

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	178
Program Memory Size	4MB (4M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5747ck1cmj6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTE

All optional features (Flash memory, RAM, Peripherals) start with lowest peripheral number (for example: STM_0) or memory address and end at the highest available peripheral number or memory address (for example: MPC574xC have 2 STM, ending with STM_1).

Feature	MPC5747C	MPC5748C	MPC5746G MPC5747G MPC57486				
CPUs	e200z4	e200z4	e200z4	e200z4	e200z4		
	e200z2	e200z2	e200z4	e200z4	e200z4		
			e200z2	e200z2	e200z2		
FPU	e200z4	e200z4	e200z4	e200z4	e200z4		
			e200z4	e200z4	e200z4		
Maximum	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)		
Operating Frequency ²	80MHz (z2)	80MHz (z2)	160MHz (z4)	160MHz (z4)	160MHz (z4)		
riequency			80MHz (z2)	80MHz (z2)	80MHz (z2)		
Flash memory	4 MB	6 MB	3 MB	4 MB	6 MB		
EEPROM support	32 KB to 128	KB emulated	32	KB to 192 KB emula	ted		
RAM	512 KB		768	KB			
ECC			End to End				
SMPU	24 e	24 entry 32 entry					
DMA			32 channels				
10-bit ADC			48 Standard channels	3			
			32 External channels	i			
12-bit ADC			16 Precision channels	3			
			16 Standard channels	3			
			32 External channels				
AnalogComparator			3				
BCTU			1				
SWT		2		4 ³			
STM	2	2		3			
PIT-RTI			16 channels PIT				
			1 channels RTI				
RTC/API			Yes				
Total Timer I/O ⁴			96 channels				
			16-bits				
LINFlexD	1 M/S	, 15 M		1 M/S, 17 M			
FlexCAN		8 wit	h optional CAN FD su	ipport			
DSPI/SPI			4 x DSPI				
	6 x SPI						

Table 1. MPC5748G Family Comparison1

Table continues on the next page...

Start Address	End Address	Flash block	RWW	MPC5747C	MPC5746G
				MPC5748C	MPC5747G
					MPC5748G
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	available	available
0x00FB0000	0x00FB7FFF	32 KB data Flash	2	not available	available
0x00FB8000	0x00FBFFFF	32 KB data flash	3	not available	available

 Table 3.
 MPC5748G Family Comparison - NVM Memory Map 2

 Table 4.
 MPC5748G Family Comparison - RAM Memory Map

Start Address	End Address	Allocated size [KB]	MPC5747C	MPC5748C
				MPC5746G
				MPC5747G
				MPC5748G
0x4000000	0x40001FFF	8	available	available
0x40002000	0x4000FFFF	56	available	available
0x40010000	0x4001FFFF	64	available	available
0x40020000	0x4003FFFF	128	available	available
0x40040000	0x4007FFFF	256	available	available
0x40080000	0x400BFFFF	256	not available	available

3 Ordering parts

3.1 Determining valid orderable parts

To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the following device number: MPC5748G.

3.2 Ordering Information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{array}{c} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}^2 \end{array}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
V _{DD_HV_FLA} ^{3, 4}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁵	Decoupling pin for low power regulators ⁶	—	-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁷	3.3 V / 5.0 V ADC1 high reference voltage		-0.3	6	V
V _{DD_HV_ADC0}	3.3 V to 5.5V ADC supply voltage		-0.3	6.0	V
V _{DD_HV_ADC1}					
V _{SS_HV_ADC0}	3.3V to 5.5V ADC supply ground		-0.1	0.1	V
V _{SS_HV_ADC1}					
V _{DD_LV}	Core logic supply voltage	—	-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V $_{\rm SS_HV}$)	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	-5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition		-50	50	mA
T _{ramp}	Supply ramp rate	—	0.5 V / min	100V/ms	—
T _A ⁸	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature		-55	165	°C

Table 5. Absolute maximum ratings

1. All voltages are referred to VSS_HV unless otherwise specified

- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 5. This pin should be decoupled with low ESR 1 μF capacitor.
- 6. Not available for input voltage, only for decoupling internal regulators
- 7. 10-bit ADC does not have dedicated reference and its reference is double bonded to 10-bit ADC supply(VDD_HV_ADC0).
- 8. T_J=150°C. Assumes T_A=125°C
 - Assumes maximum θJA. SeeThermal attributes

Figure 2. Voltage regulator capacitance connection

Table 8.	Voltage regulator	electrical	specifications
----------	-------------------	------------	----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} 1	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	_	0.001	_	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31		4.7		
C _{flash_reg} ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	-	0.001	_	0.03	Ohm

Table continues on the next page...

Symbol	Parameter	State	Conditions		Configuration			Thresho	ld	Unit						
				Powe r Up ¹	Mas k Opt	Reset Type	Min	Тур	Max	v						
V _{HVD_LV_cold}	LV supply high	Fall	Untrimmed	No	Yes	Functional	Disable	ed at Sta	ırt							
	voltage		Trimmed	1			1.325	1.345	1.375	V						
	detecting at	Rise	Untrimmed				Disable	ed at Sta	irt							
	the device pin		Trimmed]			1.345	1.365	1.395	V						
V _{LVD_LV_PD2_hot}	LV supply low	Fall	Untrimmed	Yes	No	Powerup	1.080	1.120	1.160	V						
	voltage		Trimmed				1.125	1.143	1.160	V						
	detecting in	Rise	Untrimmed				1.100	1.140	1.180	V						
	the PD2 core (hot) area		Trimmed				1.145	1.163	1.180	V						
V _{LVD_LV_PD1_hot}	LV supply low	Fall	Untrimmed	Yes	No	Powerup	1.080	1.120	1.160	V						
	voltage		Trimmed				1.114	1.137	1.160	V						
	detecting in	Rise	Untrimmed				1.100	1.140	1.180	V						
the PD1 core (hot) area	the PD1 core (hot) area		Trimmed				1.134	1.157	1.180	V						
V _{LVD_LV_PD0_hot}	LV supply low voltage monitoring	Fall	Untrimmed	Yes	No	Powerup	1.080	1.120	1.160	V						
			Trimmed				1.114	1.137	1.160	V						
	detecting in	Rise	Untrimmed				1.100	1.140	1.180	V						
	the PD0 core (hot) area		Trimmed				1.134	1.157	1.180	V						
V _{POR_HV}	HV supply	Fall	Untrimmed	Yes	No	Powerup	2.700	2.850	3.000	V						
	power on reset detector	Rise	Untrimmed				2.750	2.900	3.050	V						
V _{LVD_IO_A_LO} , ²	HV IO_A	Fall	Untrimmed	Yes	No	Powerup	2.750	2.923	3.095	V						
	supply low		Trimmed				2.978	3.039	3.100	V						
	monitoring -	Rise	Untrimmed				2.780	2.953	3.125	V						
	low range		Trimmed				3.008	3.069	3.130	V						
V _{LVD_IO_A_HI} ²	HV IO_A	Fall	Trimmed	No	Yes	Functional	Disable	ed at Sta	ırt							
	supply low						4.060	4.151	4.240	V						
	monitoring -	Rise	Trimmed				Disable	ed at Sta	ırt							
	high range						4.115	4.201	4.3	V						
$V_{LVD_LV_PD2_cold}$	LV supply low	Fall	Untrimmed	No	Yes	Functional	Disable	ed at Sta	ırt							
	voltage monitoring.		Trimmed				1.14	1.158	1.175	V						
	detecting at	Rise	Untrimmed				Disable	ed at Sta	ırt							
	the device pin	the device pin	the device pin	the device pin	the device pin	the device pin	the device pin		Trimmed				1.16	1.178	1.195	V

Table 9. Voltage monitor electrical characteristics (continued)

 All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. There is no voltage monitoring on the $V_{DD_HV_ADC0}$, $V_{DD_HV_ADC1}$, $V_{DD_HV_B}$ and $V_{DD_HV_C}$ I/O segments. For applications requiring monitoring of these segments, either connect these to $V_{DD_HV_A}$ at the PCB level or monitor externally.

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

I/O parameters

Figure 4. Noise filtering on reset signal

Table 18.	Functional	reset pad	electrical	specifications
-----------	------------	-----------	------------	----------------

Symbol	Parameter	Conditions		Value			
			Min	Тур	Max		
V _{IH}	Input high level TTL (Schmitt Trigger)	-	2.0	-	V _{DD_HV_A} +0.4	V	
V _{IL}	Input low level TTL (Schmitt Trigger)	—	-0.4	—	0.8	V	
V _{HYS}	Input hysteresis TTL (Schmitt Trigger)	—	300	—	_	mV	
V _{DD_POR}	Minimum supply for strong pull-down activation	—	_	-	1.2	V	
I _{OL_R}	Strong pull-down current ¹	Device under power-on reset $V_{DD_HV_A} = V_{DD_POR}$ $V_{OL} = 0.35^*V_{DD_HV_A}$	0.2	_		mA	
		Device under power-on reset $V_{DD_{-}HV_{-}A} = V_{DD_{-}POR}$ $V_{OL} = 0.35^{*}V_{DD_{-}HV_{-}IO}$	11	-		mA	
W _{FRST}	RESET input filtered pulse	—	—	—	500	ns	
W _{NFRST}	RESET input not filtered pulse	—	2000	—	—	ns	
ll _{wpu} l	Weak pull-up current absolute value	RESET pin $V_{IN} = V_{DD}$	23	_	82	μA	

1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Clocks and PLL interfaces modules

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
V _{IL}	Input low level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3			1.25	V

 Table 23.
 Main oscillator electrical characteristics (continued)

6.2.2 32 kHz Oscillator electrical specifications Table 24. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	S

1. This parameter is characterized before qualification rather than 100% tested.

2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 16 MHz RC Oscillator electrical specifications Table 25. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value		Unit	
			Min	Тур	Max	1
F _{Target}	IRC target frequency	—	—	16	—	MHz
PTA	IRC frequency variation after trimming	—	-5	_	5	%
T _{startup}	Startup time	—			1.5	us
T _{STJIT}	Cycle to cycle jitter		—		1.5	%
T _{LTJIT}	Long term jitter				0.2	%

NOTE

The above start up time of 1 us is equivalent to 16 cycles of 16 MHz.

Symbol	Characteristic ¹	Typ ²	Factory Programming ^{3, 4}		Field Update			Unit
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifetime Max ⁶		
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	_	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000		ms

Table 30. Flash memory program and erase specifications (continued)

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

- 3. Conditions: \leq 150 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.

5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.

6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

6.3.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.	_	_	512 x Tperiod x Nread	_
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	_	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	_	_	2048 x Tperiod x Nread	_
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	_	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	—	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	—	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65		356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	_	1,339.5	μs

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.	_	9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.	_		100	ns
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.		_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.		45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP		_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.			80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

6.3.5 Flash memory AC timing specifications

Table 33. Flash memory AC timing specifications

No	Symbol	Parameter	Conditions	High Spo	High Speed Mode		ed mode	Unit
				Min	Max	Min	Max	1
			Master (MTFE = 1, CPHA = 1)	15	_	20	_	
10	t _{HI}	Data hold	Master (MTFE = 0)	NA	—	-5	_	ns
		time for	Slave	4	—	4	_	
		inputo	Master (MTFE = 1, CPHA = 0)	0	—	11 ¹	_	
			Master (MTFE = 1, CPHA = 1)	0	_	-5	_	
11	t _{SUO}	Data valid	Master (MTFE = 0)	_	NA	_	4	ns
		(after SCK	Slave	_	15	_	23	
		euge)	Master (MTFE = 1, CPHA = 0)	_	4	_	16 ¹	
			Master (MTFE = 1, CPHA = 1)	_	4	_	4	
12	t _{HO}	Data hold time for outputs	Master (MTFE = 0)	NA	_	-2	_	ns
			Slave	4	_	6	_	
			Master (MTFE = 1, CPHA = 0)	-2	—	10 ¹	_	
			Master (MTFE = 1, CPHA = 1)	-2	—	-2	_	

Table 35. DSPI electrical specifications (continued)

1. SMPL_PTR should be set to 1

NOTE

Restriction For High Speed modes

- DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master mode SCK
- DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave SCK frequency
- Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode
- For Master mode MTFE will be 1 for high speed mode
- For high speed slaves, their master have to be in MTFE=1 mode or should be able to support 15ns tSUO delay

NOTE

For numbers shown in the following figures, see Table 35

6.4.2.3 TxD

Figure 19. TxD Signal

Table 39.	TxD output characteristics
-----------	----------------------------

Name	Description ¹	Min	Max	Unit
dCCT _{xAsym}	Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100 ns)	-2.45	2.45	ns
dCCTxD _{RISE25} +dCCTx D _{FALL25}	Sum of Rise and Fall time of TxD signal at the output	—	9 ²	ns

Table continues on the next page...

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

6.4.4 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

6.4.4.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

NOTE

ENET0 supports the following xMII interfaces: MII, MII_Lite and RMII. ENET1 supports the following xMII interfaces: MII_Lite.

NOTE

It is only possible to use ENET0 and ENET1 simultaneously when both are configured for MII_Lite.

NOTE

In certain pinout configurations ENET1 MII-Lite signals can be across multiple VDD_HV_A/B/C domains. If these configuration are used, VDD_HV IO domains need to be at the same voltage (for example: 3.3V)

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5		ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5		ns
_	TXCLK frequency	—	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	—	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	_	25	ns

Table 42. MII signal switching specifications

Debug specifications

6.5 Debug specifications

6.5.1 JTAG interface timing

Table 50. JTAG pin AC electrical characteristics ¹

#	Symbol	Characteristic	Min	Max	Unit
1	t _{JCYC}	TCK Cycle Time ²	62.5	—	ns
2	t _{JDC}	TCK Clock Pulse Width	40	60	%
3	t _{TCKRISE}	TCK Rise and Fall Times (40% - 70%)	_	3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI Data Setup Time	5		ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI Data Hold Time	5		ns
6	t _{TDOV}	TCK Low to TDO Data Valid	_	20 ³	ns
7	t _{TDOI}	TCK Low to TDO Data Invalid	0		ns
8	t _{TDOHZ}	TCK Low to TDO High Impedance	—	15	ns
11	t _{BSDV}	TCK Falling Edge to Output Valid	_	600 ⁴	ns
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	—	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	—	600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15	_	ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

1. These specifications apply to JTAG boundary scan only.

- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

Figure 30. JTAG boundary scan timing

6.5.2 Nexus timing

Table 51. Nexus debug port timing ¹

No.	Symbol	Parameter	Condition	Min	Max	Unit
			S			
1	t _{MCYC}	MCKO Cycle Time	_	15.6	—	ns
2	t _{MDC}	MCKO Duty Cycle	_	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	_	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	—	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	_	1	—	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	_	62.5	—	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time		8		ns

Table continues on the next page...

Table 51. Nexus debug port timing ¹ (continued)

No.	Symbol	Parameter	Condition s	Min	Max	Unit
9	t _{NTDIH} , t _{NTMSH}	TDI, TMS Data Hold Time	_	5	_	ns
10	t _{JOV}	TCK Low to TDO/RDY Data Valid	—	0	25	ns

1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

- 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. The system clock frequency needs to be four times faster than the TCK frequency.

Figure 31. Nexus output timing

Figure 32. Nexus EVTI Input Pulse Width

Debug specifications

Figure 33. Nexus TDI, TMS, TDO timing

6.5.3 WKPU/NMI timing

Table 52. WKPU/NMI glitch filter

No.	Symbol	Parameter	Min	Тур	Max	Unit
1	W _{FNMI}	NMI pulse width that is rejected	—	—	20	ns
2	W _{NFNMI} D	NMI pulse width that is passed	400	_	_	ns

10.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	-	200	-	μs
BAF execution time (boot header at last location)	-	320	-	μs

Table 55. BAF execution duration

10.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in Table 54.

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in Table 54 are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3.

Reset sequence

Figure 38. Functional reset sequence long