

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

C, LINbus, SAI, SPI, USB, USB OTG
т
Pad
ad

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Timer
 - 16 Periodic Interrupt Timers (PITs)
 - Three System Timer Module (STM)
 - Four Software WatchDog Timers (SWT)
 - 96 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
- Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) and 1149.7 (cJTAG)
- Security
 - Hardware Security Module (HSMv2)
 - Password and Device Security (PASS and TDM) supporting advanced censorship and life-cycle management
 - One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
- Functional Safety
 - ISO26262 ASIL compliance
- Multiple operating modes
 - Includes enhanced low power operation

1 Block diagram

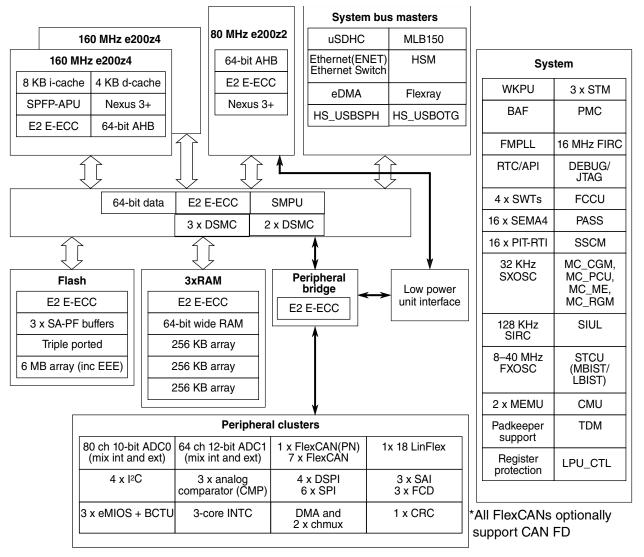


Figure 1. MPC5748G block diagram

2 Family comparison

The following table provides a summary of the different members of the MPC5748G family and their proposed features. This information is intended to provide an understanding of the range of functionality offered by this family. For full details of all of the family derivatives please contact your marketing representative.

NOTE

All optional features (Flash memory, RAM, Peripherals) start with lowest peripheral number (for example: STM_0) or memory address and end at the highest available peripheral number or memory address (for example: MPC574xC have 2 STM, ending with STM_1).

Feature	MPC5747C	MPC5748C	MPC5746G	MPC5747G	MPC5748G		
CPUs	e200z4	e200z4	e200z4	e200z4	e200z4		
	e200z2	e200z2	e200z4	e200z4	e200z4		
			e200z2	e200z2	e200z2		
FPU	e200z4	e200z4	e200z4	e200z4	e200z4		
			e200z4	e200z4	e200z4		
Maximum	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)		
Operating Frequency ²	80MHz (z2)	80MHz (z2)	160MHz (z4)	160MHz (z4)	160MHz (z4)		
Frequency			80MHz (z2)	80MHz (z2)	80MHz (z2)		
Flash memory	4 MB	6 MB	3 MB	4 MB	6 MB		
EEPROM support	32 KB to 128	32 KB to 128 KB emulated 32 KB to 192 KB emulated					
RAM	512 KB		768	KB			
ECC		End to End					
SMPU	24 e	24 entry 32 entry					
DMA		32 channels					
10-bit ADC			48 Standard channels	6			
			32 External channels				
12-bit ADC			16 Precision channels	6			
			16 Standard channels	3			
			32 External channels				
AnalogComparator			3				
BCTU			1				
SWT	2	2		4 ³			
STM	2	2		3			
PIT-RTI			16 channels PIT				
			1 channels RTI				
RTC/API			Yes				
Total Timer I/O ⁴			96 channels				
	16-bits						
LINFlexD	1 M/S	15 M		1 M/S, 17 M			
FlexCAN		8 wit	h optional CAN FD su	ipport			
DSPI/SPI			4 x DSPI				
			6 x SPI				

Table 1. MPC5748G Family Comparison1

Table continues on the next page...

Table 1. MPC5748G Family Comparison1 (continued)

Feature	MPC5747C	MPC5748C	MPC5746G	MPC5747G	MPC5748G			
l ² C			4					
SAI/I ² S			3					
FXOSC	8 - 40 MHz							
SXOSC		32 KHz						
FIRC			16 MHz					
SIRC			128 KHz					
FMPLL			Yes					
LPU			Yes					
FlexRay 2.1 (dual channel)			Yes, 128 MB					
MLB150	()		1				
USB 2.0 SPH	()		1				
USB 2.0 OTG	()		1				
SDHC			1					
Ethernet (RMII, MII + 1588, Muti queue AVB support)	Up to 2							
3 Port L2 Ethernet Switch			Optional					
CRC			1					
MEMU			2					
STCU			1					
HSM-v2 (security)			Optional					
Censorship			Yes					
FCCU			1					
Safety level		Specifi	c functions ASIL-B ce	rtifiable				
User MBIST			Yes					
User LBIST			Yes					
I/O Retention in Standby			Yes					
GPIO ⁵	Up to 264 GPI and up to 246 GPIO							
Debug			JTAGC,					
			cJTAG					
Nexus			Z4 N3+					
			Z2 N3+					
Packages			176 LQFP-EP					
			256 BGA, 324 BGA					

1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

2. Based on 125°C ambient operating temperature and subject to full device characterisation.

- 3. Additional SWT included when HSM option selected
- 4. Refer device datasheet and reference manual for information on to timer channel configuration and functions.

Start Address	End Address	Flash block	RWW	MPC5747C	MPC5746G
				MPC5748C	MPC5747G
					MPC5748G
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	available	available
0x00FB0000	0x00FB7FFF	32 KB data Flash	2	not available	available
0x00FB8000	0x00FBFFFF	32 KB data flash	3	not available	available

 Table 3.
 MPC5748G Family Comparison - NVM Memory Map 2

 Table 4.
 MPC5748G Family Comparison - RAM Memory Map

Start Address	End Address	Allocated size [KB]	MPC5747C	MPC5748C MPC5746G MPC5747G MPC5748G
0x4000000	0x40001FFF	8	available	available
0x40002000	0x4000FFFF	56	available	available
0x40010000	0x4001FFFF	64	available	available
0x40020000	0x4003FFFF	128	available	available
0x40040000	0x4007FFFF	256	available	available
0x40080000	0x400BFFFF	256	not available	available

3 Ordering parts

3.1 Determining valid orderable parts

To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the following device number: MPC5748G.

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
		T _a = 105 °C	—	114	206	mA
		$T_{a} = 125 \ ^{\circ}C^{4}$	_	131	277	mA
I _{DD_STOP}	STOP mode	T _a = 25 °C	—	11	_	mA
	Operating current	$V_{DD_{LV}} = 1.25 V$				
		T _a = 85 °C	—	19.8	105	
		V _{DD_LV} = 1.25 V				
		T _a = 105 °C		29	145	
		V _{DD_LV} = 1.25 V				
		$T_a = 125 \text{ °C}^4$	—	45	160	
		$V_{DD_{LV}} = 1.25 V$				
IDD_HV_ADC_REF ^{11, 12}	ADC REF	$T_a = 25 \ ^{\circ}C$	_	200	400	μA
	Operating current	2 ADCs operating at 80 MHz				
		$V_{DD_HV_ADC_REF} = 3.6 V$				
		$T_a = 125 \text{ °C }^4$	—	200	400	
		2 ADCs operating at 80 MHz				
		$V_{DD_HV_ADC_REF} = 5.5 V$				
I _{DD_HV_ADCx} ¹²	ADC HV	T _a = 25 °C	_	1	2	mA
	Operating current	ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 3.6 V$				
		$T_{a} = 125 \ ^{\circ}C^{4}$	_	1.2	2	
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 5.5 V$				
I _{DD_HV_FLASH}	Flash Operating	$T_{a} = 125 \ ^{\circ}C^{4}$	—	40	45	mA
	current during read access	3.3 V supplies				
		x MHz frequency				

Table 10. Current consumption characteristics (continued)

- 1. The content of the Conditions column identifies the components that draw the specific current.
- 2. ALL Modules enabled at maximum frequency: 2 x e200Z4 @ 160 MHz, e200Z2 at 80 MHz, Platform @ 160MHz, DMA (SRAM to SRAM), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals (500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH transmitting (USB-OTG only clocked), 2 x I2C transmitting (rest clocked), 1 x SAI transmitting (rest clocked), ADC0 converting using BCTU triggers triggered through PIT (other ADC clocked), RTC running, 3 x STM running, 2 x DSPI transmitting (rest clocked), 2 x SPI transmitting (rest clocked), 4 x CAN state machines working(rest clocked), 9 x LINFlexD transmitting (rest clocked), 1 x eMIOS clocked (used OPWFMB mode) (Others clock gated), SDHC,3 x CMP only clocked, FIRC, SIRC, FXOSC, SXOSC, PLL running. All others modules clock gated if not specifically mentioned. I/O supply current excluded.
- 3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C.
- 4. Tj=150°C. Assumes Ta=125°C
 - Assumes maximum θJA. SeeThermal attributes
- 5. Enabled Modules in Gateway mode: 2 x e200Z4 @160 MHz (Instruction and Data cache enabled), Platform @160MHz, e200Z2 at 80 MHz(Instruction cache enabled), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH Transmitting, USB-OTG clocked, 2 x I2C transmitting, (2 x I2C clock gated), 1 x SAI transmitting (2 x SAI clock gated), ADC0 converting in continuous mode (ADC1 clock gated), PIT clocked, RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(Other DSPS clock gated), 2 x SPI transmitting(Other SPIs clock gated), 4

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Memory interfaces

- 2. This jitter component is added when the PLL is working in the fractional mode.
- 3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.
- 4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding specified value of jitter table

Table 29. Percentage of sample exceeding specified value of jitter

N	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10

6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol Characteristic¹ Typ² Factory **Field Update** Unit Programming^{3, 4} Initial Typical Lifetime Max⁶ Initial Max, Full End of Max Temp Life⁵ 20°C ≤T_A -40°C ≤T_J ≤ 1,000 -40°C ≤T,J ≤ 250,000 ≤30°C ≤150°C ≤150°C cycles cycles 500 Doubleword (64 bits) program time 43 100 150 55 μs t_{dwpgm} 200 300 108 500 Page (256 bits) program time 73 μs t_{ppgm} Quad-page (1024 bits) program 268 800 1,200 396 2,000 μs t_{qppgm} time 16 KB Block erase time 168 290 320 250 1,000 ms t_{16kers} 40 1,000 16 KB Block program time 34 45 50 ms t_{16kpgm}

Table 30. Flash memory program and erase specifications

Table continues on the next page...

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.	_	9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.	_	_	100	ns
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.		—	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.		45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP	_	_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.			80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods		20.42 plus four system clock periods	μs

6.3.5 Flash memory AC timing specifications

Table 33. Flash memory AC timing specifications

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

6.4 Communication interfaces

6.4.1 DSPI timing

Table 35. DSPI electrical specifications

No	Symbol	Parameter	Conditions	High Spe	eed Mode	low Spe	ed mode	Unit
				Min	Max	Min	Мах	1
1	t _{SCK}	DSPI cycle	Master (MTFE = 0)	25	—	50	—	ns
		time	Slave (MTFE = 0)	40	_	60	—	1
2	t _{csc}	PCS to SCK delay		16		_	_	ns
3	t _{ASC}	After SCK delay	—	16		_	_	ns
4	t _{SDC}	SCK duty cycle	—	t _{SCK} /2 - 10	t _{SCK} /2 + 10	_	_	ns
5	t _A	Slave access time	SS active to SOUT valid	—	40	_	_	ns
6	t _{DIS}	Slave SOUT disable time	_{SS} inactive to SOUT High-Z or invalid	—	10	—	_	ns
7	t _{PCSC}	PCSx to PCSS time	—	13	—	_	_	ns
8	t _{PASC}	PCSS to PCSx time		13		_	_	ns
9	t _{SUI}	Data setup	Master (MTFE = 0)	NA	_	20	—	ns
		time for inputs	Slave	2	—	2	—	
		inputo	Master (MTFE = 1, CPHA = 0)	15	—	8 ¹	—	

Table continues on the next page ...

Communication interfaces

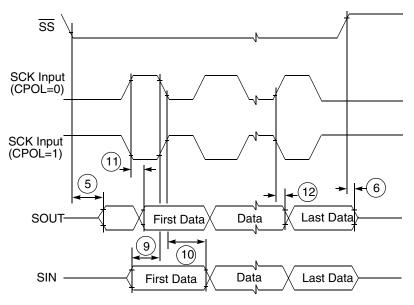


Figure 11. DSPI classic SPI timing — slave, CPHA = 1

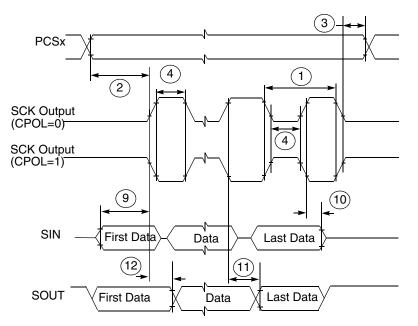


Figure 12. DSPI modified transfer format timing — master, CPHA = 0

FlexRay electrical specifications

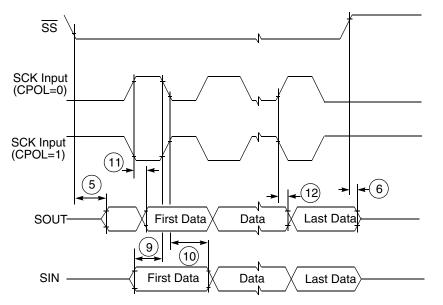


Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

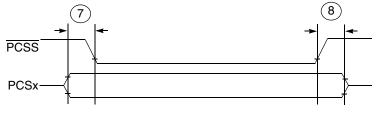
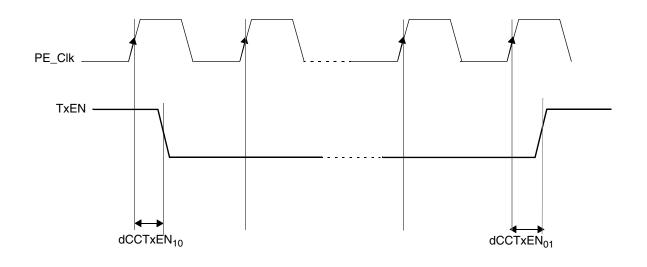



Figure 16. DSPI PCS strobe (PCSS) timing

6.4.2 FlexRay electrical specifications

6.4.2.1 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals. It should be noted that these are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

6.4.2.3 TxD

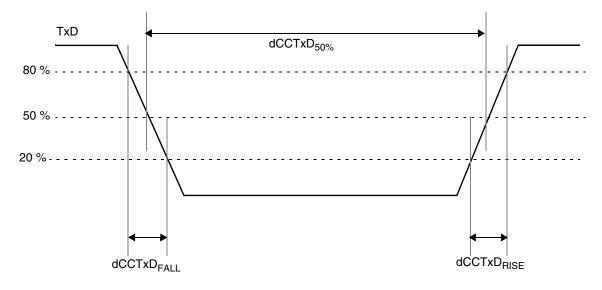


Figure 19. TxD Signal

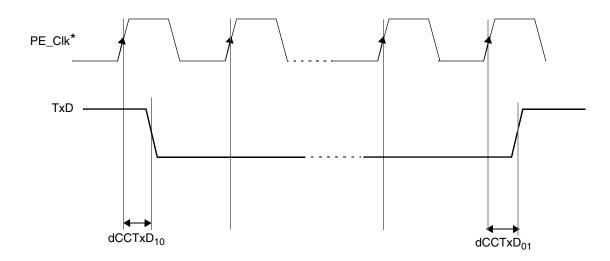

Name	Description ¹	Min	Max	Unit
dCCT _{xAsym}	Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100 ns)	-2.45	2.45	ns
dCCTxD _{RISE25} +dCCTx D _{FALL25}	Sum of Rise and Fall time of TxD signal at the output	—	9 ²	ns

Table continues on the next page...

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	—	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	_	25	ns

Table 39. TxD output characteristics (continued)

1. All parameters specified for $V_{DD_HV_IOx} = 3.3 \text{ V} - 5\%$, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF. 2. For 3.3 V ± 10% operation, this specification is 10 ns.

*FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays

6.4.2.4 **RxD**

Name	Description ¹	Min	Мах	Unit
C_CCRxD	Input capacitance on RxD pin	—	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge	_	10	ns

6.4.4 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

6.4.4.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

NOTE

ENET0 supports the following xMII interfaces: MII, MII_Lite and RMII. ENET1 supports the following xMII interfaces: MII_Lite.

NOTE

It is only possible to use ENET0 and ENET1 simultaneously when both are configured for MII_Lite.

NOTE

In certain pinout configurations ENET1 MII-Lite signals can be across multiple VDD_HV_A/B/C domains. If these configuration are used, VDD_HV IO domains need to be at the same voltage (for example: 3.3V)

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
_	TXCLK frequency	—	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	_	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	_	25	ns

Table 42. MII signal switching specifications

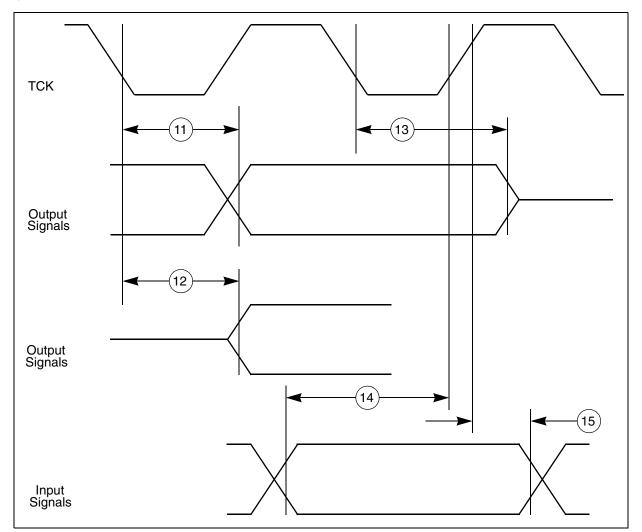


Figure 30. JTAG boundary scan timing

6.5.2 Nexus timing

Table 51. Nexus debug port timing ¹

No.	Symbol	Parameter	Condition	Min	Max	Unit
			S			
1	t _{MCYC}	MCKO Cycle Time	—	15.6	—	ns
2	t _{MDC}	MCKO Duty Cycle	_	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	—	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	—	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	_	1	_	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	—	62.5	—	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time		8		ns

Table continues on the next page...

6.5.4 External interrupt timing (IRQ pin) Table 53. External interrupt timing specifications

No.	Symbol	Parameter	Conditions	Min	Max	Unit
1	t _{IPWL}	IRQ pulse width low	—	3	—	t _{CYC}
2	t _{IPWH}	IRQ pulse width high		3	_	t _{CYC}
3	t _{ICYC}	IRQ edge to edge time	_	6		t _{CYC}

These values applies when IRQ pins are configured for rising edge or falling edge events, but not both.

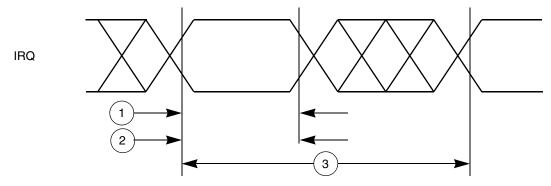


Figure 34. External interrupt timing

7 Thermal attributes

7.1 Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	45.5	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	23.1	°C/W	1, 2, 3
Single-layer (1s)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	34.8	°C/W	1,3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	16	°C/W	1,3
	R _{θJB}	Thermal resistance, junction to board	9.4	°C/W	4
	R _{0JCtop}	Thermal resistance, junction to case top	9.5	°C/W	5
	R _{0JCbotttom}	Thermal resistance, junction to case bottom	0.2	°C/W	6

Table continues on the next page ...

9 Pinouts

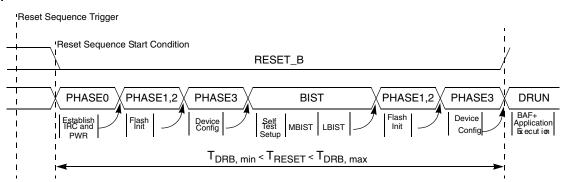
9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

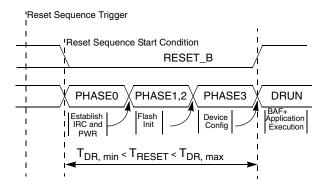
10 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

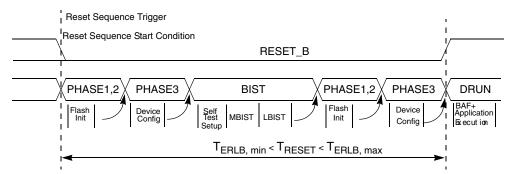
10.1 Reset sequence duration


Table 54 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter	T _{Reset}		Unit	
			Min	Typ ¹	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled	5.730	7.796		ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled	0.111	0.182		ms
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot	5.729	7.793		ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot	0.110	0.179		ms
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	0.007	0.009		ms


Table 54. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.


Reset sequence

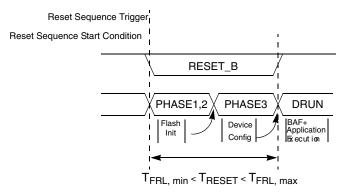


Figure 38. Functional reset sequence long