
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-20°C ~ 105°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA, FCBGA
Supplier Device Package	624-FCPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q5eym10aer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Ordering Information

Table 1 shows examples of orderable part numbers covered by this data sheet. This table does not include all possible orderable part numbers. The latest part numbers are available on nxp.com/imx6series. If your desired part number is not listed in the table, or you have questions about available parts, see nxp.com/imx6series or contact your NXP representative.

Part Number	Quad/Dual CPU	Options	Speed ¹ Grade	Temperature Grade	Package
MCIMX6Q5EYM10AC	i.MX 6Quad	Includes VPU, GPU	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
MCIMX6Q5EYM10AD	i.MX 6Quad	Includes VPU, GPU	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
MCIMX6Q5EYM10AE	i.MX 6Quad	Includes VPU, GPU	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
SCIMX6Q5EYM10CC	i.MX 6Quad	Includes VPU, GPU, HDCP	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
SCIMX6Q5EYM10CD	i.MX 6Quad	Includes VPU, GPU, HDCP	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
SCIMX6Q5EYM10CE	i.MX 6Quad	Includes VPU, GPU, HDCP	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
MCIMX6D5EYM10AC	i.MX 6Dual	Includes VPU, GPU	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
MCIMX6D5EYM10AD	i.MX 6Dual	Includes VPU, GPU	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
MCIMX6D5EYM10AE	i.MX 6Dual	Includes VPU, GPU	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
SCIMX6D5EYM10CC	i.MX 6Dual	Includes VPU, GPU, HDCP	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
SCIMX6D5EYM10CD	i.MX 6Dual	Includes VPU, GPU, HDCP	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
SCIMX6D5EYM10CE	i.MX 6Dual	Includes VPU, GPU, HDCP	1 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
MCIMX6Q5EYM12AC	i.MX 6Quad	Includes VPU, GPU	1.2 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
MCIMX6Q5EYM12AD	i.MX 6Quad	Includes VPU, GPU	1.2 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
MCIMX6Q5EYM12AE	i.MX 6Quad	Includes VPU, GPU	1.2 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
SCIMX6Q5EYM12CC	i.MX 6Quad	Includes VPU, GPU, HCP	1.2 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)
SCIMX6Q5EYM12CD	i.MX 6Quad	Includes VPU, GPU, HCP	1.2 GHz	Extended Commercial	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (non-lidded)

Table 1.	Example	Orderable	Part	Numbers
----------	---------	-----------	------	---------

Table 2. i.MX 6Dual/6Quad Modules List (d	continued)
---	------------

Block Mnemonic	Block Name	Subsystem	Brief Description
LDB	LVDS Display Bridge	Connectivity Peripherals	 LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: One clock pair Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM).
MLB150	MediaLB	Connectivity / Multimedia Peripherals	The MLB interface module provides a link to a MOST [®] data network, using the standardized MediaLB protocol (up to 150 Mbps). The module is backward compatible to MLB-50.
MMDC	Multi-Mode DDR Controller	Connectivity Peripherals	 DDR Controller has the following features: Supports 16/32/64-bit DDR3 / DDR3L or LPDDR2 Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2 configurations (including 2x32 interleaved mode) Supports up to 4 GByte DDR memory space
OCOTP_CTRL	OTP Controller	Security	The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility.
OCRAM	On-Chip Memory Controller	Data Path	The On-Chip Memory controller (OCRAM) module is designed as an interface between system's AXI bus and internal (on-chip) SRAM memory module. In i.MX 6Dual/6Quad processors, the OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus.
OSC 32 kHz	OSC 32 kHz	Clocking	Generates 32.768 kHz clock from an external crystal.
PCle	PCI Express 2.0	Connectivity Peripherals	The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU	Power-Management Functions	Data Path	Integrated power management unit. Used to provide power to various SoC domains.
PWM-1 PWM-2 PWM-3 PWM-4	Pulse Width Modulation	Connectivity Peripherals	The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound.
RAM 16 KB	Secure/non-secure RAM	Secured Internal Memory	Secure/non-secure Internal RAM, interfaced through the CAAM.
RAM 256 KB	Internal RAM	Internal Memory	Internal RAM, which is accessed through OCRAM memory controllers.

Modules List

Block Mnemonic	Block Name	Subsystem	Brief Description
ROM 96 KB	Boot ROM	Internal Memory	Supports secure and regular Boot Modes. Includes read protection on 4K region for content protection
ROMCP	ROM Controller with Patch	Data Path	ROM Controller with ROM Patch support
SATA	Serial ATA	Connectivity Peripherals	The SATA controller and PHY is a complete mixed-signal IP solution designed to implement SATA II, 3.0 Gbps HDD connectivity.
SDMA	Smart Direct Memory Access	System Control Peripherals	 The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: Powered by a 16-bit Instruction-Set micro-RISC engine Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels 48 events with total flexibility to trigger any combination of channels Memory accesses including linear, FIFO, and 2D addressing Shared peripherals between ARM and SDMA Very fast context-switching with 2-level priority based preemptive multi-tasking DMA units with auto-flush and prefetch capability Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) DMA ports can handle unit-directional and bi-directional flows (copy mode) Up to 8-word buffer for configurable burst transfers Support of byte-swapping and CRC calculations Library of Scripts and API is available
SJC	System JTAG Controller	System Control Peripherals	The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6Dual/6Quad processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6Dual/6Quad SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.
SNVS	Secure Non-Volatile Storage	Security	Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting.
SPDIF	Sony Philips Digital Interconnect Format	Multimedia Peripherals	A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. It supports Transmitter and Receiver functionality.

Table 2. i.MX 6Dual/6Quad Modules List (ce	continued)
--	------------

Table 2. i.MX 6Dual/6Quad Modules List (continued)
--

Block Mnemonic	Block Name	Subsystem	Brief Description
SSI-1 SSI-2 SSI-3	I2S/SSI/AC97 Interface	Connectivity Peripherals	The SSI is a full-duplex synchronous interface, which is used on the processor to provide connectivity with off-chip audio peripherals. The SSI supports a wide variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to 24 bits per word), and clock / frame sync options. The SSI has two pairs of 8x24 FIFOs and hardware support for an external DMA controller to minimize its impact on system performance. The second pair of FIFOs provides hardware interleaving of a second audio stream that reduces CPU overhead in use cases where two time slots are being used simultaneously.
TEMPMON	Temperature Monitor	System Control Peripherals	The temperature monitor/sensor IP module for detecting high temperature conditions. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed; therefore, the read out value may not be the reflection of the temperature value for the entire die.
TZASC	Trust-Zone Address Space Controller	Security	The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller.
UART-1 UART-2 UART-3 UART-4 UART-5	UART Interface	Connectivity Peripherals	 Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) Programmable baud rates up to 5 MHz 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud IrDA 1.0 support (up to SIR speed of 115200 bps) Option to operate as 8-pins full UART, DCE, or DTE
USBOH3A	USB 2.0 High Speed OTG and 3x HS Hosts	Connectivity Peripherals	 USBOH3 contains: One high-speed OTG module with integrated HS USB PHY One high-speed Host module with integrated HS USB PHY Two identical high-speed Host modules connected to HSIC USB ports.

Parameter Description	Symbol	Min	Мах	Unit
Core supply input voltage (LDO enabled)	VDD_ARM_IN			
	VDD_ARM23_IN	-0.3	1.6	V
	VDD_SOC_IN			
Core supply input voltage (LDO bypass)	VDD_ARM_IN			
	VDD_ARM23_IN	-0.3	1.4	V
	VDD_SOC_IN			
Core supply output voltage (LDO enabled)	VDD_ARM_CAP			
	VDD_SOC_CAP	-0.3	1.4	V
	VDD_PU_CAP	0.0		•
	NVCC_PLL_OUT			
VDD_HIGH_IN supply voltage	VDD_HIGH_IN	-0.3	3.7	V
DDR I/O supply voltage	NVCC_DRAM	-0.4	1.975 (See note 1)	V
GPIO I/O supply voltage	NVCC_CSI			
	NVCC_EIM			
	NVCC_ENET			
	NVCC_GPIO	-0.5	3.7	V
	NVCC_LCD			
	NVCC_NAND			
	NVCC_SD			
	NVCC_JTAG			
HDMI, PCIe, and SATA PHY high (VPH) supply voltage	HDMI_VPH	0.0	0.05	V
	PCIE_VPH	-0.3	2.85	v
	SATA_VPH			
HDMI, PCIe, and SATA PHY low (VP) supply voltage		-0.3	1.4	V
	PCIE_VP SATA_VP	-0.3	1.4	v
LVDO MUD and MUDI //O anarchinestrate (O E) / anarchi)				
LVDS, MLB, and MIPI I/O supply voltage (2.5V supply)	NVCC_LVDS_2P5 NVCC_MIPI	-0.3	2.85	V
PCIe PHY supply voltage	PCIE_VPTX	-0.3	1.4	V
RGMII I/O supply voltage	NVCC_RGMII	-0.5	2.725	V
SNVS IN supply voltage	VDD_SNVS_IN	-0.3	3.4	V
(Secure Non-Volatile Storage and Real Time Clock)		0.0	0.4	v
USB I/O supply voltage	USB_H1_DN			
	USB_H1_DP			
	USB_OTG_DN	-0.3	3.73	V
	USB_OTG_DP			
	USB_OTG_CHD_B			
USB VBUS supply voltage	USB_H1_VBUS		5.35	V
	USB_OTG_VBUS			v
V _{in} /V _{out} input/output voltage range (non-DDR pins)	V _{in} /V _{out}	-0.5	OVDD+0.3 (See note 2)	V
V _{in} /V _{out} input/output voltage range (DDR pins)	V _{in} /V _{out}	-0.5	OVDD+0.4 (See notes1&2)	V
ESD immunity (HBM)	V _{esd_HBM}	—	2000	V
ESD immunity (CDM)	V _{esd_CDM}	—	500	V
Storage temperature range	T _{storage}	-40	150	°C
	Sidiage	L	l	

Table 4. Absolute Maximum Ratings

¹ The absolute maximum voltage includes an allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the allowed signal overshoot must be derated if NVCC_DRAM exceeds 1.575V.

² OVDD is the I/O supply voltage.

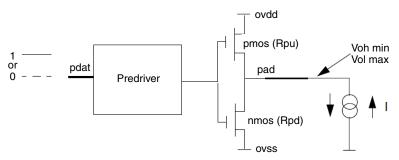


Figure 3. Circuit for Parameters Voh and Vol for I/O Cells

4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters

Table 21 shows the DC parameters for the clock inputs.

Table 21. XTALI and RTC_	XTALI DC Parameters
--------------------------	---------------------

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
XTALI high-level DC input voltage	Vih	_	0.8 x NVCC_PLL_OUT	—	NVCC_PLL_ OUT	V
XTALI low-level DC input voltage	Vil	—	0	—	0.2	V
RTC_XTALI high-level DC input voltage	Vih	—	0.8	_	1.1 ^(See note 1)	V
RTC_XTALI low-level DC input voltage	Vil	—	0	_	0.2	V
Input capacitance	C _{IN}	Simulated data	—	5	—	pF
XTALI input leakage current at startup	I _{XTALI_STARTUP}	Power-on startup for 0.15 msec with a driven 32 KHz RTC clock @ 1.1 V. ²	_	—	600	μA
DC input current	I _{XTALI_DC}	—	—	—	2.5	μΑ

¹ This voltage specification must not be exceeded and, as such, is an absolute maximum specification.

² This current draw is present even if an external clock source directly drives XTALI.

NOTE

The Vil and Vih specifications only apply when an external clock source is used. If a crystal is used, Vil and Vih do not apply.

4.6.2 General Purpose I/O (GPIO) DC Parameters

Table 22 shows DC parameters for GPIO pads. The parameters in Table 22 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameter	Symbol	Test Conditions	Min	Max	Units
High-level output voltage ¹	V _{OH}	loh= -0.1 mA (DSE=001,010) loh= -1.0 mA (DSE=011,100,101,110,111)	OVDD-0.15	_	V
Low-level output voltage ¹	V _{OL}	lol= 0.1 mA (DSE=001,010) lol= 1.0 mA (DSE=011,100,101,110,111)	—	0.15	V
Input Reference Voltage	V _{ref}	_	0.49xOVDD	0.51xOVDD	V
High-Level input voltage 2, 3	V _{IH}	_	0.7xOVDD	OVDD	V
Low-Level input voltage 2, 3	V _{IL}	_	0	0.3xOVDD	V
Input Hysteresis(OVDD=1.8V)	V _{HYS_HighVDD}	OVDD=1.8V	250	_	mV
Input Hysteresis(OVDD=2.5V)	V _{HYS_HighVDD}	OVDD=2.5V	250	_	mV
Schmitt trigger VT+ 3, 4	V _{TH+}		0.5xOVDD	—	mV
Schmitt trigger VT- 3, 4	V _{TH-}	_	—	0.5xOVDD	mV
Pull-up resistor (22 k Ω PU)	R _{PU_22K}	V _{in} =0V	—	212	μA
Pull-up resistor (22 k Ω PU)	R _{PU_22K}	V _{in} =OVDD	—	1	μA
Pull-up resistor (47 k Ω PU)	R _{PU_47K}	V _{in} =0V	—	100	μA
Pull-up resistor (47 k Ω PU)	R _{PU_47K}	V _{in} =OVDD	—	1	μA
Pull-up resistor (100 k Ω PU)	R _{PU_100K}	V _{in} =0V	—	48	μA
Pull-up resistor (100 k Ω PU)	R _{PU_100K}	V _{in} =OVDD	—	1	μA
Pull-down resistor (100 k Ω PD)	R _{PD_100K}	V _{in} =OVDD	—	48	μA
Pull-down resistor (100 k Ω PD)	R _{PD_100K}	V _{in} =0V	-	1	μA
Keeper Circuit Resistance	R _{keep}	—	105	165	kΩ
Input current (no pull-up/down)	l _{in}	$V_{I} = 0, VI = OVDD$	-2.9	2.9	μA

Input Mode Selection: SW_PAD_CTL_GRP_DDR_TYPE_RGMII = 10 (1.8V Mode) SW_PAD_CTL_GRP_DDR_TYPE_RGMII = 11 (2.5V Mode)

² Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.

³ To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.

⁴ Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled (register IOMUXC_SW_PAD_CTL_PAD_RGMII_TXC[HYS]= 0).

4.6.4.1 LPDDR2 Mode I/O DC Parameters

For details on supported DDR memory configurations, see Section 4.10.2, "MMDC Supported DDR3/DDR3L/LPDDR2 Configurations."

The parameters in Table 24 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

4.11.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)

Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 24 through Figure 27 depict the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 44 describes the timing parameters (NF1–NF17) that are shown in the figures.

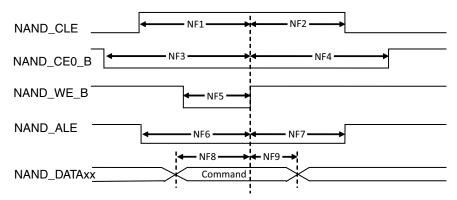


Figure 24. Command Latch Cycle Timing Diagram

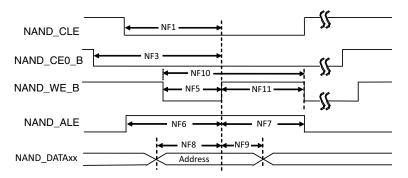
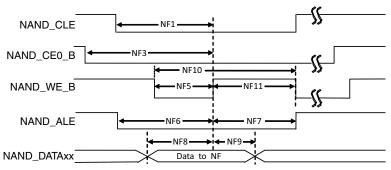
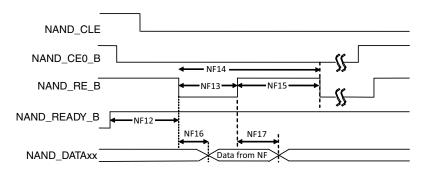




Figure 25. Address Latch Cycle Timing Diagram

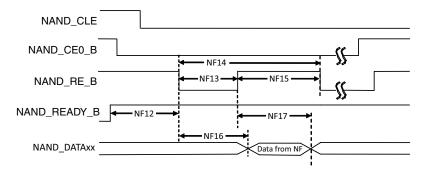


Figure 28. Read Data Latch Cycle Timing Diagram (EDO Mode)

ID	Parameter	Symbol	Tim T = GPMI C		Unit
			Min	Мах	
NF1	NAND_CLE setup time	tCLS	(AS + DS) × T - 0.12 [see ^{2,3}]		ns
NF2	NAND_CLE hold time	tCLH	DH × T - 0.	.72 [see ²]	ns
NF3	NAND_CEx_B setup time	tCS	(AS + DS + 1)) × T [see ^{3,2}]	ns
NF4	NAND_CEx_B hold time	tCH	(DH+1) × T	- 1 [see ²]	ns
NF5	NAND_WE_B pulse width	tWP	$DS \times T$ [see ²]		ns
NF6	NAND_ALE setup time	tALS	(AS + DS) × T - 0.49 [see ^{3,2}]		ns
NF7	NAND_ALE hold time	tALH	(DH × T - 0	.42 [see ²]	ns
NF8	Data setup time	tDS	DS × T - 0.	26 [see ²]	ns
NF9	Data hold time	tDH	DH × T - 1.	.37 [see ²]	ns
NF10	Write cycle time	tWC	(DS + DH)	× T [see ²]	ns
NF11	NAND_WE_B hold time	tWH	DH imes T	[see ²]	ns
NF12	Ready to NAND_RE_B low	tRR ⁴	(AS + 2) × T [see ^{3,2}] —		ns
NF13	NAND_RE_B pulse width	tRP	$DS \times T$ [see ²]		ns
NF14	READ cycle time	tRC	$(DS + DH) \times T [see ^2]$		ns
NF15	NAND_RE_B high hold time	tREH	DH × T	[see ²]	ns

Table 44. As	synchronous	Mode	Timing	Parameters ¹	l
--------------	-------------	------	--------	-------------------------	---

4.12.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling

Signalling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signalling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are identical to those shown in Table 22, "GPIO I/O DC Parameters," on page 40.

4.12.5 Ethernet Controller (ENET) AC Electrical Specifications

4.12.5.1 ENET MII Mode Timing

This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings.

4.12.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK)

The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency.

Figure 42 shows MII receive signal timings. Table 53 describes the timing parameters (M1–M4) shown in the figure.

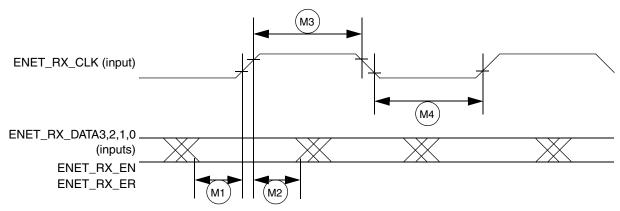


Figure 42. MII Receive Signal Timing Diagram

Table 53	MII	Receive	Signal	Timing
----------	-----	---------	--------	--------

ID	Characteristic ¹	Min	Max	Unit
M1	ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup	5	_	ns
M2	ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold	5	_	ns
М3	ENET_RX_CLK pulse width high	35%	65%	ENET_RX_CLK period
M4	ENET_RX_CLK pulse width low	35%	65%	ENET_RX_CLK period

¹ ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

Table 55. MII Asynchronous	Inputs	Signal 7	Гiming
----------------------------	--------	----------	--------

ID	Characteristic	Min	Max	Unit
M9 ¹	ENET_CRS to ENET_COL minimum pulse width	1.5		ENET_TX_CLK period

¹ ENET_COL has the same timing in 10-Mbit 7-wire interface mode.

4.12.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz.

Figure 45 shows MII asynchronous input timings. Table 56 describes the timing parameters (M10–M15) shown in the figure.

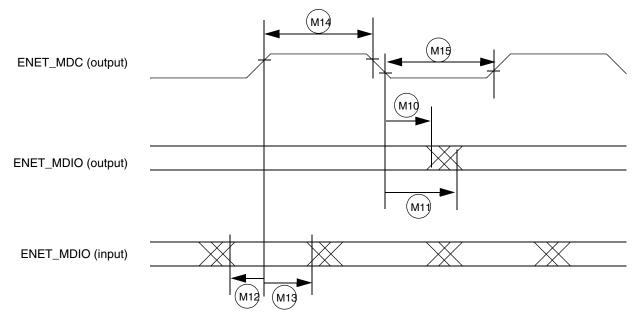


Figure 45. MII Serial Management Channel Timing Diagram

Table 56. MII Serial Management Cha	nnel Timing
-------------------------------------	-------------

ID	Characteristic	Min	Max	Unit
M10	ENET_MDC falling edge to ENET_MDIO output invalid (minimum propagation delay)	0	_	ns
M11	ENET_MDC falling edge to ENET_MDIO output valid (maximum propagation delay)	_	5	ns
M12	ENET_MDIO (input) to ENET_MDC rising edge setup	18	—	ns
M13	ENET_MDIO (input) to ENET_MDC rising edge hold	0	—	ns
M14	ENET_MDC pulse width high	40%	60%	ENET_MDC period
M15	ENET_MDC pulse width low	40%	60%	ENET_MDC period

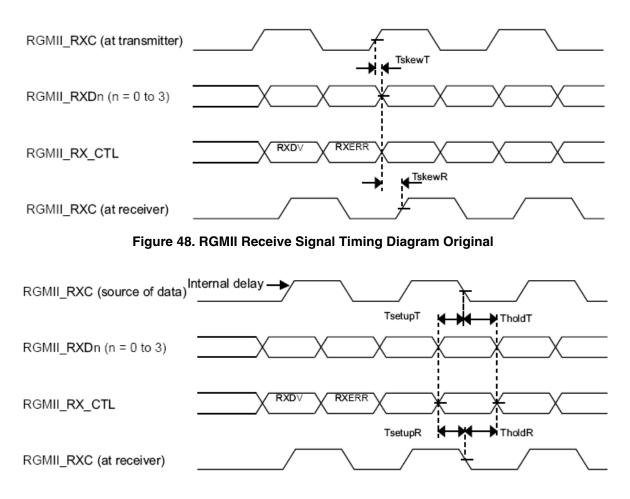


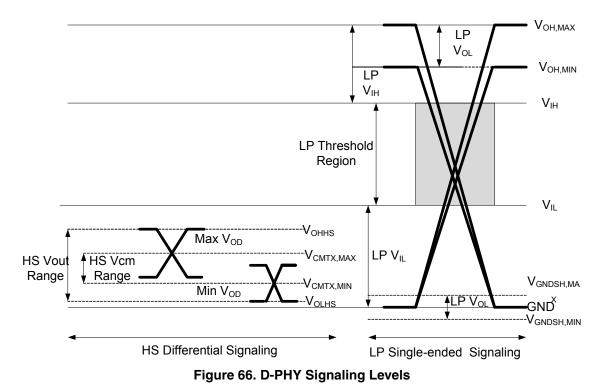
Figure 49. RGMII Receive Signal Timing Diagram with Internal Delay

4.12.6 Flexible Controller Area Network (FlexCAN) AC Electrical Specifications

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.

4.12.7 HDMI Module Timing Parameters

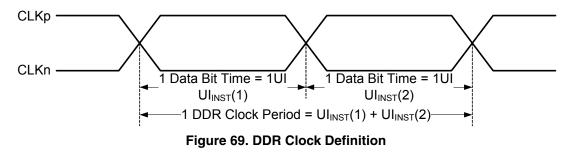
4.12.7.1 Latencies and Timing Information


Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit	
LP Line Receiver DC Specifications							
V _{IL}	Input low voltage	_	—	—	550	mV	
V _{IH}	Input high voltage	_	920	_	_	mV	
V _{HYST}	Input hysteresis	_	25	_	_	mV	
Contention Line Receiver DC Specifications							
V _{ILF}	Input low fault threshold	_	200	_	450	mV	

Table 68. Electrical and Timing Information (continued)

4.12.12.2 D-PHY Signaling Levels


The signal levels are different for differential HS mode and single-ended LP mode. Figure 66 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signalling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals.

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
L _S	Equivalent wire bond series inductance	_		_	1.5	nH
R _S	Equivalent wire bond series resistance	_	_	_	0.15	Ω
RL	Load Resistance	_	80	100	125	Ω

Table 69. Electrical and Timing Information (continued)

4.12.12.6 High-Speed Clock Timing

4.12.12.7 Forward High-Speed Data Transmission Timing

The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in Figure 70:

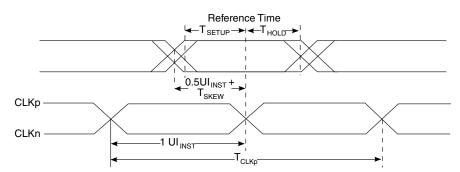


Figure 70. Data to Clock Timing Definitions

4.12.12.8 Reverse High-Speed Data Transmission Timing

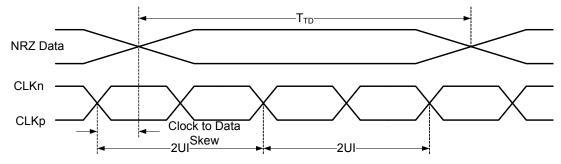


Figure 71. Reverse High-Speed Data Transmission Timing at Slave Side

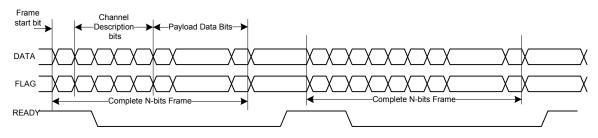
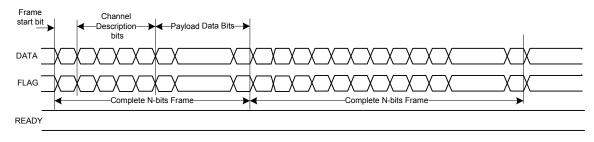



Figure 78. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)

4.12.13.7 Frame Transmission Mode (Pipelined Data Flow)

Figure 79. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow)

4.12.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load

Table 70. DATA and FLAG Timing

Parameter	Description	1 Mbit/s	100 Mbit/s
t _{Bit, nom}	Nominal bit time	1000 ns	10 ns
$t_{\text{Rise, min}}$ and $t_{\text{Fall, min}}$	Minimum allowed rise and fall time	2 ns	2 ns
t _{TxToRxSkew} , maxfq	Maximum skew between transmitter and receiver package pins	50 ns	0.5 ns
t _{EageSepTx} , min	Minimum allowed separation of signal transitions at transmitter package pins, including all timing defects, for example, jitter and skew, inside the transmitter.	400 ns	4 ns
t _{EageSepRx, min}	Minimum separation of signal transitions, measured at the receiver package pins, including all timing defects, for example, jitter and skew, inside the receiver.	350 ns	3.5 ns

	. <u> </u>					
Parameter	Symbol	Test Conditions	Min	Max	Unit	
Common-mode output voltage: (V _{O+} - V _{O-}) / 2	V _{OCM}	_	1.0	1.5	V	
Difference in common-mode output between (high/low) steady-states: I V _{OCM, high} - V _{OCM, low} I	ΔV _{OCM}	_	-50	50	mV	
Variations on common-mode output during a logic state transitions	V _{CMV}	See Note ²	—	150	mVpp	
Short circuit current	I _{OS}	See Note ³	—	43	mA	
Differential output impedance	Z ₀ —		1.6	—	kΩ	
	Receive	er Characteristics				
Differential clock input: • logic low steady-state • logic high steady-state • hysteresis	V _{ILC} V _{IHC} V _{HSC}	See Note ⁴	50 -25	-50 25	mV mV mV	
Differential signal/data input: • logic low steady-state • logic high steady-state	V _{ILS} V _{IHS}	_	 50	-50 —	mV mV	
Signal-ended input voltage (steady-state): • MLB_SIG_P, MLB_DATA_P • MLB_SIG_N, MLB_DATA_N	V _{IN+} V _{IN-}	_	0.5 0.5	2.0 2.0	V V	

Table 72. MediaLB 6-Pin Interface Electrical DC Specifications (continued)

¹ The signal-ended output voltage of a driver is defined as V_{O+} on MLB_CLK_P, MLB_SIG_P, and MLB_DATA_P. The signal-ended output voltage of a driver is defined as V_{O-} on MLB_CLK_N, MLB_SIG_N, and MLB_DATA_N.

² Variations in the common-mode voltage can occur between logic states (for example, during state transitions) as a result of differences in the transition rate of V_{Q+} and V_{Q-}.

 $^3\,$ Short circuit current is applicable when V_{O_{+}} and V_{O_{-}} are shorted together and/or shorted to ground.

 $^4\,$ The logic state of the receiver is undefined when -50 mV < V_{ID} < 50 mV.

Parameter	Symbol	Timing Para	Unit	
Falameter	Symbol	Min	Max	Onit
SPDIF_IN Skew: asynchronous inputs, no specs apply	—	—	0.7	ns
SPDIF_OUT output (Load = 50pf) • Skew • Transition rising • Transition falling			1.5 24.2 31.3	ns
SPDIF_OUT output (Load = 30pf) • Skew • Transition rising • Transition falling			1.5 13.6 18.0	ns
Modulating Rx clock (SPDIF_SR_CLK) period	srckp	40.0	_	ns
SPDIF_SR_CLK high period	srckph	16.0		ns
SPDIF_SR_CLK low period	srckpl	16.0	_	ns
Modulating Tx clock (SPDIF_ST_CLK) period	stclkp	40.0	_	ns
SPDIF_ST_CLK high period	stclkph	16.0		ns
SPDIF_ST_CLK low period	stclkpl	16.0	_	ns

Table	80.	SPDIF	Timing	Parameters
-------	-----	-------	--------	------------

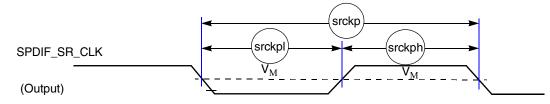


Figure 88. SPDIF_SR_CLK Timing Diagram

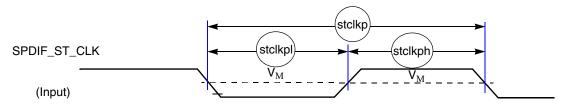


Figure 89. SPDIF_ST_CLK Timing Diagram

4.12.21.2.3 UART IrDA Mode Timing

The following subsections give the UART transmit and receive timings in IrDA mode.

UART IrDA Mode Transmitter

Figure 96 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 89 lists the transmit timing characteristics.

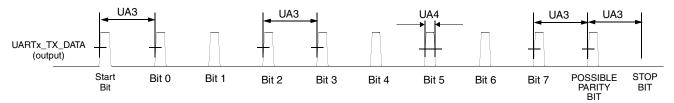


Figure 96. UART IrDA Mode Transmit Timing Diagram

Table 89. IrDA Mode Transmit Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA3	Transmit Bit Time in IrDA mode	t _{TIRbit}	1/F _{baud_rate} ¹ – T _{ref_clk} ²	1/F _{baud_rate} + T _{ref_clk}	—
UA4	Transmit IR Pulse Duration	t _{TIRpulse}	$(3/16) \times (1/F_{baud_rate}) - T_{ref_clk}$	$(3/16) \times (1/F_{baud_rate}) + T_{ref_clk}$	—

¹ F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

UART IrDA Mode Receiver

Figure 97 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 90 lists the receive timing characteristics.

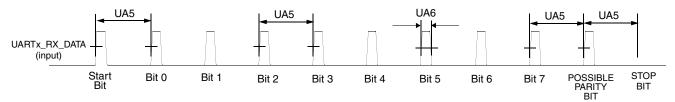


Figure 97. UART IrDA Mode Receive Timing Diagram

Table 90. IrDA Mode Receive Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA5	Receive Bit Time ¹ in IrDA mode	t _{RIRbit}	1/F _{baud_rate} ² – 1/(16 × F _{baud_rate})	1/F _{baud_rate} + 1/(16 × F _{baud_rate})	_
UA6	Receive IR Pulse Duration	t _{RIRpulse}	1.41 μs	$(5/16) \times (1/F_{baud_rate})$	—

The UART receiver can tolerate $1/(16 \times F_{baud_rate})$ tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{baud_rate})$.

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

Boot Mode Configuration

Interface	IP Instance	Allocated Pads During Boot	Comment
NAND Flash	GPMI	NANDF_CLE, NANDF_ALE, NANDF_WP_B, SD4_CMD, SD4_CLK, NANDF_RB0, SD4_DAT0, NANDF_CS0, NANDF_CS1, NANDF_CS2, NANDF_CS3, NANDF_D[7:0]	8 bit Only CS0 is supported
SD/MMC	USDHC-1	SD1_CLK, SD1_CMD,SD1_DAT0, SD1_DAT1, SD1_DAT2, SD1_DAT3, NANDF_D0, NANDF_D1, NANDF_D2, NANDF_D3, KEY_COL1	1, 4, or 8 bit
SD/MMC	USDHC-2	SD2_CLK, SD2_CMD, SD2_DAT0, SD2_DAT1, SD2_DAT2, SD2_DAT3, NANDF_D4, NANDF_D5, NANDF_D6, NANDF_D7, KEY_ROW1	1, 4, or 8 bit
SD/MMC	USDHC-3	SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1, SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5, SD3_DAT6, SD3_DAT7, GPI0_18	1, 4, or 8 bit
SD/MMC	USDHC-4	SD4_CLK, SD4_CMD, SD4_DAT0, SD4_DAT1, SD4_DAT2, SD4_DAT3, SD4_DAT4, SD4_DAT5, SD4_DAT6, SD4_DAT7, NANDF_CS1	1, 4, or 8 bit
I2C	I2C-1	EIM_D28, EIM_D21	—
I2C	I2C-2	EIM_D16, EIM_EB2	—
I2C	I2C-3	EIM_D18, EIM_D17	—
SATA	SATA_PHY	SATA_TXM, SATA_TXP, SATA_RXP, SATA_RXM, SATA_REXT	_
USB	USB-OTG PHY	USB_OTG_DP USB_OTG_DN USB_OTG_VBUS	_

Package Information and Contact Assignments

				Out of Reset Condition ¹				
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²	
DRAM_CS1	AD17	NVCC_DRAM	DDR	ALT0	DRAM_CS1_B	Output	0	
DRAM_D0	AD2	NVCC_DRAM	DDR	ALT0	DRAM_DATA00	Input	PU (100K)	
DRAM_D1	AE2	NVCC_DRAM	DDR	ALT0	DRAM_DATA01	Input	PU (100K	
DRAM_D10	AA6	NVCC_DRAM	DDR	ALT0	DRAM_DATA10	Input	PU (100K)	
DRAM_D11	AE7	NVCC_DRAM	DDR	ALT0	DRAM_DATA11	Input	PU (100K	
DRAM_D12	AB5	NVCC_DRAM	DDR	ALT0	DRAM_DATA12	Input	PU (100K	
DRAM_D13	AC5	NVCC_DRAM	DDR	ALT0	DRAM_DATA13	Input	PU (100K	
DRAM_D14	AB6	NVCC_DRAM	DDR	ALT0	DRAM_DATA14	Input	PU (100K	
DRAM_D15	AC7	NVCC_DRAM	DDR	ALT0	DRAM_DATA15	Input	PU (100K	
DRAM_D16	AB7	NVCC_DRAM	DDR	ALT0	DRAM_DATA16	Input	PU (100K	
DRAM_D17	AA8	NVCC_DRAM	DDR	ALT0	DRAM_DATA17	Input	PU (100K	
DRAM_D18	AB9	NVCC_DRAM	DDR	ALT0	DRAM_DATA18	Input	PU (100K	
DRAM_D19	Y9	NVCC_DRAM	DDR	ALT0	DRAM_DATA19	Input	PU (100K	
DRAM_D2	AC4	NVCC_DRAM	DDR	ALT0	DRAM_DATA02	Input	PU (100K	
DRAM_D20	Y7	NVCC_DRAM	DDR	ALT0	DRAM_DATA20	Input	PU (100K	
DRAM_D21	Y8	NVCC_DRAM	DDR	ALT0	DRAM_DATA21	Input	PU (100K	
DRAM_D22	AC8	NVCC_DRAM	DDR	ALT0	DRAM_DATA22	Input	PU (100K	
DRAM_D23	AA9	NVCC_DRAM	DDR	ALT0	DRAM_DATA23	Input	PU (100K	
DRAM_D24	AE9	NVCC_DRAM	DDR	ALT0	DRAM_DATA24	Input	PU (100K	
DRAM_D25	Y10	NVCC_DRAM	DDR	ALT0	DRAM_DATA25	Input	PU (100K	
DRAM_D26	AE11	NVCC_DRAM	DDR	ALT0	DRAM_DATA26	Input	PU (100k	
DRAM_D27	AB11	NVCC_DRAM	DDR	ALT0	DRAM_DATA27	Input	PU (100k	
DRAM_D28	AC9	NVCC_DRAM	DDR	ALT0	DRAM_DATA28	Input	PU (100K	
DRAM_D29	AD9	NVCC_DRAM	DDR	ALT0	DRAM_DATA29	Input	PU (100K	
DRAM_D3	AA5	NVCC_DRAM	DDR	ALT0	DRAM_DATA03	Input	PU (100K	
DRAM_D30	AD11	NVCC_DRAM	DDR	ALT0	DRAM_DATA30	Input	PU (100K	
DRAM_D31	AC11	NVCC_DRAM	DDR	ALT0	DRAM_DATA31	Input	PU (100K	
DRAM_D32	AA17	NVCC_DRAM	DDR	ALT0	DRAM_DATA32	Input	PU (100K	
DRAM_D33	AA18	NVCC_DRAM	DDR	ALT0	DRAM_DATA33	Input	PU (100K	
DRAM_D34	AC18	NVCC_DRAM	DDR	ALT0	DRAM_DATA34	Input	PU (100K	
DRAM_D35	AE19	NVCC_DRAM	DDR	ALT0	DRAM_DATA35	Input	PU (100K	
DRAM_D36	Y17	NVCC_DRAM	DDR	ALT0	DRAM_DATA36	Input	PU (100K	
DRAM_D37	Y18	NVCC_DRAM	DDR	ALT0	DRAM_DATA37	Input	PU (100k	
DRAM_D38	AB19	NVCC_DRAM	DDR	ALT0	DRAM_DATA38	Input	PU (100k	
DRAM_D39	AC19	 NVCC_DRAM	DDR	ALT0	 DRAM_DATA39	Input	PU (100k	
DRAM_D4	AC1	 NVCC_DRAM	DDR	ALT0	 DRAM_DATA04	Input	PU (100K	

Table 96. 21 x 21 mm Functional Contact Assignments (continued)