
Microchip Technology - PIC10LF322-I/MC Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 16MHz

Connectivity -

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 3

Program Memory Size 896B (512 x 14)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 3x8b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 8-VFDFN Exposed Pad

Supplier Device Package 8-DFN (2x3)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic10lf322-i-mc

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic10lf322-i-mc-4399052
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC10(L)F320/322
FIGURE 1-1: PIC10(L)F320/322 BLOCK DIAGRAM

PORTA

Note 1: See applicable chapters for more information on peripherals.

CPU

Program
Flash Memory

RAM

Timing
Generation

INTRC
Oscillator

MCLR

Figure 2-1

CLKIN

CLKR

ADC
8-Bit

FVR
Temp.

Indicator

Timer2Timer0

PWM1 PWM2 NCO CLC CWG
 2011-2015 Microchip Technology Inc. DS40001585D-page 7

PIC10(L)F320/322
2.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

• Program Memory

- Configuration Word

- Device ID

- User ID

- Flash Program Memory

• Data Memory

- Core Registers

- Special Function Registers

- General Purpose RAM

- Common RAM

The following features are associated with access and
control of program memory and data memory:

• PCL and PCLATH

• Stack

• Indirect Addressing

2.1 Program Memory Organization

The mid-range core has a 13-bit program counter
capable of addressing 8K x 14 program memory space.
This device family only implements up to 512 words of
the 8K program memory space. Table 2-1 shows the
memory sizes implemented for the PIC10(L)F320/322
family. Accessing a location above these boundaries will
cause a wrap-around within the implemented memory
space. The Reset vector is at 0000h and the interrupt
vector is at 0004h (see Figures 2-1, and 2-2).

TABLE 2-1: DEVICE SIZES AND ADDRESSES

Device
Program Memory

Space (Words)
Last Program Memory

Address
High-Endurance Flash

Memory Address Range (1)

PIC10(L)F320 256 00FFh 0080h-00FFh

PIC10(L)F322 512 01FFh 0180h-01FFh

Note 1: High-endurance Flash applies to low byte of each address in the range.
 2011-2015 Microchip Technology Inc. DS40001585D-page 9

PIC10(L)F320/322
2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The high byte (PC<12:8>) is not directly
readable or writable and comes from PCLATH. On any
Reset, the PC is cleared. Figure 2-3 shows the two
situations for the loading of the PC. The upper example
in Figure 2-3 shows how the PC is loaded on a write to
PCL (PCLATH<4:0>  PCH). The lower example in
Figure 2-3 shows how the PC is loaded during a CALL or
GOTO instruction (PCLATH<4:3>  PCH).

FIGURE 2-3: LOADING OF PC IN
DIFFERENT SITUATIONS

2.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the
destination simultaneously causes the Program
Counter PC<12:8> bits (PCH) to be replaced by the
contents of the PCLATH register. This allows the entire
contents of the program counter to be changed by
writing the desired upper five bits to the PCLATH
register. When the lower eight bits are written to the
PCL register, all 13 bits of the program counter will
change to the values contained in the PCLATH register
and those being written to the PCL register.

A computed GOTO is accomplished by adding an offset
to the program counter (ADDWF PCL). Care should be
exercised when jumping into a look-up table or
program branch table (computed GOTO) by modifying
the PCL register. Assuming that PCLATH is set to the
table start address, if the table length is greater than
255 instructions or if the lower eight bits of the memory
address rolls over from 0xFF to 0x00 in the middle of
the table, then PCLATH must be incremented for each
address rollover that occurs between the table
beginning and the target location within the table.

For more information refer to Application Note AN556,
“Implementing a Table Read” (DS00556).

2.3.2 STACK

All devices have an 8-level x 13-bit wide hardware
stack (see Figure 2-1). The stack space is not part of
either program or data space and the Stack Pointer is
not readable or writable. The PC is PUSHed onto the
stack when a CALL instruction is executed or an inter-
rupt causes a branch. The stack is POPed in the event
of a RETURN, RETLW or a RETFIE instruction
execution. PCLATH is not affected by a PUSH or POP
operation.

The stack operates as a circular buffer. This means that
after the stack has been PUSHed eight times, the ninth
push overwrites the value that was stored from the first
push. The tenth push overwrites the second push (and
so on).

2.4 Indirect Addressing, INDF and
FSR Registers

The INDF register is not a physical register. Addressing
the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF
register. Any instruction using the INDF register
actually accesses data pointed to by the File Select
Register (FSR). Reading INDF itself indirectly will
produce 00h. Writing to the INDF register indirectly
results in a no operation (although Status bits may be
affected). An effective 9-bit address is obtained by
concatenating the 8-bit FSR and the IRP bit of the
STATUS register, as shown in Figure 2-4.

A simple program to clear RAM location 40h-7Fh using
indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: INDIRECT ADDRESSING

PC

12 8 7 0

5
PCLATH<4:0>

PCLATH

Instruction with

ALU Result

GOTO, CALL

OPCODE <10:0>

8

PC

12 11 10 0

11PCLATH<4:3>

PCH PCL

8 7

2

PCLATH

PCH PCL

PCL as
Destination

Note 1: There are no Status bits to indicate Stack
Overflow or Stack Underflow conditions.

2: There are no instructions/mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, RETURN, RETLW and RETFIE
instructions or the vectoring to an
interrupt address.

MOVLW 0x40 ;initialize pointer
MOVWF FSR ;to RAM

NEXT CLRF INDF ;clear INDF register
INCF FSR ;inc pointer
BTFSS FSR,7 ;all done?
GOTO NEXT ;no clear next

CONTINUE ;yes continue
 2011-2015 Microchip Technology Inc. DS40001585D-page 17

PIC10(L)F320/322
3.3 Code Protection

Code protection allows the device to be protected from
unauthorized access. Program memory protection and
data memory protection are controlled independently.
Internal access to the program memory and data
memory are unaffected by any code protection setting.

3.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from
external reads and writes by the CP bit in Configuration
Word. When CP = 0, external reads and writes of
program memory are inhibited and a read will return all
‘0’s. The CPU can continue to read program memory,
regardless of the protection bit settings. Writing the
program memory is dependent upon the write
protection setting. See Section 3.4 “Write
Protection” for more information.

3.4 Write Protection

Write protection allows the device to be protected from
unintended self-writes. Applications, such as boot
loader software, can be protected while allowing other
regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Word define the
size of the program memory block that is protected.

3.5 User ID

Four memory locations (2000h-2003h) are designated
as ID locations where the user can store checksum or
other code identification numbers. These locations are
readable and writable during normal execution. See
Section 3.6 “Device ID and Revision ID” for more
information on accessing these memory locations. For
more information on checksum calculation, see the
“PIC10(L)F320/322 Flash Memory Programming
Specification” (DS41572).
DS40001585D-page 22  2011-2015 Microchip Technology Inc.

PIC10(L)F320/322
3.6 Device ID and Revision ID

The memory location 2006h is where the Device ID and
Revision ID are stored. The upper nine bits hold the
Device ID. The lower five bits hold the Revision ID. See
Section 9.4 “User ID, Device ID and Configuration
Word Access” for more information on accessing
these memory locations.

Development tools, such as device programmers and
debuggers, may be used to read the Device ID and
Revision ID.

3.7 Register Definitions: Device and Revision

REGISTER 3-2: DEVID: DEVICE ID REGISTER(1)

R R R R R R

DEV<8:3>

bit 13 bit 8

R R R R R R R R

DEV<2:0> REV<4:0>

bit 7 bit 0

Legend:

R = Readable bit

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 13-5 DEV<8:0>: Device ID bits

bit 4-0 REV<4:0>: Revision ID bits

These bits are used to identify the revision.

Note 1: This location cannot be written.

Device
DEVID<13:0> Values

DEV<8:0> REV<4:0>

PIC10F320 10 1001 101 x xxxx

PIC10LF320 10 1001 111 x xxxx

PIC10F322 10 1001 100 x xxxx

PIC10LF322 10 1001 110 x xxxx
 2011-2015 Microchip Technology Inc. DS40001585D-page 23

PIC10(L)F320/322
5.0 RESETS

There are multiple ways to reset this device:

• Power-On Reset (POR)

• Brown-Out Reset (BOR)

• Low-Power Brown-Out Reset (LPBOR)

• MCLR Reset

• WDT Reset

• Programming mode exit

To allow VDD to stabilize, an optional Power-up Timer
can be enabled to extend the Reset time after a BOR
or POR event.

A simplified block diagram of the On-Chip Reset Circuit
is shown in Figure 5-1.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Note 1: See Table 5-1 for BOR active conditions.

Device
Reset

Power-on
Reset

WDT
Time-out

Brown-out
Reset

LPBOR
Reset

ICSP™ Programming Mode Exit

MCLRE

Sleep

BOR
Active(1)

PWRTE

LFINTOSC

VDD

PWRTR
Done
DS40001585D-page 28  2011-2015 Microchip Technology Inc.

PIC10(L)F320/322
6.1 Operation

Interrupts are disabled upon any device Reset. They
are enabled by setting the following bits:

• GIE bit of the INTCON register

• Interrupt Enable bit(s) for the specific interrupt
event(s)

• PEIE bit of the INTCON register (if the Interrupt
Enable bit of the interrupt event is contained in the
PIE1 register)

The INTCON and PIR1 registers record individual inter-
rupts via interrupt flag bits. Interrupt flag bits will be set,
regardless of the status of the GIE, PEIE and individual
interrupt enable bits.

The following events happen when an interrupt event
occurs while the GIE bit is set:

• Current prefetched instruction is flushed

• GIE bit is cleared

• Current Program Counter (PC) is pushed onto the
stack

• PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR)
should determine the source of the interrupt by polling
the interrupt flag bits. The interrupt flag bits must be
cleared before exiting the ISR to avoid repeated
interrupts. Because the GIE bit is cleared, any interrupt
that occurs while executing the ISR will be recorded
through its interrupt flag, but will not cause the
processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the
previous address from the stack, and setting the GIE
bit.

For additional information on a specific interrupt’s
operation, refer to its peripheral chapter.

6.2 Interrupt Latency

Interrupt latency is defined as the time from when the
interrupt event occurs to the time code execution at the
interrupt vector begins. The latency for synchronous
interrupts is three or four instruction cycles. For
asynchronous interrupts, the latency is three to five
instruction cycles, depending on when the interrupt
occurs. See Figure 6-2 and Section 6.3 “Interrupts
During Sleep” for more details.

Note 1: Individual interrupt flag bits are set,
regardless of the state of any other
enable bits.

2: All interrupts will be ignored while the GIE
bit is cleared. Any interrupt occurring
while the GIE bit is clear will be serviced
when the GIE bit is set again.
DS40001585D-page 36  2011-2015 Microchip Technology Inc.

PIC10(L)F320/322
FIGURE 6-2: INTERRUPT LATENCY

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

INTOSC

CLKR

PC 0004h 0005hPC

Inst(0004h)NOP

GIE

Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4

1 Cycle Instruction at PC

PC

Inst(0004h)NOP2 Cycle Instruction at PC

FSR ADDR PC+1 PC+2 0004h 0005hPC

Inst(0004h)NOP

GIE

PCPC-1

3 Cycle Instruction at PC

Execute

Interrupt

Inst(PC)

Interrupt Sampled
during Q1

Inst(PC)

PC-1 PC+1

NOP

PC
New PC/

PC+1
0005hPC-1

PC+1/FSR
ADDR

0004h

NOP

Interrupt

GIE

Interrupt

INST(PC) NOPNOP

FSR ADDR PC+1 PC+2 0004h 0005hPC

Inst(0004h)NOP

GIE

PCPC-1

3 Cycle Instruction at PC

Interrupt

INST(PC) NOPNOP NOP

Inst(0005h)

Execute

Execute

Execute
 2011-2015 Microchip Technology Inc. DS40001585D-page 37

PIC10(L)F320/322
9.2.2 FLASH MEMORY UNLOCK
SEQUENCE

The unlock sequence is a mechanism that protects the
Flash program memory from unintended self-write pro-
gramming or erasing. The sequence must be executed
and completed without interruption to successfully
complete any of the following operations:

• Row Erase

• Load program memory write latches

• Write of program memory write latches to
program memory

• Write of program memory write latches to User
IDs

The unlock sequence consists of the following steps:

1. Write 55h to PMCON2

2. Write AAh to PMCON2

3. Set the WR bit in PMCON1

4. NOP instruction

5. NOP instruction

Once the WR bit is set, the processor will always force
two NOP instructions. When an Erase Row or Program
Row operation is being performed, the processor will stall
internal operations (typical 2 ms), until the operation is
complete and then resume with the next instruction.
When the operation is loading the program memory write
latches, the processor will always force the two NOP
instructions and continue uninterrupted with the next
instruction.

Since the unlock sequence must not be interrupted,
global interrupts should be disabled prior to the unlock
sequence and re-enabled after the unlock sequence is
completed.

FIGURE 9-3: FLASH PROGRAM
MEMORY UNLOCK
SEQUENCE FLOWCHART

Note: A delay of at least 100 s is required after
Power-On Reset (POR) before executing
a Flash memory unlock sequence.

Write 055h to
PMCON2

Start
Unlock Sequence

Write 0AAh to
PMCON2

Initiate
Write or Erase operation

(WR = 1)

Instruction Fetched ignored
NOP execution forced

End
 Unlock Sequence

Instruction Fetched ignored
NOP execution forced
 2011-2015 Microchip Technology Inc. DS40001585D-page 53

PIC10(L)F320/322
9.2.4 WRITING TO FLASH PROGRAM
MEMORY

Program memory is programmed using the following
steps:

1. Load the address in PMADRH:PMADRL of the
row to be programmed.

2. Load each write latch with data.

3. Initiate a programming operation.

4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be
written must be erased or previously unwritten.
Program memory can only be erased one row at a time.
No automatic erase occurs upon the initiation of the
write.

Program memory can be written one or more words at
a time. The maximum number of words written at one
time is equal to the number of write latches. See
Figure 9-5 (row writes to program memory with 16 write
latches) for more details.

The write latches are aligned to the Flash row address
boundary defined by the upper ten bits of
PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>)
with the lower five bits of PMADRL, (PMADRL<4:0>)
determining the write latch being loaded. Write opera-
tions do not cross these boundaries. At the completion
of a program memory write operation, the data in the
write latches is reset to contain 0x3FFF.

The following steps should be completed to load the
write latches and program a row of program memory.
These steps are divided into two parts. First, each write
latch is loaded with data from the PMDATH:PMDATL
using the unlock sequence with LWLO = 1. When the
last word to be loaded into the write latch is ready, the
LWLO bit is cleared and the unlock sequence
executed. This initiates the programming operation,
writing all the latches into Flash program memory.

1. Set the WREN bit of the PMCON1 register.

2. Clear the CFGS bit of the PMCON1 register.

3. Set the LWLO bit of the PMCON1 register.
When the LWLO bit of the PMCON1 register is
‘1’, the write sequence will only load the write
latches and will not initiate the write to Flash
program memory.

4. Load the PMADRH:PMADRL register pair with
the address of the location to be written.

5. Load the PMDATH:PMDATL register pair with
the program memory data to be written.

6. Execute the unlock sequence (Section 9.2.2
“Flash Memory Unlock Sequence”). The write
latch is now loaded.

7. Increment the PMADRH:PMADRL register pair
to point to the next location.

8. Repeat steps 5 through 7 until all but the last
write latch has been loaded.

9. Clear the LWLO bit of the PMCON1 register.
When the LWLO bit of the PMCON1 register is
‘0’, the write sequence will initiate the write to
Flash program memory.

10. Load the PMDATH:PMDATL register pair with
the program memory data to be written.

11. Execute the unlock sequence (Section 9.2.2
“Flash Memory Unlock Sequence”). The
entire program memory latch content is now
written to Flash program memory.

An example of the complete write sequence is shown in
Example 9-3. The initial address is loaded into the
PMADRH:PMADRL register pair; the data is loaded
using indirect addressing.

Note: The special unlock sequence is required
to load a write latch with data or initiate a
Flash programming operation. If the
unlock sequence is interrupted, writing to
the latches or program memory will not be
initiated.

Note: The program memory write latches are
reset to the blank state (0x3FFF) at the
completion of every write or erase
operation. As a result, it is not necessary
to load all the program memory write
latches. Unloaded latches will remain in
the blank state.
DS40001585D-page 56  2011-2015 Microchip Technology Inc.

PIC10(L)F320/322

REGISTER 9-3: PMADRL: PROGRAM MEMORY ADDRESS LOW

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

PMADR<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PMADR<7:0>: Program Memory Read Address low bits

REGISTER 9-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0

— — — — — — — PMADR8

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-1 Unimplemented: Read as ‘0’

bit 0 PMADR8: Program Memory Read Address High bit
DS40001585D-page 64  2011-2015 Microchip Technology Inc.

PIC10(L)F320/322
TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register
on Page

ANSELA — — — — — ANSA2 ANSA1 ANSA0 70

IOCAF — — — — IOCAF3 IOCAF2 IOCAF1 IOCAF0 76

IOCAN — — — — IOCAN3 IOCAN2 IOCAN1 IOCAN0 75

IOCAP — — — — IOCAP3 IOCAP2 IOCAP1 IOCAP0 75

LATA — — — — — LATA2 LATA1 LATA0 70

PORTA — — — — RA3 RA2 RA1 RA0 69

TRISA — — — — —(1) TRISA2 TRISA1 TRISA0 69

WPUA — — — — WPUA3 WPUA2 WPUA1 WPUA0 71

Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by
PORTA.

Note 1: Unimplemented, read as ‘1’.
DS40001585D-page 72  2011-2015 Microchip Technology Inc.

PIC10(L)F320/322
11.0 INTERRUPT-ON-CHANGE

The PORTA pins can be configured to operate as
Interrupt-On-Change (IOC) pins. An interrupt can be
generated by detecting a signal that has either a rising
edge or a falling edge. Any individual PORTA pin, or
combination of PORTA pins, can be configured to
generate an interrupt. The Interrupt-on-change module
has the following features:

• Interrupt-on-Change enable (Master Switch)

• Individual pin configuration

• Rising and falling edge detection

• Individual pin interrupt flags

Figure 11-1 is a block diagram of the IOC module.

11.1 Enabling the Module

To allow individual PORTA pins to generate an interrupt,
the IOCIE bit of the INTCON register must be set. If the
IOCIE bit is disabled, the edge detection on the pin will
still occur, but an interrupt will not be generated.

11.2 Individual Pin Configuration

For each PORTA pin, a rising edge detector and a falling
edge detector are present. To enable a pin to detect a
rising edge, the associated IOCAPx bit of the IOCAP
register is set. To enable a pin to detect a falling edge,
the associated IOCANx bit of the IOCAN register is set.

A pin can be configured to detect rising and falling
edges simultaneously by setting both the IOCAPx bit
and the IOCANx bit of the IOCAP and IOCAN registers,
respectively.

11.3 Interrupt Flags

The IOCAFx bits located in the IOCAF register are
status flags that correspond to the interrupt-on-change
pins of PORTA. If an expected edge is detected on an
appropriately enabled pin, then the status flag for that pin
will be set, and an interrupt will be generated if the IOCIE
bit is set. The IOCIF bit of the INTCON register reflects
the status of all IOCAFx bits.

11.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx bits), can be
cleared by resetting them to zero. If another edge is
detected during this clearing operation, the associated
status flag will be set at the end of the sequence,
regardless of the value actually being written.

In order to ensure that no detected edge is lost while
clearing flags, only AND operations masking out known
changed bits should be performed. The following
sequence is an example of what should be performed.

EXAMPLE 11-1: CLEARING INTERRUPT
FLAGS

11.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake
the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCAF
register will be updated prior to the first instruction
executed out of Sleep.

MOVLW 0xff
XORWF IOCAF, W
ANDWF IOCAF, F
 2011-2015 Microchip Technology Inc. DS40001585D-page 73

PIC10(L)F320/322

REGISTER 16-1: OPTION_REG: OPTION REGISTER

R/W-1/u R/W-1/u R/W-1/u R/W-1/u R/W-1/u R/W-1/u R/W-1/u R/W-1/u

WPUEN(1) INTEDG T0CS T0SE PSA PS<2:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 WPUEN: Weak Pull-up Enable bit(1)

1 = Weak pull-ups are disabled
0 = Weak pull-ups are enabled by individual PORT latch values

bit 6 INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of INT pin
0 = Interrupt on falling edge of INT pin

bit 5 T0CS: TMR0 Clock Source Select bit

1 = Transition on T0CKI pin
0 = Internal instruction cycle clock (FOSC/4)

bit 4 T0SE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is inactive and has no effect on the Timer 0 module
0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS<2:0>: Prescaler Rate Select bits

Note 1: WPUEN does not disable the pull-up for the MCLR input when MCLR = 1.

000
001
010
011
100
101
110
111

1 : 2
1 : 4
1 : 8
1 : 16
1 : 32
1 : 64
1 : 128
1 : 256

Bit Value TMR0 Rate

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register on

Page

INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 40

OPTION_REG WPUEN INTEDG T0CS T0SE PSA PS<2:0> 95

TMR0 Timer0 module Register 40

TRISA — — — — — TRISA2 TRISA1 TRISA0 69

Legend: – = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the
Timer0 module.
 2011-2015 Microchip Technology Inc. DS40001585D-page 95

PIC10(L)F320/322
19.1.3 LOGIC FUNCTION

There are eight available logic functions including:

• AND-OR

• OR-XOR

• AND

• S-R Latch

• D Flip-Flop with Set and Reset

• D Flip-Flop with Reset

• J-K Flip-Flop with Reset

• Transparent Latch with Set and Reset

Logic functions are shown in Figure 19-3. Each logic
function has four inputs and one output. The four inputs
are the four data gate outputs of the previous stage. The
output is fed to the inversion stage and from there to other
peripherals, an output pin, and back to the CLCx itself.

19.1.4 OUTPUT POLARITY

The last stage in the configurable logic cell is the output
polarity. Setting the LCxPOL bit of the CLCxCON reg-
ister inverts the output signal from the logic stage.
Changing the polarity while the interrupts are enabled
will cause an interrupt for the resulting output transition.

19.1.5 CLCX SETUP STEPS

The following steps should be followed when setting up
the CLCx:

• Disable CLCx by clearing the LCxEN bit.

• Select desired inputs using CLCxSEL0 and
CLCxSEL1 registers (See Table 19-1).

• Clear any associated ANSEL bits.
• Set all TRIS bits associated with inputs.
• Clear all TRIS bits associated with outputs.
• Enable the chosen inputs through the four gates

using CLCxGLS0, CLCxGLS1, CLCxGLS2, and
CLCxGLS3 registers.

• Select the gate output polarities with the
LCxPOLy bits of the CLCxPOL register.

• Select the desired logic function with the
LCxMODE<2:0> bits of the CLCxCON register.

• Select the desired polarity of the logic output with
the LCxPOL bit of the CLCxPOL register. (This
step may be combined with the previous gate
output polarity step).

• If driving the CLCx pin, set the LCxOE bit of the
CLCxCON register and also clear the TRIS bit
corresponding to that output.

• If interrupts are desired, configure the following
bits:
- Set the LCxINTP bit in the CLCxCON register

for rising event.
- Set the LCxINTN bit in the CLCxCON

register or falling event.
- Set the CLCxIE bit of the associated PIE

registers.
- Set the GIE and PEIE bits of the INTCON

register.
• Enable the CLCx by setting the LCxEN bit of the

CLCxCON register.
DS40001585D-page 106  2011-2015 Microchip Technology Inc.

PIC10(L)F320/322
REGISTER 19-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

R/W-x/u U-0 U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u

LCxPOL — — — LCxG4POL LCxG3POL LCxG2POL LCxG1POL

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reset

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 LCxPOL: LCOUT Polarity Control bit

1 = The output of the logic cell is inverted
0 = The output of the logic cell is not inverted

bit 6-4 Unimplemented: Read as ‘0’

bit 3 LCxG4POL: Gate 4 Output Polarity Control bit

1 = The output of gate 4 is inverted when applied to the logic cell
0 = The output of gate 4 is not inverted

bit 2 LCxG3POL: Gate 3 Output Polarity Control bit

1 = The output of gate 3 is inverted when applied to the logic cell
0 = The output of gate 3 is not inverted

bit 1 LCxG2POL: Gate 2 Output Polarity Control bit

1 = The output of gate 2 is inverted when applied to the logic cell
0 = The output of gate 2 is not inverted

bit 0 LCxG1POL: Gate 1 Output Polarity Control bit

1 = The output of gate 1 is inverted when applied to the logic cell
0 = The output of gate 1 is not inverted
 2011-2015 Microchip Technology Inc. DS40001585D-page 111

P
IC

10(L
)F

320/322

D
S

4
0

0
0

1
5

8
5

D
-p

a
g

e
 1

3
0


 2

0
1

1
-2

0
1

5
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

0

1

0

1

00

10

11

00

10

11

2

2

CWGxA

CWGxB

GxASDLA = 01

GxASDLB = 01

GxOEA

GxOEB

TRISx

TRISx
FIGURE 21-1: CWG BLOCK DIAGRAM

cwg_clock

GxCS

Input Source
PWM1OUT
PWM2OUT

N1OUT

CWG1FLT (INT pin)

GxASDFLT

LC1OUT

GxASDCLC1

FOSC

HFINTOSC

GxIS

LC1OUT

Auto-Shutdown
Source

GxPOLA

2

1

2

QS

R Q

EN
R

GxARSEN

CWGxDBR

GxPOLB

6

CWGxDBF

‘0’

‘1’

‘0’

‘1’

GxASDLB

GxASDLA

GxASE

=

EN
R

6

=

x = CWG module number

QS

R Q

QD
S

WRITE
GxASE Data Bit

shutdown

set dominate

PIC10(L)F320/322
23.2 Instruction Descriptions

ADDLW Add literal and W

Syntax: [label] ADDLW k

Operands: 0  k  255

Operation: (W) + k  (W)

Status Affected: C, DC, Z

Description: The contents of the W register
are added to the 8-bit literal ‘k’
and the result is placed in the
W register.

ADDWF Add W and f

Syntax: [label] ADDWF f,d

Operands: 0  f  127
d 0,1

Operation: (W) + (f)  (destination)

Status Affected: C, DC, Z

Description: Add the contents of the W register
with register ‘f’. If ‘d’ is ‘0’, the
result is stored in the W register. If
‘d’ is ‘1’, the result is stored back
in register ‘f’.

ANDLW AND literal with W

Syntax: [label] ANDLW k

Operands: 0  k  255

Operation: (W) .AND. (k)  (W)

Status Affected: Z

Description: The contents of W register are
AND’ed with the 8-bit literal ‘k’.
The result is placed in the W
register.

ANDWF AND W with f

Syntax: [label] ANDWF f,d

Operands: 0  f  127
d 0,1

Operation: (W) .AND. (f)  (destination)

Status Affected: Z

Description: AND the W register with register
‘f’. If ‘d’ is ‘0’, the result is stored in
the W register. If ‘d’ is ‘1’, the
result is stored back in register ‘f’.

BCF Bit Clear f

Syntax: [label] BCF f,b

Operands: 0  f  127
0  b  7

Operation: 0  (f)

Status Affected: None

Description: Bit ‘b’ in register ‘f’ is cleared.

BSF Bit Set f

Syntax: [label] BSF f,b

Operands: 0  f  127
0  b  7

Operation: 1  (f)

Status Affected: None

Description: Bit ‘b’ in register ‘f’ is set.

BTFSC Bit Test f, Skip if Clear

Syntax: [label] BTFSC f,b

Operands: 0  f  127
0  b  7

Operation: skip if (f) = 0

Status Affected: None

Description: If bit ‘b’ in register ‘f’ is ‘1’, the next
instruction is executed.
If bit ‘b’ in register ‘f’ is ‘0’, the next
instruction is discarded, and a NOP
is executed instead, making this a
2-cycle instruction.
 2011-2015 Microchip Technology Inc. DS40001585D-page 149

PIC10(L)F320/322
�������	
���
�� ��
�!
��"���������	��#�$���%&��'��(�()*+����,��-�� !��

������
�� 1�����,� $�����!�&�%��#$	������,�	�0�8$#��$ #�8���
��#�!�-�#����#�����#���!��	���
�� 1��/����������,��
���
	��
	���&�
 �!�#���8�	 ��#���! �
�� 1��/����� � �-� ���$��#�!�
�� ����� �
�������!�#
��	���������	����"�'���(��

)�*+)� �������� �
���
��
	�#��������&��#�,��$�� �
-��-�#�
$#�#
��	���� �
�".+ ��%�	���������� �
�0�$ $�����-�#�
$#�#
��	����0�%
	���%
	��#�
���$	�
 � �
����

����� .
	�#����
 #��$		��#����/����!	�-��� 0����� �� ���#������	
�����1��/�����������%���#�
���
��#�!��#�
�##�+22---����	
������
�2���/�����

3��# ��44��"
"��
����� �
��4���# ��5 56� ��7

5$�8�	�
%�1�� 5 <
1�#�� � ��(��)�*
6,�	����:����# � ��<� ���� ����
�#��!
%%� �� ���� ���� ���(
*
�#��#�
���/�� �� ������".
6,�	����4���#� � �����)�*
6,�	����=�!#� " �����)�*
"&�
 �!�1�!�4���#� �� ���� ; ��((
"&�
 �!�1�!�=�!#� "� ��(� ; ���(
*
�#��#�=�!#� 8 ���� ���(����
*
�#��#�4���#� 4 ���� ���� ��(�
*
�#��#�#
�"&�
 �!�1�! ? ���� ; ;

D

N

E

NOTE 1

1 2

EXPOSED PAD

NOTE 1
2 1

D2

K

L

E2

N

e
b

A3 A1

A

NOTE 2

BOTTOM VIEWTOP VIEW

���	
����
����
�
�� �	�-��� *������*
 2011-2015 Microchip Technology Inc. DS40001585D-page 187

PIC10(L)F320/322
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS40001585D-page 188  2011-2015 Microchip Technology Inc.

