

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	896B (512 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	SOT-23-6
Supplier Device Package	SOT-23-6
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10lf322-e-ot

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Word
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 2-1: DEVICE SIZES AND ADDRESSES

2.1	Program	Memory	Organization
A	i i ogi um	moniory	organization

The mid-range core has a 13-bit program counter capable of addressing 8K x 14 program memory space. This device family only implements up to 512 words of the 8K program memory space. Table 2-1 shows the memory sizes implemented for the PIC10(L)F320/322 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 2-1, and 2-2).

Device	Device Program Memory Space (Words)		High-Endurance Flash Memory Address Range ⁽¹⁾	
PIC10(L)F320	256	00FFh	0080h-00FFh	
PIC10(L)F322	512	01FFh	0180h-01FFh	

Note 1: High-endurance Flash applies to low byte of each address in the range.

PIC10(L)F320/322

4.0 OSCILLATOR MODULE

4.1 Overview

The oscillator module has a variety of clock sources and selection features that allow it to be used in a range of applications while maximizing performance and minimizing power consumption. Figure 4-1 illustrates a block diagram of the oscillator module.

The system can be configured to use an internal calibrated high-frequency oscillator as clock source, with a choice of selectable speeds via software.

Clock source modes are configured by the FOSC bit in Configuration Word (CONFIG).

- 1. EC oscillator from CLKIN.
- 2. INTOSC oscillator, CLKIN not enabled.

r							
U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0
—	ADIE	—	NCO1IE	CLC1IE	—	TMR2IE	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all ot	her Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	Unimplemen	ted: Read as 'o	כי				
bit 6	ADIE: A/D Co	onverter Interru	pt Enable bit				
	1 = Enables	the A/D conver	ter interrupt				
	0 = Disables	the A/D conve	rter interrupt				
bit 5	Unimplemen	ted: Read as 'o	כ'				
bit 4	NCO1IE: Nun	nerically Contro	olled Oscillato	r Interrupt Ena	ble bit		
	1 = Enables	the NCO overfl	ow interrupt				
hit 2		figurable Logia		nt Enchlo hit			
DIL 3	1 = Enables 1	the CLC interri	IDUCK INCENTU	pt Enable bit			
	0 = Disables	the CLC interre	upt				
bit 2	Unimplemen	ted: Read as 'o)'				
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt Ei	nable bit			
	1 = Enables the TMR2 to PR2 Match interrupt						
	0 = Disables	the TMR2 to P	R2 Match inte	errupt			
bit 0	Unimplemen	ted: Read as 'o	כ'				

REGISTER 6-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

7.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

FIGURE 7-1:

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

								1
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1	י י (Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKI	N(1) /~							
CLKOU	T ⁽²⁾	/	T.	OST(3)		\/	·	
latera at fl			، ـــــر			(4)	· · ·	
Interrupt fi	ag _I i		/ _	<u> </u>	Interrupt Laten	Cy ⁽⁴⁾	<u>-</u> >¦	1
GIE bit	, <u> </u>		Processor in	<u> </u>		<u> </u>	1 I	1
(INTCON r	eg.)		Sleep	1		· · · · · · · · · · · · · · · · · · ·	I I I I	1
		;	!_	- — ;-			· <u>- </u>	
P		(PC + 1	X PC + 2	2 X	PC + 2	PC + 2	X 0004h	0005h
Instructio Fetched	ⁿ { Inst(PC) = Sleep	Inst(PC + 1)		1 1 1	Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instructio Executed	n { Inst(PC - 1)	Sleep		:	Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
				-				
Note 1:	External clock. Higl	n, Medium, Low m	ode assumed.					
2:	CLKOUT is shown	here for timing ref	erence.					
3:	IOST= 1024 Tosc;	his delay does no	ot apply to EC, F	RC and I	NIOSC Oscillato	or modes or Two-	Speed Start-up (see	Section 5.4 "Low-
4.		n this case after w	.). Vako un the pro		calls the ISP at (execution will cont	inuo in lino
4:	$G = \pm assumed.$	in this case after w	vake-up, the pro	JUESSOI (00411. If GIE = 0,	, execution will cont	inue in-inie.

WAKE-UP FROM SLEEP THROUGH INTERRUPT

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	13
WDTCON	—	—		WDTPS<4:0>				SWDTEN	48

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-down mode.

8.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1ms. See **Section 24.0 "Electrical Specifications**" for the LFINTOSC tolerances.

8.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word. See Table 8-1.

8.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word are set to '11', the WDT is always on.

WDT protection is active during Sleep.

8.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

8.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 8-1 for more details.

TABLE 8-1: WDT OPERATING MODES

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
10	37	Awake	Active
10	X	Sleep	Disabled
0.1	1	~	Active
UI	0 X		Disabled
00	х	Х	Disabled

TABLE 8-2:WDT CLEARING CONDITIONS

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	
Exit Sleep	
Change INTOSC divider (IRCF bits)	Unaffected

8.3 Time-Out Period

The WDTPS bits of the WDTCON register set the timeout period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is 2 seconds.

8.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail
- WDT is disabled

See Table 8-2 for more information.

8.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See Section 2.0 "Memory Organization" and *Register 2-1* for more information.

9.2.2 FLASH MEMORY UNLOCK SEQUENCE

Note: A delay of at least 100 μs is required after Power-On Reset (POR) before executing a Flash memory unlock sequence.

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 9-3:

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

9.6 Flash Program Memory Control Registers

REGISTER 9-1: PMDATL: PROGRAM MEMORY DATA LOW

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PMDA	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	table bit U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkno	own	n -n/n = Value at POR and BOR/Value at all other			ther Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 **PMDAT<7:0>**: The value of the program memory word pointed to by PMADRH and PMADRL after a Program Memory Read command.

REGISTER 9-2: PMDATH: PROGRAM MEMORY DATA HIGH

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—		PMDAT<13:8>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PMDAT<13:8>**: The value of the program memory word pointed to by PMADRH and PMADRL after a Program Memory Read command.

REGISTER 9-3: PMADRL: PROGRAM MEMORY ADDRESS LOW

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PMAD	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	wn -n/n = Value at POR and BOR/Value at all othe			ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 PMADR<7:0>: Program Memory Read Address low bits

REGISTER 9-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	
—	—	—	_	—	—	—	PMADR8	
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-1 Unimplemented: Read as '0'

bit 0 PMADR8: Program Memory Read Address High bit

10.1 PORTA Registers

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 10-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 10-1 shows how to initialize PORTA.

Reading the PORTA register (Register 10-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The TRISA register (Register 10-2) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

10.1.1 WEAK PULL-UPS

Each of the PORTA pins has an individually configurable internal weak pull-up. Control bits WPUA<3:0> enable or disable each pull-up (see Register 10-5). Each weak pull-up is automatically turned off when the port pin is configured as an output. <u>All pull-ups are dis-</u> abled on a Power-on Reset by the WPUEN bit of the OPTION_REG register.

10.1.2 ANSELA REGISTER

The ANSELA register (Register 10-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

10.1.3 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 10-1.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 10-1.

Pin Name	Function Priority ⁽¹⁾
RA0	ICSPDAT
	CWG1A
	PWM1
	RA0
RA1	CWG1B
	PWM2
	CLC1
	RA1
RA2	NCO1
	CLKR
	RA2
RA3	None

TABLE 10-1: PORTA OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

12.3 FVR Control Registers

REGISTER 12-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	—	—	ADFV	R<1:0>
bit 7							
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value de	pends on condit	ion	
bit 7 FVREN: Fixed Voltage Reference Enable bit 1 = Fixed Voltage Reference is enabled 0 = Fixed Voltage Reference is disabled							
bit 6	FVRRDY: Fix 1 = Fixed Vol 0 = Fixed Vol	ed Voltage Rei Itage Referenc Itage Referenc	erence Ready e output is rea e output is not	/ Flag bit ⁽¹⁾ idy for use t ready or not e	enabled		
bit 5	TSEN: Temperat 1 = Temperat 0 = Temperat	erature Indicato ture Indicator is ture Indicator is	or Enable bit ⁽³⁾ s enabled s disabled)			
bit 4	TSRNG: Temperature Indicator Range Selection bit ⁽³⁾ 1 = VOUT = VDD - 4VT (High Range) 0 = VOUT = VDD - 2VT (Low Range)						
bit 3-2	Unimplemen	ted: Read as '	C '				
bit 1-0	1-0 ADFVR<1:0>: ADC Fixed Voltage Reference Selection bit 11 = ADC Fixed Voltage Reference Peripheral output is 4x (4.096V) ⁽²⁾ 10 = ADC Fixed Voltage Reference Peripheral output is 2x (2.048V) ⁽²⁾ 01 = ADC Fixed Voltage Reference Peripheral output is 1x (1.024V) 00 = ADC Fixed Voltage Reference Peripheral output is off.						
Note 1: F	1: FVRRDY indicates the true state of the FVR.						

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 14.0 "Temperature Indicator Module" for additional information.

TABLE 12-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE
--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG			ADFVF	R<1:0>	78

Legend: Shaded cells are not used with the Fixed Voltage Reference.

15.2.5 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUX register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 15.4 "A/D Acquisition Requirements".

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	LCxD4S<2:0>(1))	—	L	.CxD3S<2:0>(1)
bit 7	<u>.</u>						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-4	LCxD4S<2:	0>: Input Data 4	Selection Co	ntrol bits ⁽¹⁾			
	111 = CLC	xIN[7] is selected	d for lcxd4.				
	110 = CLC	xIN[6] is selected	d for lcxd4.				
	101 = CLC	xIN[5] is selected	d for lcxd4				
	100 = CLC	xIN[4] is selected	d for lcxd4.				
	011 = CLC	xIN[3] is selected	d for lcxd4.				
	010 = CLC	xIN[2] is selected	d for lcxd4.				
	001 = CLC	xIN[1] is selected	d for lcxd4.				
	000 = CLC	xIN[0] is selected	d for lcxd4.				
bit 3	Unimpleme	ented: Read as '	0'				
bit 2-0	LCxD3S<2:	0>: Input Data 3	Selection Co	ntrol bits ⁽¹⁾			
	111 = CLC	xIN[7] is selected	d for lcxd3.				
	110 = CLC	xIN[6] is selected	d for lcxd3.				
	101 = CLC	xIN[5] is selected	d for lcxd3.				
	100 = CLC	xIN[4] is selected	d for lcxd3.				
	011 = CLC	xIN[3] is selected	d for lcxd3.				
	010 = CLC	xIN[2] is selected	d for Icxd3.				
	001 = CLC	xIN[1] is selected	d for lcxd3.				
	000 = CLCxIN[0] is selected for lcxd3.						

REGISTER 19-4: CLCxSEL1: MULTIPLEXER DATA 3 AND 4 SELECT REGISTER

Note 1: See Table 19-1 for signal names associated with inputs.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG2D4T	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG2D4T: (Gate 2 Data 4 1	rue (non-inve	rted) bit			
	1 = Icxd4T is	gated into lcxg	12				
	0 = lcxd4T is	not gated into	lcxg2				
bit 6	LCxG2D4N:	Gate 2 Data 4	Negated (inver	rted) bit			
	1 = Icxd4N is	gated into lcx	J2 Jeva2				
bit 5		Cate 2 Data 3 1	True (non-inve	rted) hit			
bit 5	1 = lcxd3T is	dated into loxo	12 (11011-111VC)	neu) bit			
	0 = lcxd3T is	not gated into	lcxg2				
bit 4	LCxG2D3N:	Gate 2 Data 3	Negated (inver	rted) bit			
	1 = Icxd3N is	gated into Icx	g2				
	0 = Icxd3N is	not gated into	lcxg2				
bit 3	LCxG2D2T: (Gate 2 Data 2 1	rue (non-inve	rted) bit			
	1 = lcxd2T is	gated into long	2 ava2				
h it 0	0 = 100021 is		icxyz	ato al hait			
DIL 2	$1 = \log d2N$ is	Gale 2 Dala 2 I	vegated (inver	ted) bit			
	1 = 10x0211 is 0 = 10x021 is	not gated into icx	lcxa2				
bit 1	I CxG2D1T: Gate 2 Data 1 True (non-inverted) bit						
	1 = lcxd1T is gated into lcxg2						
	0 = Icxd1T is not gated into Icxg2						
bit 0	LCxG2D1N:	Gate 2 Data 1 I	Negated (inver	rted) bit			
	1 = lcxd1N is	gated into lcx	g2				
	0 = Icxd1N is	not gated into	lcxg2				

REGISTER 19-6: CLCxGLS1: GATE 2 LOGIC SELECT REGISTER

20.8 NCOx Control Registers

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
NxEN	NxOE	NxOUT	NxPOL	_	_	—	NxPFM
bit 7			•		-	1	bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, read as	s 'O'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	/alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	red				
bit 7	NXEN: NCOX E	Enable bit					
	1 = NCOx mod	ule is enabled					
		ule is disabled					
DIT 6	NXOE: NCOX $($	Jutput Enable bi	t				
	0 = NCOx outp	ut pin is disabled	ł				
bit 5	NxOUT: NCOx	Output bit					
	1 = NCOx outp	ut is high					
	0 = NCOx outp	ut is low					
bit 4	bit 4 NxPOL: NCOx Polarity bit						
	1 = NCOx outp 0 = NCOx outp	ut signal is active	e-low (inverted)	rted)			
hit 3-1		d. Read as '0'					
DIT U	NXMFM: NGOX Pulse Frequency mode bit 1 = NGOX operates in Pulse Frequency mode						

REGISTER 20-1: NCOxCON: NCOx CONTROL REGISTER

0 = NCOx operates in Fixed Duty Cycle mode

REGISTER 20-2: NCOxCLK: NCOx INPUT CLOCK CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
	NxPWS<2:0>(1,2)		—	—	—	NxCK	S<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	NxPWS<2:0>: NCOx Output Pulse Width Select bits ^(1, 2)
	111 = 128 NCOx clock periods
	110 = 64 NCOx clock periods
	101 = 32 NCOx clock periods
	100 = 16 NCOx clock periods
	011 = 8 NCOx clock periods
	010 = 4 NCOx clock periods
	001 = 2 NCOx clock periods
	000 = 1 NCOx clock periods
bit 4-2	Unimplemented: Read as '0'
bit 1-0	NxCKS<1:0>: NCOx Clock Source Select bits
	11 = LC10UT
	10 = HFINTOSC (16 MHz)
	01 = FOSC
	00 = NCO1CLK pin
Noto 1:	NVPWS applies only when operating in Pulse Frequency mode

Note 1: NxPWS applies only when operating in Pulse Frequency mode.

2: If NCOx pulse width is greater than NCOx overflow period, operation is undefined.

21.7 Falling Edge Dead Band

The falling edge dead band delays the turn-on of the CWGxB output from when the CWGxA output is turned off. The falling edge dead-band time starts when the falling edge of the input source goes true. When this happens, the CWGxA output is immediately turned off and the falling edge dead-band delay time starts. When the falling edge dead-band delay time is reached, the CWGxB output is turned on.

The CWGxDBF register sets the duration of the deadband interval on the falling edge of the input source signal. This duration is from 0 to 64 counts of dead band.

Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present.

If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

Refer to Figure 21-3 and Figure 21-4 for examples.

21.8 Dead-Band Uncertainty

When the rising and falling edges of the input source triggers the dead-band counters, the input may be asynchronous. This will create some uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 21-1 for more detail.

PIC10(L)F320/322

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INT- CON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

RETLW	Return with literal in W			
Syntax:	[<i>label</i>] RETLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$			
Status Affected:	None			
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.			
Words:	1			
Cycles:	2			
Example:	CALL TABLE;W contains ;table offset ;value			
TABLE	• •			
	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ;End of table			
DONE				
	Before Instruction $W = 0x07$			
	After Instruction W = value of k8			
RETURN	Return from Subroutine			
Syntax:	[label] RETURN			
Operands:	None			
Operation:	$TOS \rightarrow PC$			
Status Affected:	None			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruc- tion.			

27.2 Package Details

The following sections give the technical details of the packages.

6-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		_		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	6		
Pitch	е	0.95 BSC		
Outside Lead Pitch	e1	1.90 BSC		
Overall Height	A	0.90	-	1.45
Molded Package Thickness	A2	0.89	-	1.30
Standoff	A1	0.00	-	0.15
Overall Width	E	2.20	-	3.20
Molded Package Width	E1	1.30	-	1.80
Overall Length	D	2.70	-	3.10
Foot Length	L	0.10	-	0.60
Footprint	L1	0.35	-	0.80
Foot Angle	ф	0°	-	30°
Lead Thickness	С	0.08	_	0.26
Lead Width	b	0.20	_	0.51

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-028B

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

END VIEW

Microchip Technology Drawing No. C04-018D Sheet 1 of 2