, NxPOL in the NCOxCON register.

The PF mode is selected by setting the NxPFM bit in the NCOxCON register.

20.3.1 OUTPUT PULSE WIDTH CONTROL

When operating in PF mode, the active state of the output can vary in width by multiple clock periods. Various pulse widths are selected with the NxPWS<2:0> bits in the NCOxCLK register.

When the selected pulse width is greater than the Accumulator overflow time frame, then NCOx operation is undefined.

20.4 OUTPUT POLARITY CONTROL

The last stage in the NCOx module is the output polarity. The NxPOL bit in the NCOxCON register selects the output polarity. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

The NCOx output can be used internally by source code or other peripherals. This is done by reading the NxOUT (read-only) bit of the NCOxCON register.

REGISTER 20-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1			
NCOxINC<7:0>										
bit 7							bit 0			
Logondi										

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<7:0>: NCOx Increment, low byte

REGISTER 20-7: NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
NCOxINC<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<15:8>: NCOx Increment, high byte

21.1 Fundamental Operation

The CWG generates a two output complementary waveform from one of four selectable input sources.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 21.5 "Dead-Band Control"**. A typical operating waveform, with dead band, generated from a single input signal is shown in Figure 21-2.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 21.9 "Auto-shutdown Control"**.

21.2 Clock Source

The CWG module allows the following clock sources to be selected:

- · Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the G1CS0 bit of the CWGxCON0 register (Register 21-1).

21.3 Selectable Input Sources

The CWG can generate the complementary waveform for the following input sources:

- PWM1
- PWM2
- N1OUT
- LC1OUT

The input sources are selected using the GxIS<1:0> bits in the CWGxCON1 register (Register 21-2).

21.4 Output Control

Immediately after the CWG module is enabled, the complementary drive is configured with both CWGxA and CWGxB drives cleared.

21.4.1 OUTPUT ENABLES

Each CWG output pin has individual output enable control. Output enables are selected with the GxOEA and GxOEB bits of the CWGxCON0 register. When an output enable control is cleared, the module asserts no control over the pin. When an output enable is set, the override value or active PWM waveform is applied to the pin per the port priority selection. The output pin enables are dependent on the module enable bit, GxEN. When GxEN is cleared, CWG output enables and CWG drive levels have no effect.

21.4.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the GxPOLA and GxPOLB bits of the CWGxCON0 register.

21.5 Dead-Band Control

Dead-band control provides for non-overlapping output signals to prevent shoot-through current in power switches. The CWG contains two 6-bit dead-band counters. One dead-band counter is used for the rising edge of the input source control. The other is used for the falling edge of the input source control.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers (Register 21-4 and Register 21-5, respectively).

21.6 Rising Edge Dead Band

The rising edge dead band delays the turn-on of the CWGxA output from when the CWGxB output is turned off. The rising edge dead-band time starts when the rising edge of the input source signal goes true. When this happens, the CWGxB output is immediately turned off and the rising edge dead-band delay time starts. When the rising edge dead-band delay time is reached, the CWGxA output is turned on.

The CWGxDBR register sets the duration of the deadband interval on the rising edge of the input source signal. This duration is from 0 to 64 counts of dead band.

Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present.

If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

21.12 CWG Control Registers

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
GxEN	GxOEB	GxOEA	GxPOLB	GxPOLA	—	—	GxCS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7	GxEN: CWG	x Enable bit					
	1 = Module is	s enabled					
h:1 0			. 1. 1 1. 90				
DIT 6		GXB Output En	able bit	0 nin			
	0 = CWGxB	is not available	on appropriate in	te I/O pin			
bit 5	GxOEA: CW	GxA Output En	able bit	·			
	1 = CWGxA	is available on	appropriate I/	O pin			
	0 = CWGxA	is not available	on appropria	te I/O pin			
bit 4	GxPOLB: CV	VGxB Output P	olarity bit				
	1 = Output is	inverted polari	ty				
hit 2			y Iolority hit				
DIL 3		inverted polari	tv				
	0 = Output is	normal polarity	v V				
bit 2-1	Unimplemen	ted: Read as ')'				
bit 0	GxCS0: CWC	Gx Clock Sourc	e Select bit				
	1 = HFINTOS	SC					
	0 = Fosc						

REGISTER 21-1: CWGxCON0: CWG CONTROL REGISTER 0

REGISTER 21-3: CWGxCON2: CWG CONTROL REGISTER 2

R/W/HC/HS-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
GxASE	GxARSEN	_	_	_	_	GxASDCLC1	GxASDFLT
bit 7							bit 0

Legend:						
HC = Bit is cleared by hardw	are	HS = Bit is set by hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition				

utputs xOEA
XOEA

TABLE 24-4: I/O PORTS

Standar	d Operati	ng Conditions (unless otherwi	se stated)			-	
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D032		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D032A			—	_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 4.5V$
D033		with Schmitt Trigger buffer	—		0.2 VDD	V	$2.0V \leq V\text{DD} \leq 5.5V$
D034		MCLR	—		0.2 VDD	V	
	VIH	Input High Voltage					
		I/O ports:					
D040		with TTL buffer	2.0			V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	_	—	V	$1.8V \leq V\text{DD} \leq 4.5V$
D041		with Schmitt Trigger buffer	0.8 VDD	_	—	V	$2.0V \leq V\text{DD} \leq 5.5V$
D042		MCLR	0.8 VDD		—	V	
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at
				± 5	± 1000	nA	high-impedance @ 85°C 125°C
D061		MCLR	_	± 50	± 200	nA	$Vss \le VPIN \le VDD @ 85^{\circ}C$
	IPUR	Weak Pull-up Current					
D070*			25 25	100 140	200 300	μA	VDD = 3.3V, VPIN = VSS VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage					
D080		I/O ports	_	_	0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V
	Voн	Output High Voltage	•				
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

FIGURE 24-5: CLOCK TIMING

TABLE 24-6: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard	Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC		20	MHz	EC mode		
OS02	Tosc	External CLKIN Period ⁽¹⁾	31.25	_	×	ns	EC Oscillator mode		
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 24-7: OSCILLATOR PARAMETERS

Standar	Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions		
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±3% -8 to +4%	_	16.0 16.0		MHz MHz	$\begin{array}{l} 0^{\circ}C \leq TA \leq +85^{\circ}C, \ VDD \geq 2.3V \\ -40^{\circ}C \leq TA \leq 125^{\circ}C \end{array}$		
OS09	LFosc	Internal LFINTOSC Frequency	±25%	_	31	_	kHz			
OS10*	TWARM	HFINTOSC Wake-up from Sleep Start-up Time	_	_	5	8	μS			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

	TABLE 24-8:	CLKR AND I/O TIMING PARAMETI	ERS
--	-------------	-------------------------------------	-----

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_	_	70	ns	$3.3V \le V\text{DD} \le 5.0V$
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	$3.3V \le V\text{DD} \le 5.0V$
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	-	20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	_		ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)	50	—	—	ns	$3.3V \le V\text{DD} \le 5.0V$
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	—	ns	
OS18*	TioR	Port output rise time	_	40 15	72 32	ns	$\begin{array}{l} VDD = 1.8V \\ 3.3V \leq VDD \leq 5.0V \end{array}$
OS19*	TioF	Port output fall time	—	28 15	55 30	ns	$\begin{array}{l} VDD\texttt{D}\texttt{=}1.8V\\ 3.3V\leqVDD\leq5.0V \end{array}$
OS20*	Tinp	INT pin input high or low time	25	—		ns	
OS21*	Tioc	Interrupt-on-change new input level time	25	—	_	ns	

1	
	Cton double on continue Constitions (contrast of constants of the second
	Standard Unorating Conditions (IInjoss otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

27.2 Package Details

The following sections give the technical details of the packages.

6-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

				_			
	Dimension Limits	MIN	NOM	MAX			
Number of Pins	N	6					
Pitch	е	e 0.95 BSC					
Outside Lead Pitch	e1		1.90 BSC				
Overall Height	A	0.90	-	1.45			
Molded Package Thickness	A2	0.89	-	1.30			
Standoff	A1	0.00	-	0.15			
Overall Width	E	2.20	-	3.20			
Molded Package Width	E1	1.30	-	1.80			
Overall Length	D	2.70	-	3.10			
Foot Length	L	0.10	-	0.60			
Footprint	L1	0.35	-	0.80			
Foot Angle	ф	0°	-	30°			
Lead Thickness	С	0.08	_	0.26			
Lead Width	b	0.20	_	0.51			

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-028B

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	n Limits	MIN	MAX		
Number of Pins	Ν		8		
Pitch	е	0.50 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	2.00 BSC			
Overall Width	Е	3.00 BSC			
Exposed Pad Length	D2	1.30	-	1.55	
Exposed Pad Width	E2	1.50	—	1.75	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	_	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123C