

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 $\cdot \times F$

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	3
Program Memory Size	896B (512 x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VFDFN Exposed Pad
Supplier Device Package	8-DFN (2x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic10lf322t-i-mc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Data Memory Organization

The data memory is in one bank, which contains the General Purpose Registers (GPR) and the Special Function Registers (SFR). The RP<1:0> bits of the STATUS register are the bank select bits.

<u>RP1</u> <u>RP0</u>

 $0 \quad 0 \quad \rightarrow \text{Bank 0 is selected}$

The bank extends up to 7Fh (128 bytes). The lower locations of the bank are reserved for the Special Function Registers. Above the Special Function Registers are the General Purpose Registers, implemented as Static RAM.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64×8 in the PIC10(L)F320/322. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-3). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

R/W-0/0	R/W-0/0	R/W-0/0	R-1/q	R-1/q	R/W-x/u	R/W-x/u	R/W-x/u				
IRP	RP1	RP0	TO	PD	Z	DC	С				
bit 7						•	bit 0				
Legend:											
R = Readable	e bit	W = Writable b	oit	U = Unimplei	mented bit, read	as '0'					
u = Bit is uncl	hanged	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion					
bit 7	IRP: Reserve	d(2)									
bit 6-5	RP<1:0>: Re	served ⁽²⁾									
bit 4	TO: Time-out	O: Time-out bit									
	1 = After power-up, CLRWDT instruction or SLEEP instruction										
		me-out occurre	d								
bit 3		PD: Power-Down bit									
		 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 									
bit 2	Z : Zero bit										
		It of an arithmet	tic or loaic or	peration is zero							
		It of an arithmet									
bit 1	DC: Digit Car	ry/Borrow bit (A	DDWF, ADDLI	W, SUBLW, SUBW	∉ instructions) ⁽	1)					
	1 = A carry-c	out from the 4th	low-order bit	t of the result of	ccurred						
	0 = No carry	-out from the 4t	h low-order b	oit of the result							
bit 0		Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾									
		out from the Mos	0								
	0 = No carry	-out from the Me	ost Significar	nt bit of the resu	ult occurred						

REGISTER 2-1: STATUS: STATUS REGISTER

- **Note 1:** For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the source register.
 - 2: Maintain as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
Bank 0											
00h	INDF	Addres	sing this loca	tion uses co	ntents of FS	R to address	data memory	(not a physical	register)	xxxx xxxx	xxxx xxxx
01h	TMR0				Timer0 N	lodule Registe	er			XXXX XXXX	uuuu uuuu
02h	PCL			Progra	m Counter (F	PC) Least Sigi	nificant Byte			0000 0000	0000 0000
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR		Indirect Data Memory Address Pointer						XXXX XXXX	uuuu uuuu	
05h	PORTA	_	_	_	_	RA3	RA2	RA1	RA0	xxxx	uuuu
06h	TRISA	_	_	_	_	_(1)	TRISA2	TRISA1	TRISA0	1111	1111
07h	LATA	_	_	_	_	_	LATA2	LATA1	LATA0	xxx	uuu
08h	ANSELA	_	_	_	_	_	ANSA2	ANSA1	ANSA0	111	111
09h	WPUA	_	_	_	_	WPUA3	WPUA2	WPUA1	WPUA0	1111	1111
0Ah	PCLATH	-	_		_	_	_	_	PCLH0	0	0
0Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 000u
0Ch	PIR1	_	ADIF	_	NCO1IF	CLC1IF	_	TMR2IF	_	-0-0 0-0-	-0-0 0-0-
0Dh	PIE1	-	ADIE		NCO1IE	CLC1IE	_	TMR2IE	_	-0-0 0-0-	-0-0 0-0-
0Eh	OPTION_REG	WPUEN	INTEDG	TOCS	T0SE	PSA	PS<2:0>			1111 1111	uuuu uuuu
0Fh	PCON	_	_	_	_	_	_	POR	BOR	dd	uu
10h	OSCCON	_		IRCF<2:0>		HFIOFR	_	LFIOFR	HFIOFS	-110 0-00	-110 0-00
11h	TMR2				Timer2 M	lodule Registe	er			0000 0000	0000 0000
12h	PR2				Timer2 F	Period Registe	r			1111 1111	1111 1111
13h	T2CON	_		TOUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	-000 0000	-000 0000
14h	PWM1DCL	PWM1D	CL<1:0>	_	_	_	_	—	_	xx	uu
15h	PWM1DCH				PWM	1DCH<7:0>				xxxx xxxx	uuuu uuuu
16h	PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL	_	_	—	—	0000	0000
17h	PWM2DCL	PWM2D	CL<1:0>	_	_	_	_	—	_	xx	uu
18h	PWM2DCH				PWM	2DCH<7:0>				xxxx xxxx	uuuu uuuu
19h	PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	_	_	—	_	0000	0000
1Ah	IOCAP	_	_	_	_	IOCAP3	IOCAP2	IOCAP1	IOCAP0	0000	0000
1Bh	IOCAN	_	_	_	_	IOCAN3	IOCAN2	IOCAN1	IOCAN0	0000	0000
1Ch	IOCAF	_	_	_	_	IOCAF3	IOCAF2	IOCAF1	IOCAF0	0000	0000
1Dh	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVF	R<1:0>	0x0000	0x0000
1Eh	ADRES				A/D Re	sult Register				xxxx xxxx	uuuu uuuu
1Fh	ADCON		ADCS<2:0>			CHS<2:0>		<u>GO/</u> DONE	ADON	0000 0000	0000 0000

TABLE 2-3:	SPECIAL I	FUNCTION REGI	STER SUMMARY	(BANK 0)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

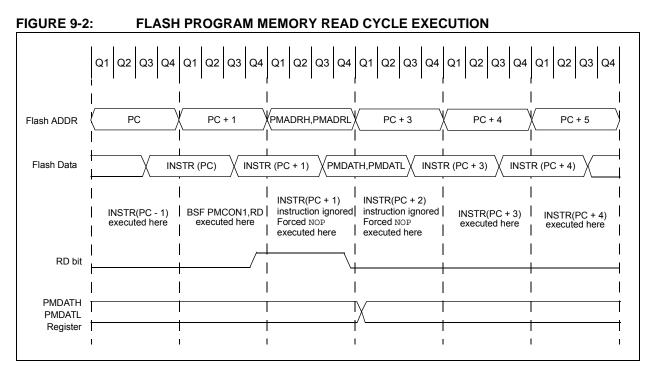
Note 1: Unimplemented, read as '1'.

8.6 Watchdog Control Register

REGISTER 8-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_	—			WDTPS<4:02	>		SWDTEN
bit 7		·					bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
h# 7 0		inted: Dood oo (0'				
bit 7-6	•	ented: Read as '		alaat hita(1)			
bit 5-1		0>: Watchdog Ti	mer Periou Si				
		Prescale Rate		internal (1-00)			
	11111 = R	eserved. Result	s in minimum	interval (1:32)			
	•						
	•						
	10011 = R	eserved. Result	s in minimum	interval (1:32)			
	10010 = 1	:8388608 (2 ²³) (Interval 256s	nominal)			
		:4194304 (2 ²²) (
		:2097152 (2 ²¹) (
	01111 = 1	:1048576 (2 ²⁰) (Interval 32s n	ominal)			
	01110 = 1	:524288 (2 ¹⁹) (Ir :262144 (2 ¹⁸) (Ir	nterval 16s no	minal)			
	01101 = 1	:262144 (2 ¹⁰) (Ir	iterval 8s non	ninal)			
		:131072 (2 ¹⁷) (Ir :65536 (Interval					
		:32768 (Interval		Reset value)			
		:16384 (Interval		nal)			
		:8192 (Interval 2		,			
		:4096 (Interval 1		,			
		:2048 (Interval 6		,			
		:1024 (Interval 3)			
		:512 (Interval 16					
		:256 (Interval 8 r :128 (Interval 4 r					
		:64 (Interval 2 m	,				
		:32 (Interval 1 m					
bit 0		Software Enable		/atchdog Timer	bit		
	If WDTE<1:						
	This bit is ig						
	If WDTE<1:						
	1 = WDT is						
	0 = WDT is						
	If WDTE<1:						
	This bit is ig	nored.					

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—	IRCF<2:0>			HFIOFR	—	LFIOFR	HFIOFS	26
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	13
WDTCON				١	WDTPS<4:0	>		SWDTEN	48

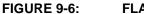

TABLE 8-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

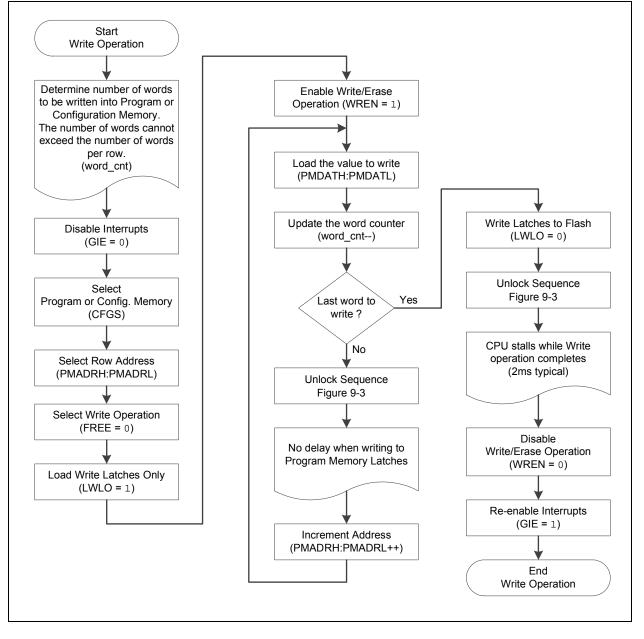
TABLE 8-4:	SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG	13:8		_	_	WRT	WRT<1:0>		LPBOR	LVP	20
CONFIG	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		WDTE<1:0> BOREN<1:0		FOSC	20

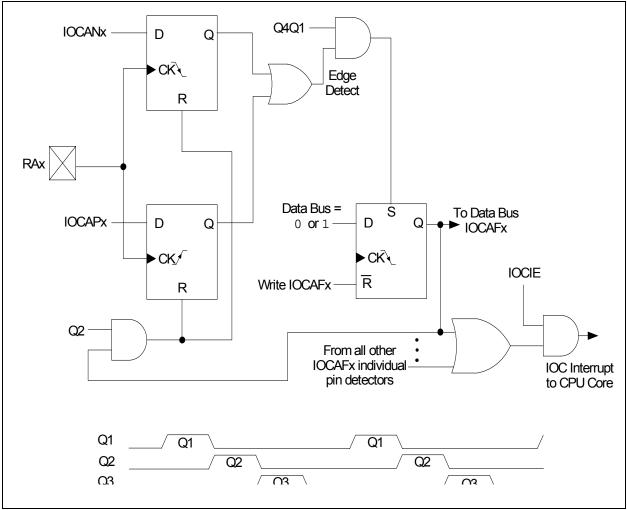
Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.



EXAMPLE 9-1: FLASH PROGRAM MEMORY READ


* This code block will read 1 word of program

- * memory at the memory address:
- PROG_ADDR_HI: PROG_ADDR_LO
- * data will be returned in the variables;
- * PROG_DATA_HI, PROG_DATA_LO


BANKSEL MOVLW MOVWF	PMADRL PROG_ADDR_LO PMADRL	<pre>; not required on devices with 1 Bank of SFRs ; ; Store LSB of address</pre>
MOVLW	PROG_ADDR_HI	;
MOVWF	PMADRH	; Store MSB of address
BCF BSF NOP NOP	PMCON1,CFGS PMCON1,RD	; Do not select Configuration Space ; Initiate read ; Ignored (Figure 9-2) ; Ignored (Figure 9-2)
MOVF	PMDATL,W	; Get LSB of word
MOVWF	PROG_DATA_LO	; Store in user location
MOVF	PMDATH,W	; Get MSB of word
MOVWF	PROG_DATA_HI	; Store in user location

FLASH PROGRAM MEMORY WRITE FLOWCHART

	0011111								OATON
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	TSRNG — — ADFVR<1:0>				78
ADCON		ADCS<2:0>			CHS<2:0>		GO/ DONE	ADON	88
ADRES	A/D Result Register							89	
								· · ·	

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the temperature indicator module.

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC conversion clock source
- · Interrupt control

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 10.0 "I/O Port"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

15.1.2 CHANNEL SELECTION

There are up to five channel selections available:

- AN<2:0> pins
- Temperature Indicator
- FVR (Fixed Voltage Reference) Output

Refer to Section 12.0 "Fixed Voltage Reference (FVR)" and Section 14.0 "Temperature Indicator Module" for more information on these channel selections.

The CHS bits of the ADCON register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 15.2 "ADC Operation"** for more information.

15.1.3 ADC VOLTAGE REFERENCE

There is no external voltage reference connections to the ADC. Only VDD can be used as a reference source. The FVR is only available as an input channel and not a VREF+ input to the ADC.

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON register (Register 15-1). There are seven possible clock options:

- · Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 8-bit conversion requires 9.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in **Section 24.0 "Electrical Specifications"** for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u	R/W-1/u		
WPUEN ⁽¹⁾	INTEDG	TOCS	T0SE	PSA		PS<2:0>			
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit		mented bit, read				
u = Bit is uncha	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	WPUEN: Wea	ak Pull-up Enal	ble bit ⁽¹⁾						
		l-ups are disab l-ups are enabl		al PORT latch	values				
bit 6	INTEDG: Inte	errupt Edge Sel	ect bit						
	•	on rising edge on falling edge	•						
bit 5	TOCS: TMR0	Clock Source Select bit							
		on T0CKI pin struction cycle	clock (Fosc/4	4)					
bit 4	TOSE: TMR0) Source Edge Select bit							
		t on high-to-lov t on low-to-higł							
bit 3	PSA: Prescal	er Assignment	bit						
		is inactive and is assigned to) module				
bit 2-0	PS<2:0>: Pre	escaler Rate Se	elect bits						
	Bit	Value TMR0 F	Rate						
	0 0 1 1 1	000 1:2 001 1:4 010 1:8 011 1:1 000 1:3 001 1:6 100 1:1 11 1:2	6 2 4 28						

REGISTER 16-1: OPTION_REG: OPTION REGISTER

Note 1: $\overline{\text{WPUEN}}$ does not disable the pull-up for the $\overline{\text{MCLR}}$ input when $\overline{\text{MCLR}} = 1$.

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	40	
OPTION_REG	WPUEN	INTEDG	TOCS	T0SE	PSA		PS<2:0>			
TMR0		Timer0 module Register							40	
TRISA	—	_	—	—	—	TRISA2	TRISA1	TRISA0	69	

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_		TOUTF	°S<3:0>		TMR2ON	T2CKF	°S<1:0>
bit 7							bit
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is ur	changed	x = Bit is unkr	nown		at POR and BO		other Resets
'1' = Bit is s	-	'0' = Bit is cle					
			_				
bit 7	-	nted: Read as '					
bit 6-3		0>: Timer2 Out	put Postscale	r Select bits			
	1111 = 1:16						
	1110 = 1:15						
	1101 = 1:14 1100 = 1:13						
	1000 = 1.13 1011 = 1:12						
	1011 = 1.12 1010 = 1:11						
	1001 = 1:10						
	1000 = 1 :9	Postscaler					
	0111 = 1 :8	Postscaler					
	0110 = 1 :7						
	0101 = 1:6						
	0100 = 1:5						
	0011 = 1:4						
	0010 = 1:3 0001 = 1:2						
	0000 = 1:2						
bit 2	TMR2ON: T						
	1 = Timer2 i						
	0 = Timer2 i	is off					
bit 1-0	T2CKPS<1:	0>: Timer2 Cloc	k Prescale Se	elect bits			
	11 = Presc	aler is 64					
	10 = Presc						
	01 = Presc	aler is 4					
	00 = Presc	aler is 1					
TABLE 17-	1: SUMMAR	RY OF REGIS	TERS ASSO	CIATED WIT	H TIMER2		

REGISTER 17-1: T2CON: TIMER2 CONTROL REGISTER

TABLE '	17-1: \$	SUMMAR	Y OF REG	ISTERS A	ASSOCIATED) WITH TI	MER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	40
PIE1	_	ADIE		NCO1IE	CLC1IE		TMR2IE		41
PIR1	-	ADIF	_	NCO1IF	CLC1IF	_	TMR2IF		42
PR2				Timer2 mo	odule Period Reg	ister			96
TMR2	Timer2 module Register								96
T2CON	_		TOUTPS<3:0> TMR2ON T2CKPS<1:0>						97

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u				
_		LCxD2S<2:0>(1)		_	-	_CxD1S<2:0>(1)	-				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable b	bit	U = Unimplei	mented bit, rea	d as '0'					
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value	at POR and BC	R/Value at all o	ther Resets				
'1' = Bit is set '0' = Bit is cleared											
bit 7	t 7 Unimplemented: Read as '0'										
bit 6-4	4 LCxD2S<2:0>: Input Data 2 Selection Control bits ⁽¹⁾										
	111 = CLCx	111 = CLCxIN[7] is selected for lcxd2.									
	110 = CLC×	(IN[6] is selected	for lcxd2.								
		(IN[5] is selected									
		(IN[4] is selected									
		(IN[3] is selected									
		(IN[2] is selected									
		(IN[1] is selected									
	000 = CLCx	(IN[0] is selected	for lcxd2.								
bit 3	Unimpleme	nted: Read as '0)'								
bit 2-0	LCxD1S<2:0	0>: Input Data 1	Selection Co	ntrol bits ⁽¹⁾							
	111 = CLCx	(IN[7] is selected	for lcxd1.								
	110 = CLCx	(IN[6] is selected	for lcxd1.								
	101 = CLCx	101 = CLCxIN[5] is selected for lcxd1.									
	100 = CLCx	(IN[4] is selected	for lcxd1.								
		(IN[3] is selected									
		(IN[2] is selected									
		001 = CLCxIN[1] is selected for lcxd1.									
	000 = CLCx	(IN[0] is selected	for lcxd1.								

REGISTER 19-3: CLCxSEL0: MULTIPLEXER DATA 1 AND 2 SELECT REGISTER

Note 1: See Table 19-1 for signal names associated with inputs.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N		
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	hit	II – I Inimpler	nented bit, read	as '0'			
u = Bit is uncha		x = Bit is unkr			at POR and BO		thar Resots		
'1' = Bit is set	liged	0' = Bit is cle							
bit 7	LCxG3D4T:	Gate 3 Data 4 1	Frue (non-invei	rted) bit					
		gated into Icxo		,					
	0 = Icxd4T is	not gated into	lcxg3						
bit 6	LCxG3D4N:	LCxG3D4N: Gate 3 Data 4 Negated (inverted) bit							
		gated into lcx							
		D = lcxd4N is not gated into lcxg3							
bit 5		Gate 3 Data 3	,	rted) bit					
		gated into lcxg not gated into							
bit 4		Gate 3 Data 3	0	ted) hit					
		gated into lcx	•						
		not gated into							
bit 3	LCxG3D2T: 0	Gate 3 Data 2 1	Frue (non-invei	rted) bit					
		gated into Icxo							
		not gated into	•						
bit 2		Gate 3 Data 2	-	ted) bit					
		gated into Icx	•						
hit 1		 0 = lcxd2N is not gated into lcxg3 LCxG3D1T: Gate 3 Data 1 True (non-inverted) bit 							
bit 1		gated into lcx		teu) bit					
		not gated into							
bit 0		Gate 3 Data 1	•	ted) bit					
		gated into lcx	•	,					
	0 = lcxd1N is	0							

REGISTER 19-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

REGISTER 20-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE

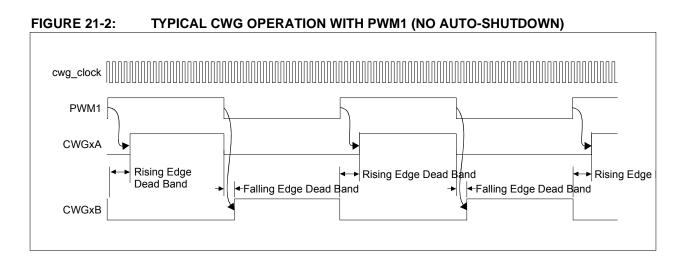
R/W-0/0	R/W-1/1						
			NCOxIN	C<7:0>			
bit 7							bit 0
Logond							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<7:0>: NCOx Increment, low byte

REGISTER 20-7: NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
NCOxINC<15:8>							
bit 7 bit							


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<15:8>: NCOx Increment, high byte

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLC1SEL0		LC1D2S2	LC1D2S1	LC1D2S0		LC1D1S2	LC1D1S1	LC1D1S0	112
CLC1SEL1	_	LC1D4S2	LC1D4S1	LC1D4S0	_	LC1D3S2	LC1D3S1	LC1D3S0	113
CWG1CON1	G1ASDLB<1:0> G1ASDLA<1:0>			_	—	G1IS	<1:0>	140	
INTCON	GIE	GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF					40		
NCO1ACCH	NCO1ACCH<15:8>								126
NCO1ACCL		NCO1ACCL<7:0>							126
NCO1ACCU		-	_		NCO1ACCU<19:16				126
NCO1CLK	I	N1PWS<2:0>	>	—	— — N1CKS<1:0>				125
NCO1CON	N1EN	N10E	N1OUT	N1POL	_	—	—	N1PFM	125
NCO1INCH				NCO1IN0	CH<15:8>				127
NCO1INCL				NCO1IN	CL<7:0>				127
PIE1		ADIE	_	NCO1IE	CLC1IE	_	TMR2IE	_	41
PIR1	_	ADIF		NCO1IF	CLC1IF	—	TMR2IF	—	42
TRISA	_	_	_	_	_	TRISA2	TRISA1	TRISA0	69

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCOx

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for NCO module.

23.0 INSTRUCTION SET SUMMARY

The PIC10(L)F320/322 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 23-1, while the various opcode fields are summarized in Table 23-1.

Table 23-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

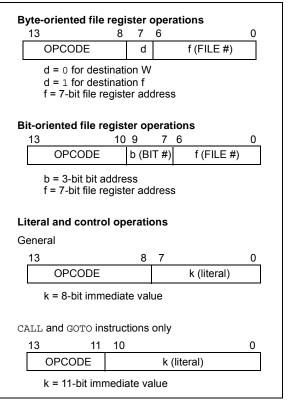
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

23.1 Read-Modify-Write Operations


Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the IOCIF flag.

TABLE 23-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 23-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 24-5:	MEMORY PROGRAMMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)
D111	IDDP	Supply Current during Programming	—	—	10	mA	
D112		VDD for Bulk Erase	2.7	-	VDD max.	V	
D113	VPEW	VDD for Write or Row Erase	VDD min.	—	VDD max.	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write		—	1.0	mA	
D115	IDDPGM	Current on VDD during Erase/Write	_		5.0	mA	
		Program Flash Memory					
D121	EР	Cell Endurance	10K	—	—	E/W	-40°C to +85°C (Note 1)
D122	Vpr	VDD for Read	VDD min.	-	VDD max.	V	
D123	TIW	Self-timed Write Cycle Time	_	2	2.5	ms	
D124	TRETD	Characteristic Retention	40	-	_	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	-	_	E/W	$0^{\circ}C \leq TA \leq 60,$ lower byte last 128 addresses

Standard Operating Conditions (unless otherwise stated)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

24.4 Thermal Considerations

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Тур.	Units	Conditions			
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	6-pin SOT-23 package			
			80	°C/W	8-pin PDIP package			
			90	°C/W	8-pin DFN package			
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	6-pin SOT-23 package			
			24	°C/W	8-pin PDIP package			
			24	°C/W	8-pin DFN package			
TH03	TJMAX	Maximum Junction Temperature	150	°C				
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O			
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾			
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$			
TH07	Pder	Derated Power	—	W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾			

Standard Operating Conditions (unless otherwise stated)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature