E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-20°C ~ 105°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA, FCBGA
Supplier Device Package	624-FCPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6d5eym10ce

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

1. See the nxp.com\imx6series Web page for latest information on the available silicon revision.

2. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz.

3. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.

1.2 Features

The i.MX 6Dual/6Quad processors are based on ARM Cortex-A9 MPCore platform, which has the following features:

- ARM Cortex-A9 MPCore 4xCPU processor (with TrustZone[®])
- The core configuration is symmetric, where each core includes:
 - 32 KByte L1 Instruction Cache
 - 32 KByte L1 Data Cache
 - Private Timer and Watchdog
 - Cortex-A9 NEON MPE (Media Processing Engine) Co-processor

The ARM Cortex-A9 MPCore complex includes:

- General Interrupt Controller (GIC) with 128 interrupt support
- Global Timer
- Snoop Control Unit (SCU)
- 1 MB unified I/D L2 cache, shared by two/four cores

Table 2. i.MX 6Dual/6Quad Me	odules List (continued)
------------------------------	-------------------------

Block Mnemonic	Block Name	Subsystem	Brief Description
LDB	LVDS Display Bridge	Connectivity Peripherals	 LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: One clock pair Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM).
MLB150	MediaLB	Connectivity / Multimedia Peripherals	The MLB interface module provides a link to a MOST [®] data network, using the standardized MediaLB protocol (up to 150 Mbps). The module is backward compatible to MLB-50.
MMDC	Multi-Mode DDR Controller	Connectivity Peripherals	 DDR Controller has the following features: Supports 16/32/64-bit DDR3 / DDR3L or LPDDR2 Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2 configurations (including 2x32 interleaved mode) Supports up to 4 GByte DDR memory space
OCOTP_CTRL	OTP Controller	Security	The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility.
OCRAM	On-Chip Memory Controller	Data Path	The On-Chip Memory controller (OCRAM) module is designed as an interface between system's AXI bus and internal (on-chip) SRAM memory module. In i.MX 6Dual/6Quad processors, the OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus.
OSC 32 kHz	OSC 32 kHz	Clocking	Generates 32.768 kHz clock from an external crystal.
PCle	PCI Express 2.0	Connectivity Peripherals	The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU	Power-Management Functions	Data Path	Integrated power management unit. Used to provide power to various SoC domains.
PWM-1 PWM-2 PWM-3 PWM-4	Pulse Width Modulation	Connectivity Peripherals	The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound.
RAM 16 KB	Secure/non-secure RAM	Secured Internal Memory	Secure/non-secure Internal RAM, interfaced through the CAAM.
RAM 256 KB	Internal RAM	Internal Memory	Internal RAM, which is accessed through OCRAM memory controllers.

Power Supply	Conditions	Maximum C	Unit	
	Conditions	Power Virus	CoreMark	onit
NVCC_LVDS2P5	_	NVCC_LVDS2P5 is 0 VDD_HIGH_CAP at level. VDD_HIGH_C of handing the curren NVCC_LVDS2P5.	connected to the board AP is capable nt required by	
	MISC			
DRAM_VREF	—	1		mA

¹ The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or HDMI, PCIe, and SATA VPH supplies).

- ² Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown Table 8. The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.
- ³ This is the maximum current per active USB physical interface.
- ⁴ The DRAM power consumption is dependent on several factors such as external signal termination. DRAM power calculators are typically available from memory vendors which take into account factors such as signal termination. See the *i.MX 6Dual/6Quad Power Consumption Measurement Application Note* (AN4509) for examples of DRAM power consumption during specific use case scenarios.
- ⁵ General equation for estimated, maximum power consumption of an IO power supply: Imax = N x C x V x (0.5 x F)
 - Where:

N-Number of IO pins supplied by the power line

C-Equivalent external capacitive load

V—IO voltage

(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)

In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.

4.1.6 Low Power Mode Supply Currents

Table 9 shows the current core consumption (not including I/O) of the i.MX 6Dual/6Quad processors in selected low power modes.

Mode	Test Conditions	Supply	Typical ¹	Unit
WAIT	• ARM, SoC, and PU LDOs are set to 1.225 V	VDD_ARM_IN (1.4 V)	6	mA
 HIGH LDO set to 2.5 V Clocks are gated DDR is in self refresh PLLs are active in bypass (24 MHz) Supply voltages remain ON 	Clocks are gated	VDD_SOC_IN (1.4 V)	23	mA
	 DDR is in self refresh PLLs are active in bypass (24 MHz) 	VDD_HIGH_IN (3.0 V)	3.7	mA
	 PLLs are active in bypass (24 MHZ) Supply voltages remain ON 	Total	52	mW

system to determine when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.3.2.2 LDO_2P5

The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 6 for min and max input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. The LDO_2P5 supplies the SATA PHY, USB PHY, LVDS PHY, HDMI PHY, MIPI PHY, E-fuse module and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately $40 \, \Omega$.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.3.2.3 LDO_USB

The LDO_USB module implements a programmable linear-regulator function from the USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows the user to select to run the regulator from either VBUS supply, when both are present. If only one of the VBUS voltages is present, then the regulator automatically selects this supply. Current limit is also included to help the system meet in-rush current targets. If no VBUS voltage is present, then the VBUSVALID threshold setting will prevent the regulator from being enabled.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).

For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

CAUTION

The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature variations. NXP strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock.

The OSC32k runs from VDD_SNVS_CAP, which comes from the VDD_HIGH_IN/VDD_SNVS_IN power mux.

Parameter	Min	Тур	Max	Comments	
Fosc	—	32.768 kHz	_	This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well.	
Current consumption	_	4 μΑ	_	The typical value shown is only for the oscillator, driven by an external crystal. If the internal ring oscillator is used instead of an external crystal, then approximately 25 μ A must be added to this value.	
Bias resistor	_	14 MΩ	_	This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amplifier. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations.	
				Target Crystal Properties	
Cload	—	10 pF	_	Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal.	
ESR	—	50 kΩ	100 kΩ	Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin.	

Table 20. OSC32K Main Characteristics

4.6 I/O DC Parameters

This section includes the DC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O
- MLB I/O

NOTE

The term 'OVDD' in this section refers to the associated supply rail of an input or output.

Figure 38. ESAI Receiver Timing

4.12.10.1 IPU Sensor Interface Signal Mapping

The IPU supports a number of sensor input formats. Table 62 defines the mapping of the Sensor Interface Pins used for various supported interface formats.

Signal Name ¹	RGB565 8 bits 2 cycles	RGB565 ² 8 bits 3 cycles	RGB666 ³ 8 bits 3 cycles	RGB888 8 bits 3 cycles	YCbCr ⁴ 8 bits 2 cycles	RGB565 ⁵ 16 bits 1 cycle	YCbCr ⁶ 16 bits 1 cycle	YCbCr ⁷ 16 bits 1 cycle	YCbCr ⁸ 20 bits 1 cycle
IPUx_CSIx_ DATA00	_	_	_		_	_	_	0	C[0]
IPUx_CSIx_ DATA01	—	—		—	—	_	_	0	C[1]
IPUx_CSIx_ DATA02	_	—		_	_	_	—	C[0]	C[2]
IPUx_CSIx_ DATA03	—	—	_	—	—	_		C[1]	C[3]
IPUx_CSIx_ DATA04	_	_		_	_	B[0]	C[0]	C[2]	C[4]
IPU2_CSIx_ DATA_05	—	_		—	—	B[1]	C[1]	C[3]	C[5]
IPUx_CSIx_ DATA06	—	_	—	—	—	B[2]	C[2]	C[4]	C[6]
IPUx_CSIx_ DATA07	—	—	_	—	—	B[3]	C[3]	C[5]	C[7]
IPUx_CSIx_ DATA08	—	—	—	—	—	B[4]	C[4]	C[6]	C[8]
IPUx_CSIx_ DATA09	—	—	_	—	—	G[0]	C[5]	C[7]	C[9]
IPUx_CSIx_ DATA10	—	—	_	—	—	G[1]	C[6]	0	Y[0]
IPUx_CSIx_ DATA11	—	—	—	—	—	G[2]	C[7]	0	Y[1]
IPUx_CSIx_ DATA12	B[0], G[3]	R[2],G[4],B[2]	R/G/B[4]	R/G/B[0]	Y/C[0]	G[3]	Y[0]	Y[0]	Y[2]
IPUx_CSIx_ DATA13	B[1], G[4]	R[3],G[5],B[3]	R/G/B[5]	R/G/B[1]	Y/C[1]	G[4]	Y[1]	Y[1]	Y[3]
IPUx_CSIx_ DATA14	B[2], G[5]	R[4],G[0],B[4]	R/G/B[0]	R/G/B[2]	Y/C[2]	G[5]	Y[2]	Y[2]	Y[4]
IPUx_CSIx_ DATA15	B[3], R[0]	R[0],G[1],B[0]	R/G/B[1]	R/G/B[3]	Y/C[3]	R[0]	Y[3]	Y[3]	Y[5]
IPUx_CSIx_ DATA16	B[4], R[1]	R[1],G[2],B[1]	R/G/B[2]	R/G/B[4]	Y/C[4]	R[1]	Y[4]	Y[4]	Y[6]
IPUx_CSIx_ DATA17	G[0], R[2]	R[2],G[3],B[2]	R/G/B[3]	R/G/B[5]	Y/C[5]	R[2]	Y[5]	Y[5]	Y[7]
IPUx_CSIx_ DATA18	G[1], R[3]	R[3],G[4],B[3]	R/G/B[4]	R/G/B[6]	Y/C[6]	R[3]	Y[6]	Y[6]	Y[8]
IPUx_CSIx_ DATA19	G[2], R[4]	R[4],G[5],B[4]	R/G/B[5]	R/G/B[7]	Y/C[7]	R[4]	Y[7]	Y[7]	Y[9]

Table 62. Camera Input Signal Cross Reference, Format, and Bits Per Cycle

¹ IPU2_CSIx stands for IPU2_CSI1 or IPU2_CSI2.

There are special physical outputs to provide synchronous controls:

- The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display (component, pixel) clock for a display.
- The ipp_pin_1- ipp_pin_7 are general purpose synchronous pins, that can be used to provide HSYNC, VSYNC, DRDY or any else independent signal to a display.

The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYNC) calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control starts from the local start point with predefined UP and DOWN values to calculate control's changing points with half DI_CLK resolution. A full description of the counter system can be found in the IPU chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM).

4.12.10.5.2 Asynchronous Controls

The asynchronous control is a data-oriented signal that changes its value with an output data according to additional internal flags coming with the data.

There are special physical outputs to provide asynchronous controls, as follows:

- The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays.
- The ipp_pin_11- ipp_pin_17 are general purpose asynchronous pins, that can be used to provide WR. RD, RS or any other data-oriented signal to display.

NOTE

The IPU has independent signal generators for asynchronous signals toggling. When a DI decides to put a new asynchronous data on the bus, a new internal start (local start point) is generated. The signal generators calculate predefined UP and DOWN values to change pins states with half DI_CLK resolution.

4.12.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels

4.12.10.6.1 IPU Display Operating Signals

The IPU uses four control signals and data to operate a standard synchronous interface:

- IPP_DISP_CLK—Clock to display
- HSYNC—Horizontal synchronization
- VSYNC—Vertical synchronization
- DRDY—Active data

All synchronous display controls are generated on the base of an internally generated "local start point". The synchronous display controls can be placed on time axis with DI's offset, up and down parameters. The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved relative to the local start point. The data bus of the synchronous interface is output direction only.

Figure 63. TFT Panels Timing Diagram—Horizontal Sync Pulse

Figure 64 depicts the vertical timing (timing of one frame). All parameters shown in the figure are programmable.

Figure 64. TFT Panels Timing Diagram—Vertical Sync Pulse

ID	Parameter	Symbol	Value	Description	Unit
IP50	Offset of IPP_DISP_CLK	Todicp	DISP_CLK_OFFSET × Tdiclk	DISP_CLK_OFFSET—offset of IPP_DISP_CLK edges from local start point, in DI_CLK×2 (0.5 DI_CLK Resolution). Defined by DISP_CLK counter.	ns
IP13o	Offset of VSYNC	Tovs	VSYNC_OFFSET × Tdiclk	VSYNC_OFFSET—offset of Vsync edges from a local start point, when a Vsync should be active, in DI_CLK×2 (0.5 DI_CLK Resolution). The VSYNC_OFFSET should be built by suitable DI's counter.	ns
IP8o	Offset of HSYNC	Tohs	HSYNC_OFFSET × Tdiclk	HSYNC_OFFSET—offset of Hsync edges from a local start point, when a Hsync should be active, in DI_CLK×2 (0.5 DI_CLK Resolution). The HSYNC_OFFSET should be built by suitable DI's counter.	ns
IP9o	Offset of DRDY	Todrdy	DRDY_OFFSET × Tdiclk	DRDY_OFFSET—offset of DRDY edges from a suitable local start point, when a corresponding data has been set on the bus, in DI_CLK×2 (0.5 DI_CLK Resolution). The DRDY_OFFSET should be built by suitable DI's counter.	ns

Table 65. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued)

Display interface clock period immediate value.

1

$$Tdicp = \begin{cases} T_{diclk} \times \frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD}, & for integer \frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD} \\ T_{diclk} (floor[\frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD}] + 0.5 \pm 0.5), & for fractional \frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD} \end{cases}$$

DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK. DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency Display interface clock period average value.

$$\overline{T}$$
dicp = $T_{diclk} \times \frac{DISP_CLK_PERIOD}{DI_CLK_PERIOD}$

² DI's counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the counter. Same of parameters in the table are not defined by DI's registers directly (by name), but can be generated by corresponding DI's counter. The SCREEN_WIDTH is an input value for DI's HSYNC generation counter. The distance between HSYNCs is a SCREEN_WIDTH.

The maximum accuracy of UP/DOWN edge of controls is:

Accuracy =
$$(0.5 \times T_{diclk}) \pm 0.62$$
ns

The maximum accuracy of UP/DOWN edge of IPP_DISP_DATA is:

Accuracy =
$$T_{diclk} \pm 0.62$$
ns

The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are register-controlled.

4.12.15.1 PCIE_REXT Reference Resistor Connection

The impedance calibration process requires connection of reference resistor 200 Ω . 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration.

4.12.16 Pulse Width Modulator (PWM) Timing Parameters

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin.

Figure 83 depicts the timing of the PWM, and Table 76 lists the PWM timing parameters.

Figure 83. PWM Timing

Table 76. PWM Output Timing Parameters

ID	Parameter	Min	Мах	Unit
_	PWM Module Clock Frequency	0	ipg_clk	MHz
P1	PWM output pulse width high	15	—	ns
P2	PWM output pulse width low	15		ns

4.12.17 SATA PHY Parameters

This section describes SATA PHY electrical specifications.

4.12.17.1 Transmitter and Receiver Characteristics

The SATA PHY meets or exceeds the electrical compliance requirements defined in the SATA specifications.

NOTE

The tables in the following sections indicate any exceptions to the SATA specification or aspects of the SATA PHY that exceed the standard, as well as provide information about parameters not defined in the standard.

The following subsections provide values obtained from a combination of simulations and silicon characterization.

4.12.17.1.1 SATA PHY Transmitter Characteristics

Table 77 provides specifications for SATA PHY transmitter characteristics.

Table 77. SATA PHY	Transmitter Characteristics
--------------------	-----------------------------

Parameters	Symbol	Min	Тур	Мах	Unit
Transmit common mode voltage	V _{CTM}	0.4	—	0.6	V
Transmitter pre-emphasis accuracy (measured change in de-emphasized bit)	_	-0.5	_	0.5	dB

4.12.17.1.2 SATA PHY Receiver Characteristics

Table 78 provides specifications for SATA PHY receiver characteristics.

Table 78. SAT	A PHY Receiver	Characteristics
---------------	----------------	-----------------

Parameters	Symbol	Min	Тур	Max	Unit
Minimum Rx eye height (differential peak-to-peak)	V _{MIN_RX_EYE_HEIGHT}	175	_	_	mV
Tolerance	PPM	-400	_	400	ppm

4.12.17.2 SATA_REXT Reference Resistor Connection

The impedance calibration process requires connection of reference resistor 191 Ω 1% precision resistor on SATA_REXT pad to ground.

Resistor calibration consists of learning which state of the internal Resistor Calibration register causes an internal, digitally trimmed calibration resistor to best match the impedance applied to the SATA_REXT pin. The calibration register value is then supplied to all Tx and Rx termination resistors.

During the calibration process (for a few tens of microseconds), up to 0.3 mW can be dissipated in the external SATA_REXT resistor. At other times, no power is dissipated by the SATA_REXT resistor.

4.12.18 SCAN JTAG Controller (SJC) Timing Parameters

Figure 84 depicts the SJC test clock input timing. Figure 85 depicts the SJC boundary scan timing. Figure 86 depicts the SJC test access port. Figure 87 depicts the JTAG_TRST_B timing. Signal parameters are listed in Table 79.

Figure 84. Test Clock Input Timing Diagram

Figure 87. JTAG_TRST_B Timing Diagram

6	Devementar ^{1,2}	All Freq	Unit	
U	Parameter	Min	Max	Unit
SJ0	JTAG_TCK frequency of operation 1/(3xT _{DC}) ¹	0.001	22	MHz
SJ1	JTAG_TCK cycle time in crystal mode	45	_	ns
SJ2	JTAG_TCK clock pulse width measured at V_M^2	22.5	_	ns
SJ3	JTAG_TCK rise and fall times	—	3	ns
SJ4	Boundary scan input data set-up time	5	_	ns
SJ5	Boundary scan input data hold time	24	_	ns
SJ6	JTAG_TCK low to output data valid	_	40	ns
SJ7	JTAG_TCK low to output high impedance	_	40	ns
SJ8	JTAG_TMS, JTAG_TDI data set-up time	5	_	ns
SJ9	JTAG_TMS, JTAG_TDI data hold time	25	_	ns
SJ10	JTAG_TCK low to JTAG_TDO data valid	_	44	ns
SJ11	JTAG_TCK low to JTAG_TDO high impedance	_	44	ns
SJ12	JTAG_TRST_B assert time	100	_	ns
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40	—	ns

Table 79. JTAG Timir	ŋd
----------------------	----

¹ T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.12.19 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 80 and Figure 88 and Figure 89 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

ID	Parameter	Min	Мах	Unit
	External Clock Operation	on		
SS22	AUDx_TXC/AUDx_RXC clock period	81.4	_	ns
SS23	AUDx_TXC/AUDx_RXC clock high period	36	_	ns
SS24	AUDx_TXC/AUDx_RXC clock rise time	_	6.0	ns
SS25	AUDx_TXC/AUDx_RXC clock low period	36	_	ns
SS26	AUDx_TXC/AUDx_RXC clock fall time	_	6.0	ns
SS28	AUDx_RXC high to AUDx_TXFS (bl) high	-10	15.0	ns
SS30	AUDx_RXC high to AUDx_TXFS (bl) low	10	_	ns
SS32	AUDx_RXC high to AUDx_TXFS (wl) high	-10	15.0	ns
SS34	AUDx_RXC high to AUDx_TXFS (wl) low	10	_	ns
SS35	AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time	_	6.0	ns
SS36	AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time	_	6.0	ns
SS40	AUDx_RXD setup time before AUDx_RXC low	10	_	ns
SS41	AUDx_RXD hold time after AUDx_RXC low	2		ns

Table 85. SSI Receiver Timing with External Clock

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation).

4.12.22 USB HSIC Timings

This section describes the electrical information of the USB HSIC port.

NOTE

HSIC is a DDR signal. The following timing specification is for both rising and falling edges.

4.12.22.1 Transmit Timing

Figure 98. USB HSIC Transmit Waveform

Table 91. USB HSIC Transmit Parameters

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	
Todelay	data output delay time	550	1350	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

4.12.22.2 Receive Timing

Figure 99. USB HSIC Receive Waveform

Table 92. USB HSIC Receive Parameters¹

Name	Parameter	Min	Max	Unit	Comment
Tstrobe	strobe period	4.166	4.167	ns	—
Thold	data hold time	300	_	ps	Measured at 50% point
Tsetup	data setup time	365	_	ps	Measured at 50% point
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

Package Information and Contact Assignments

Supply Rail Name	Ball(s) Position(s)	Remark
NVCC_MIPI	K7	Supply of the MIPI interface
NVCC_NANDF	G15	Supply of the RAW NAND Flash Memories interface
NVCC_PLL_OUT	E8	-
NVCC_RGMII	G18	Supply of the ENET interface
NVCC_SD1	G16	Supply of the SD card interface
NVCC_SD2	G17	Supply of the SD card interface
NVCC_SD3	G14	Supply of the SD card interface
PCIE_VP	H7	-
PCIE_REXT	A2	-
PCIE_VPH	G7	PCI PHY supply
PCIE_VPTX	G8	PCI PHY supply
SATA_REXT	C14	_
SATA_VP	G13	_
SATA_VPH	G12	_
USB_H1_VBUS	D10	_
USB_OTG_VBUS	E9	_
VDD_CACHE_CAP	N12	Cache supply input. This input should be connected to (driven by) VDD_SOC_CAP. The external capacitor used for VDD_SOC_CAP is sufficient for this supply.
VDD_FA	B5	—
VDD_SNVS_CAP	G9	Secondary supply for the SNVS (internal regulator output—requires capacitor if internal regulator is used)
VDD_SNVS_IN	G11	Primary supply for the SNVS regulator
VDDARM_CAP	H13, J13, K13, L13, M13, N13, P13, R13	Secondary supply for the ARM0 and ARM1 cores (internal regulator output—requires capacitor if internal regulator is used)
VDDARM_IN	H14, J14, K14, L14, M14, N14, P14, R14	Primary supply for the ARM0 and ARM1 core regulator
VDDARM23_CAP	H11, J11, K11, L11, M11, N11, P11, R11	Secondary supply for the ARM2 and ARM3 cores (internal regulator output—requires capacitor if internal regulator is used)
VDDARM23_IN	K9, L9, M9, N9, P9, R9, T9, U9	Primary supply for the ARM2 and ARM3 core regulator

Package Information and Contact Assignments

					Out of Reset Cor	ndition ¹	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²
DRAM_DQM7	Y21	NVCC_DRAM	DDR	ALT0	DRAM_DQM7	Output	0
DRAM_RAS	AB15	NVCC_DRAM	DDR	ALT0	DRAM_RAS_B	Output	0
DRAM_RESET	Y6	NVCC_DRAM	DDR	ALT0	DRAM_RESET	Output	0
DRAM_SDBA0	AC15	NVCC_DRAM	DDR	ALT0	DRAM_SDBA0	Output	0
DRAM_SDBA1	Y15	NVCC_DRAM	DDR	ALT0	DRAM_SDBA1	Output	0
DRAM_SDBA2	AB12	NVCC_DRAM	DDR	ALT0	DRAM_SDBA2	Output	0
DRAM_SDCKE0	Y11	NVCC_DRAM	DDR	ALT0	DRAM_SDCKE0	Output	0
DRAM_SDCKE1	AA11	NVCC_DRAM	DDR	ALT0	DRAM_SDCKE1	Output	0
DRAM_SDCLK_0	AD15	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDCLK0_P	Output	0
DRAM_SDCLK_0_B	AE15	NVCC_DRAM	DDRCLK	—	DRAM_SDCLK0_N	—	_
DRAM_SDCLK_1	AD14	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDCLK1_P	Output	0
DRAM_SDCLK_1_B	AE14	NVCC_DRAM	DDRCLK	—	DRAM_SDCLK1_N	—	_
DRAM_SDODT0	AC16	NVCC_DRAM	DDR	ALT0	DRAM_ODT0	Output	0
DRAM_SDODT1	AB17	NVCC_DRAM	DDR	ALT0	DRAM_ODT1	Output	0
DRAM_SDQS0	AE3	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS0_P	Input	Hi-Z
DRAM_SDQS0_B	AD3	NVCC_DRAM	DDRCLK	—	DRAM_SDQS0_N	—	_
DRAM_SDQS1	AD6	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS1_P	Input	Hi-Z
DRAM_SDQS1_B	AE6	NVCC_DRAM	DDRCLK	—	DRAM_SDQS1_N	—	
DRAM_SDQS2	AD8	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS2_P	Input	Hi-Z
DRAM_SDQS2_B	AE8	NVCC_DRAM	DDRCLK	—	DRAM_SDQS2_N	—	
DRAM_SDQS3	AC10	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS3_P	Input	Hi-Z
DRAM_SDQS3_B	AB10	NVCC_DRAM	DDRCLK	—	DRAM_SDQS3_N	—	
DRAM_SDQS4	AD18	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS4_P	Input	Hi-Z
DRAM_SDQS4_B	AE18	NVCC_DRAM	DDRCLK	—	DRAM_SDQS4_N	—	
DRAM_SDQS5	AD20	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS5_P	Input	Hi-Z
DRAM_SDQS5_B	AE20	NVCC_DRAM	DDRCLK	—	DRAM_SDQS5_N	—	
DRAM_SDQS6	AD23	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS6_P	Input	Hi-Z
DRAM_SDQS6_B	AE23	NVCC_DRAM	DDRCLK	—	DRAM_SDQS6_N	—	
DRAM_SDQS7	AA25	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS7_P	Input	Hi-Z
DRAM_SDQS7_B	AA24	NVCC_DRAM	DDRCLK	—	DRAM_SDQS7_N	—	
DRAM_SDWE	AB16	NVCC_DRAM	DDR	ALT0	DRAM_SDWE_B	Output	0
DSI_CLK0M	H3	NVCC_MIPI	—	—	DSI_CLK_N	—	
DSI_CLK0P	H4	NVCC_MIPI	—	—	DSI_CLK_P	—	
DSI_D0M	G2	NVCC_MIPI	_		DSI_DATA0_N	_	
DSI_D0P	G1	NVCC_MIPI	_		DSI_DATA0_P		
DSI_D1M	H2	NVCC_MIPI	_	—	DSI_DATA1_N		_

Table 96. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

					Out of Reset Con	dition ¹	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²
SD2_DAT0	A22	NVCC_SD2	GPIO	ALT5	GPIO1_IO15	Input	PU (100K)
SD2_DAT1	E20	NVCC_SD2	GPIO	ALT5	GPIO1_IO14	Input	PU (100K)
SD2_DAT2	A23	NVCC_SD2	GPIO	ALT5	GPIO1_IO13	Input	PU (100K)
SD2_DAT3	B22	NVCC_SD2	GPIO	ALT5	GPIO1_IO12	Input	PU (100K)
SD3_CLK	D14	NVCC_SD3	GPIO	ALT5	GPI07_I003	Input	PU (100K)
SD3_CMD	B13	NVCC_SD3	GPIO	ALT5	GPI07_I002	Input	PU (100K)
SD3_DAT0	E14	NVCC_SD3	GPIO	ALT5	GPI07_I004	Input	PU (100K)
SD3_DAT1	F14	NVCC_SD3	GPIO	ALT5	GPI07_I005	Input	PU (100K)
SD3_DAT2	A15	NVCC_SD3	GPIO	ALT5	GPI07_I006	Input	PU (100K)
SD3_DAT3	B15	NVCC_SD3	GPIO	ALT5	GPI07_I007	Input	PU (100K)
SD3_DAT4	D13	NVCC_SD3	GPIO	ALT5	GPI07_I001	Input	PU (100K)
SD3_DAT5	C13	NVCC_SD3	GPIO	ALT5	GPI07_I000	Input	PU (100K)
SD3_DAT6	E13	NVCC_SD3	GPIO	ALT5	GPIO6_IO18	Input	PU (100K)
SD3_DAT7	F13	NVCC_SD3	GPIO	ALT5	GPIO6_I017	Input	PU (100K)
SD3_RST	D15	NVCC_SD3	GPIO	ALT5	GPI07_I008	Input	PU (100K)
SD4_CLK	E16	NVCC_NANDF	GPIO	ALT5	GPI07_I010	Input	PU (100K)
SD4_CMD	B17	NVCC_NANDF	GPIO	ALT5	GPI07_I009	Input	PU (100K)
SD4_DAT0	D18	NVCC_NANDF	GPIO	ALT5	GPIO2_I008	Input	PU (100K)
SD4_DAT1	B19	NVCC_NANDF	GPIO	ALT5	GPIO2_IO09	Input	PU (100K)
SD4_DAT2	F17	NVCC_NANDF	GPIO	ALT5	GPIO2_IO10	Input	PU (100K)
SD4_DAT3	A20	NVCC_NANDF	GPIO	ALT5	GPIO2_I011	Input	PU (100K)
SD4_DAT4	E18	NVCC_NANDF	GPIO	ALT5	GPIO2_I012	Input	PU (100K)
SD4_DAT5	C19	NVCC_NANDF	GPIO	ALT5	GPIO2_IO13	Input	PU (100K)
SD4_DAT6	B20	NVCC_NANDF	GPIO	ALT5	GPIO2_IO14	Input	PU (100K)
SD4_DAT7	D19	NVCC_NANDF	GPIO	ALT5	GPIO2_IO15	Input	PU (100K)
TAMPER	E11	VDD_SNVS_IN	GPIO	ALT0	SNVS_TAMPER	Input	PD (100K)
TEST_MODE	E12	VDD_SNVS_IN	—	—	TCU_TEST_MODE	Input	PD (100K)
USB_H1_DN	F10	VDD_USB_CAP	—	—	USB_H1_DN	—	—
USB_H1_DP	E10	VDD_USB_CAP	—	—	USB_H1_DP	—	—
USB_OTG_CHD_B	B8	VDD_USB_CAP	—	—	USB_OTG_CHD_B	—	—
USB_OTG_DN	B6	VDD_USB_CAP	—	—	USB_OTG_DN	—	—
USB_OTG_DP	A6	VDD_USB_CAP	—	—	USB_OTG_DP	-	—
XTALI	A7	NVCC_PLL	—	—	XTALI	-	—
XTALO	B7	NVCC_PLL	—	—	XTALO	—	—

Table 96. 21 x 21 mm Functional Contact Assignments (continued)

¹ The state immediately after reset and before ROM firmware or software has executed.

Table 99. i.MX 6Dual/6Quad Data Sheet Document Revision History	(continued)
---	-------------

Rev. Number	Date	Substantive Change(s)
Rev. 2	04/2013	 Substantive changes throughout this document are as follows: Incorporated standardized signal names. This change is extensive throughout. Added reference to EB792, i.MX Signal Name Mapping. Figures updated to align to standardized signal names. Aligned references to FCBGA to read FCPBGA throughout document. Updated references to FCBGA to read FCPBGA throughout document. Updated references to MMC standard to include 4.41. Added MediaLB feature and DTCP module. Table 2, "I.MX 6Dual/6Quad Modules List," Changed reference to Global Power Controller to read General Power Controller. Table 4, "Absolute Maximum Ratings," Added VDD_ARM23_IN to Core supply voltages. Table 6 "Operating Ranges": Run Mode - LDO Enabled, VDD_ARM_IN/VDD_ARM23_IN, 792 MHz, input voltage minimum changed to 1.275V and VDD_ARM CAP minimum changed to 1.150V. NVCC_NAND, changed to NVCC_NANDF. Table 6 "Operating Ranges": Added reference for information on product lifetime: <i>i.MX 6Dual/6Quad Product Usage Lifetime Estimates Application Note</i>, AN4724. Table 9. "Maximum Supply Currents": Added current for i.MX6Dual Table 10 "Stop Mode Current and Power Consumption": Added SNVS Only mode. Table 24. "GPIO I/O DC Parameters": Removed parameters Iskod and Isspp. Table 48, "ECSPI Master Mode Timing Parameters," Updated parameter CS6 ECSPIx_SSx Lag Time (CS hold time) Min from Half SCLK period to Half SCLK period-2. Table 89 RGMII Signal Switching Specifications RGMII parameter TskewR units corrected. Table 134 "21 x 21 mm Functional Contact Assignments," Updated GPIO_1 Ball Name value to PU (100K). Table 134 "21 x 21 mm Functional Contact Assignments," Updated GPIO_1 Ball Name value to PU (100K). Table 134 "21 x 21 mm Functional Contact Assignments," Clarification of ENET_REF_CLK naming. Removed section, EIM Signal Cross Reference. Signal names are now aligned with reference manu