

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	129
Program Memory Size	4MB (4M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5747ck1vku6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

Table 2. MPC5748G Family Comparison - NVM Memory Map 1

Start Address	End Address	Flash block	RWW	MPC5746	MPC5747	MPC5748
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	6	available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	6	available	available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	6	available	available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	available	available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	available	available	available
0x01280000	0x012BFFFF	256 KB code Flash block 10	7	not available	available	available
0x012C0000	0x012FFFFF	256 KB code flash block 11	7	not available	available	available
0x01300000	0x0133FFFF	256 KB code flash block 12	7	not available	available	available
0x01340000	0x0137FFFF	256 KB code flash block 13	7	not available	available	available
0x01380000	0x013BFFFF	256 KB code flash block 14	7	not available	not available	available
0x013C0000	0x013FFFFF	256 KB code flash block 15	7	not available	not available	available
0x01400000	0x0143FFFF	256 KB code flash block 16	8	not available	not available	available
0x01440000	0x0147FFFF	256 KB code flash block 17	8	not available	not available	available
0x01480000	0x014BFFFF	256 KB code flash block 18	8	not available	not available	available
0x14C0000	0x014FFFFF	256 KB code flash block 19	9	not available	not available	available
0x01500000	0x0153FFFF	256 KB code flash block 20	9	not available	not available	available
0x01540000	0x0157FFFF	256 KB code flash block 21	9	not available	not available	available

3.2 Ordering Information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{matrix} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}^2 \end{matrix}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
V _{DD_HV_FLA} ^{3, 4}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁵	Decoupling pin for low power regulators ⁶	—	-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁷	3.3 V / 5.0 V ADC1 high reference voltage		-0.3	6	V
V _{DD_HV_ADC0}	3.3 V to 5.5V ADC supply voltage		-0.3	6.0	V
V _{DD_HV_ADC1}					
V _{SS_HV_ADC0}	3.3V to 5.5V ADC supply ground		-0.1	0.1	V
V _{SS_HV_ADC1}					
V _{DD_LV}	Core logic supply voltage	—	-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V $_{\rm SS_HV}$)	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	-5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition		-50	50	mA
T _{ramp}	Supply ramp rate	—	0.5 V / min	100V/ms	—
T _A ⁸	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature		-55	165	°C

Table 5. Absolute maximum ratings

1. All voltages are referred to VSS_HV unless otherwise specified

- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 5. This pin should be decoupled with low ESR 1 μF capacitor.
- 6. Not available for input voltage, only for decoupling internal regulators
- 7. 10-bit ADC does not have dedicated reference and its reference is double bonded to 10-bit ADC supply(VDD_HV_ADC0).
- 8. T_J=150°C. Assumes T_A=125°C
 - Assumes maximum θJA. SeeThermal attributes

Figure 2. Voltage regulator capacitance connection

Table 8.	Voltage regulator	electrical	specifications
----------	-------------------	------------	----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} 1	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	_	0.001	_	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31		4.7		
C _{flash_reg} ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	-	0.001	—	0.03	Ohm

Table continues on the next page...

Symbol	Parameter	State	Conditions		Conf	iguration	1	Thresho	ld	Unit					
				Powe r Up ¹	Mas k Opt	Reset Type	Min	Тур	Max	v					
V _{HVD_LV_cold}	LV supply high	Fall	Untrimmed	No	Yes	Functional	Disable	ed at Sta	ırt						
	voltage		Trimmed	1			1.325	1.345	1.375	V					
	detecting at	Rise	Untrimmed	-			Disable	ed at Sta	irt						
th	the device pin		Trimmed				1.345	1.365	1.395	V					
V _{LVD_LV_PD2_hot}	LV supply low	Fall	Untrimmed	Yes	No	Powerup	1.080	1.120	1.160	V					
	voltage		Trimmed				1.125	1.143	1.160	V					
	detecting in	Rise	Untrimmed				1.100	1.140	1.180	V					
	the PD2 core (hot) area		Trimmed				1.145	1.163	1.180	V					
V _{LVD_LV_PD1_hot}	LV supply low	Fall	Untrimmed	Yes	No	Powerup	1.080	1.120	1.160	V					
	voltage	Trimmed				1.114	1.137	1.160	V						
	detecting in	Rise	Untrimmed	_			1.100	1.140	1.180	V					
1	the PD1 core (hot) area		Trimmed				1.134	1.157	1.180	V					
$V_{LVD_LV_PD0_hot}$	LV supply low	Fall	Untrimmed	Yes	No	Powerup	1.080	1.120	1.160	V					
	voltage		Trimmed				1.114	1.137	1.160	V					
	detecting in	Rise	Untrimmed				1.100	1.140	1.180	V					
	the PD0 core (hot) area		Trimmed				1.134	1.157	1.180	V					
V _{POR_HV}	HV supply	Fall	Untrimmed	Yes	No	Powerup	2.700	2.850	3.000	V					
	power on reset detector	Rise	Untrimmed				2.750	2.900	3.050	V					
V _{LVD_IO_A_LO} , ²	HV IO_A	Fall	Untrimmed	Yes	No	Powerup	2.750	2.923	3.095	V					
	supply low		Trimmed				2.978	3.039	3.100	V					
	monitoring -	Rise	Untrimmed				2.780	2.953	3.125	V					
	low range		Trimmed				3.008	3.069	3.130	V					
V _{LVD_IO_A_HI} ²	HV IO_A	Fall	Trimmed	No	Yes	Functional	Disable	ed at Sta	ırt						
	supply low						4.060	4.151	4.240	V					
	monitoring -	Rise	Trimmed				Disable	ed at Sta	ırt						
	high range						4.115	4.201	4.3	V					
$V_{LVD_LV_PD2_cold}$	LV supply low	Fall	Untrimmed	No	Yes	Functional	Disable	ed at Sta	ırt						
	voltage monitoring.		Trimmed				1.14	1.158	1.175	V					
	detecting at	Rise	Untrimmed				Disable	ed at Sta	ırt						
		the device pin	the device pin	the device pin	the device pin	the device pin		Trimmed				1.16	1.178	1.195	V

Table 9. Voltage monitor electrical characteristics (continued)

 All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. There is no voltage monitoring on the $V_{DD_HV_ADC0}$, $V_{DD_HV_ADC1}$, $V_{DD_HV_B}$ and $V_{DD_HV_C}$ I/O segments. For applications requiring monitoring of these segments, either connect these to $V_{DD_HV_A}$ at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_FULL}	RUN Full Mode	LV supply + HV supply + HV Flash supply +	—	219	292	mA
2, 3	Operating current	2 x HV ADC supplies				
		$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	230	328	mA
		T _a = 125 °C	—	249	400	mA
I _{DD_GWY}	RUN Gateway Mode Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	-	183	260	mA
0,0	current	$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	196	294	mA
		$T_a = 125^{\circ}C^4$	—	215	348	mA
I _{DD_BODY_1}	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	-	149	223	mA
	current	$T_a = 85 \ ^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	158	270	mA
		$T_{a} = 125^{\circ}C^{4}$	—	175	310	mA
IDD_BODY_2 ^{9, 10}	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	—	105	174	mA
	current	T _a = 85 °C				
		$V_{DD_LV} = 1.25 V$				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				

Table 10. Current consumption characteristics

Table continues on the next page ...

Symbol	Parameter	Conditions ¹	Min	Тур	Мах	Unit
		T _a = 105 °C	_	114	206	mA
		$T_a = 125 \text{ °C }^4$	—	131	277	mA
I _{DD_STOP}	STOP mode	T _a = 25 °C	—	11	_	mA
	Operating current	V _{DD_LV} = 1.25 V				
		T _a = 85 °C	—	19.8	105	
		$V_{DD_LV} = 1.25 V$				
		T _a = 105 °C		29	145	
		$V_{DD_{LV}} = 1.25 V$				
		$T_a = 125 \ ^{\circ}C^4$	—	45	160	
		$V_{DD_{LV}} = 1.25 V$				
IDD_HV_ADC_REF ^{11, 12}	ADC REF	T _a = 25 °C	—	200	400	μA
	Operating current	2 ADCs operating at 80 MHz				
		V _{DD_HV_ADC_REF} = 3.6 V				
		$T_a = 125 \text{ °C }^4$	—	200	400	
		2 ADCs operating at 80 MHz				
		$V_{DD_HV_ADC_REF} = 5.5 V$				
I _{DD_HV_ADCx} ¹²	ADC HV	T _a = 25 °C	—	1	2	mA
	Operating current	ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 3.6 V$				
		$T_a = 125 \degree C^4$	—	1.2	2]
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 5.5 V$				
I _{DD_HV_FLASH}	Flash Operating	$T_a = 125 \text{ °C }^4$	—	40	45	mA
	current during	3.3 V supplies				
		x MHz frequency				

Table 10. Current consumption characteristics (continued)

- 1. The content of the Conditions column identifies the components that draw the specific current.
- 2. ALL Modules enabled at maximum frequency: 2 x e200Z4 @ 160 MHz, e200Z2 at 80 MHz, Platform @ 160MHz, DMA (SRAM to SRAM), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals (500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH transmitting (USB-OTG only clocked), 2 x I2C transmitting (rest clocked), 1 x SAI transmitting (rest clocked), ADC0 converting using BCTU triggers triggered through PIT (other ADC clocked), RTC running, 3 x STM running, 2 x DSPI transmitting (rest clocked), 2 x SPI transmitting (rest clocked), 4 x CAN state machines working(rest clocked), 9 x LINFlexD transmitting (rest clocked), 1 x eMIOS clocked (used OPWFMB mode) (Others clock gated), SDHC,3 x CMP only clocked, FIRC, SIRC, FXOSC, SXOSC, PLL running. All others modules clock gated if not specifically mentioned. I/O supply current excluded.
- 3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C.
- 4. Tj=150°C. Assumes Ta=125°C
 - Assumes maximum θJA. SeeThermal attributes
- Enabled Modules in Gateway mode: 2 x e200Z4 @160 MHz (Instruction and Data cache enabled), Platform @160MHz, e200Z2 at 80 MHz(Instruction cache enabled), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH Transmitting, USB-OTG clocked, 2 x I2C transmitting, (2 x I2C clock gated), 1 x SAI transmitting (2 x SAI clock gated), ADC0 converting in continuous mode (ADC1 clock gated), PIT clocked, RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(Other DSPS clock gated), 2 x SPI transmitting(Other SPIs clock gated), 4

I/O parameters

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
		conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	C3A	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

 Table 13.
 ESD ratings (continued)

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

4.7 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC specifications @ 3.3 V Range

Table 14. Functional Pad AC Specifications @ 3.3 V Range

Symbol	Prop. Do L>H	elay (ns) ¹ //H>L	Rise/Fall Edge (ns)		Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	Min	Max	Min	Мах		MSB,LSB
pad_sr_hv		6/6		1.9/1.5	25	11
(output)	2.5/2.5	8.25/7.5	0.8/0.6	3.25/3	50	
(output)	6.4/5	19.5/19.5	3.5/2.5	12/12	200	
	2.2/2.5	8/8	0.55/0.5	3.9/3.5	25	10
	0.090	1.1	0.035	1.1	asymmetry ²	
	2.9/3.5	12.5/11	1/1	7/6	50	
	11/8	35/31	7.7/5	25/21	200	
	8.3/9.6	45/45	4/3.5	25/25	50	01
	13.5/15	65/65	6.3/6.2	30/30	200	
	13/13	75/75	6.8/6	40/40	50	00 ³
	21/22	100/100	11/11	51/51	200	
pad_i_hv/ pad_sr_hv (input) ⁴		2/2		0.5/0.5	0.5	NA

- 1. As measured from 50% of core side input to Voh/Vol of the output
- 2. This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF load. Required for the Flexray spec.

NOTE

The above specification is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The above specification is measured between 20% / 80%.

5.4 DC electrical specifications @ 5 V Range

Table 17. DC electrical specifications @ 5 V Range

Symbol	Parameter Value			
		Min	Max	
VDD_LV	LV (core) Supply Voltage	1.08	1.32	V
VDD_HV_x ¹	I/O Supply Voltage	4.5	5.5	V
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.7*VDD_HV_x	VDD_HV_x + 0.3	V
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VSS_LV- 0.3	0.45*VDD_HV_ x	V
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.55 * VDD_HV_x	VDD_HV_x + 0.3	V
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VSS_LV - 0.3	0.4 * VDD_HV_x	V
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x		V
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.65* VDD_HV_x	VDD_HV_x + 0.3	V
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VSS_LV - 0.3	0.35*VDD_HV_ x	V
Pull_IIH (pad_i_hv)	Weak Pullup Current Low	23		μA
Pull_IIH (pad_i_hv)	Weak Pullup Current High		82	μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	40		μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		130	μA
Pull_loh	Weak Pullup Current ⁴	30	80	μA
Pull_lol	Weak Pulldown Current ⁵	30	80	μA
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA
Voh	Output High Voltage ⁶	0.8 * VDD_HV_x	—	V
Vol	Output Low Voltage ⁷ Output Low Voltage ⁸	_	0.2 * VDD_HV_x	V
			0.1*VDD_HV_x	

Table continues on the next page...

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
R _{AD} ⁶	Internal resistance of analog source	—	-	_	825	Ω
INL	Integral non-linearity (precise channel)	—	-2	_	2	LSB
INL	Integral non-linearity (standard channel)	—	-3	_	3	LSB
DNL	Differential non-linearity	—	-1	—	1	LSB
OFS	Offset error	—	-6	—	6	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (precision channel)	150 °C	_	—	250	nA
(pad going to one	Max leakage (standard channel)	150 °C	—	—	2500	nA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max leakage (standard channel)	105 °C _{TA}	_	5	250	nA
	Max positive/negative injection		-5	—	5	mA
TUEprecision channels	Total unadjusted error for precision	Without current injection	-6	+/-4	6	LSB
	channels	With current injection		+/-5		LSB
TUE _{standard/extended}	Total unadjusted error for standard/	Without current injection	-8	+/-6	8	LSB
channels	extended channels	With current injection ⁷		+/-8		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 20. ADC conversion characteristics (for 12-bit) (continued)

- Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required relation between IO_supply_A,B,C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the ADC is lower.
- 6. See Figure 2.
- 7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

Table 21. ADC conversion characteristics (for 10-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency.)	_	15.2	80	80	MHz
f _s	Sampling frequency	—	—	—	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	275	_	_	ns

Table continues on the next page...

6.2.4 128 KHz Internal RC oscillator Electrical specifications Table 26. 128 KHz Internal RC oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
F _{oscu} ¹	Oscillator frequency	Calibrated	119	128	136.5	KHz
	Temperature dependence				600	ppm/C
	Supply dependence				18	%/V
	Supply current	Clock running			2.75	μΑ
		Clock stopped			200	nA

1. Vdd=1.2 V, 1.32V, T_a=-40 C, 125 C

6.2.5 PLL electrical specifications

Table 27. PLL electrical specifications

Parameter	Min	Тур	Max	Unit	Comments
Input Frequency	8		40	MHz	
VCO Frequency Range	600		1280	MHz	
Duty Cycle at pllclkout	48%		52%		This specification is guaranteed at PLL IP boundary
Period Jitter			See Table 28	ps	NON SSCG mode
TIE			See Table 28		at 960 M Integrated over 1MHz offset not valid in SSCG mode
Modulation Depth (Center Spread)	+/- 0.25%		+/- 3.0%		
Modulation Frequency			32	KHz	
Lock Time			60	μs	Calibration mode

Table 28. Jitter calculation

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Period Jitter	60 ps	3% of pllclkout1,2	Modulation depth	0.1% of pllclkout1,2	+/-(J _{SN} +J _{SDM} +J _{SSCG} +N ^[4] ×J _{RJ})
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

6.4 Communication interfaces

6.4.1 DSPI timing

Table 35. DSPI electrical specifications

No	Symbol	Parameter	Conditions	nditions High Speed Mode		low Spe	ed mode	Unit
				Min	Max	Min	Max	
1	t _{SCK}	DSPI cycle	Master (MTFE = 0)	25	—	50	—	ns
		time	Slave (MTFE = 0)	40	—	60	—	
2	t _{CSC}	PCS to SCK delay	_	16	—	_	—	ns
3	t _{ASC}	After SCK delay		16	—		_	ns
4	t _{SDC}	SCK duty cycle	_	t _{SCK} /2 - 10	t _{SCK} /2 + 10	_		ns
5	t _A	Slave access time	SS active to SOUT valid	_	40	_	—	ns
6	t _{DIS}	Slave SOUT disable time	_{SS} inactive to SOUT High-Z or invalid	_	10	_	—	ns
7	t _{PCSC}	PCSx to PCSS time	—	13	—	_	—	ns
8	t _{PASC}	PCSS to PCSx time		13	—	_		ns
9	t _{SUI}	Data setup	Master (MTFE = 0)	NA	_	20	—	ns
		time for	Slave	2	—	2	—	
			Master (MTFE = 1, CPHA = 0)	15		8 ¹		

Table continues on the next page ...

Figure 9. DSPI classic SPI timing — master, CPHA = 1

Figure 10. DSPI classic SPI timing — slave, CPHA = 0

Figure 13. DSPI modified transfer format timing — master, CPHA = 1

Figure 14. DSPI modified transfer format timing – slave, CPHA = 0

FlexRay electrical specifications

Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

Figure 16. DSPI PCS strobe (PCSS) timing

6.4.2 FlexRay electrical specifications

6.4.2.1 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals. It should be noted that these are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	_	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge		25	ns

Table 39. TxD output characteristics (continued)

1. All parameters specified for $V_{DD_HV_IOx} = 3.3 \text{ V} - 5\%$, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF. 2. For 3.3 V ± 10% operation, this specification is 10 ns.

*FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays

6.4.2.4 **RxD**

Table 40.	RxD	input	characteristic
-----------	-----	-------	----------------

Name	Description ¹	Min	Мах	Unit
C_CCRxD	Input capacitance on RxD pin	—	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge		10	ns

Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
_	Ψ_{JT}	Thermal characterization parameter, junction to package top	0.2	°C/W	7

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single- layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	25.5	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	19.0	°C/W	1,23
Single- layer (1s)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	18.1	°C/W	1, 3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	14.8	°C/W	1,3
_	R _{θJB}	Thermal resistance, junction to board	10.4	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	8.4	°C/W	5
_	Ψ _{JT}	Thermal characterization parameter, junction to package top natural convection)	0.45	°C/W	6
_	Ψ _{JB}	Thermal characterization parameter, junction to package top natural convection)	2.65	°C/W	7

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.,
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

10.1 Reset sequence duration

Table 54 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter	T _{Reset}			Unit
			Min	Typ ¹	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled	5.730	7.796		ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled	0.111	0.182		ms
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot	5.729	7.793		ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot	0.110	0.179		ms
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	0.007	0.009		ms

Table 54. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

10.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	-	200	-	μs
BAF execution time (boot header at last location)	-	320	-	μs

Table 55. BAF execution duration

10.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in Table 54.

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in Table 54 are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3.

Table 56.	Revision	History	(continued))
	1101101011		(continuou)	,

Rev. No.	Date	Substantial Changes	
		 In table: Functional Pad AC Specifications @ 3.3 V Range Updated values for symbol 'pad_sr_hv (output)' In table: DC electrical specifications @ 3.3V Range Updtaed values for VDD_HV_x, Vih, Vhys Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys In table: Functional Pad AC Specifications @ 5 V Range Updated values for symbol 'pad_sr_hv (output)' In table DC electrical specifications @ 5 V Range Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys 	
		 In section: PORST electrical specifications In table: PORST electrical specifications Updated 'Min' value for W_{NFPORST} Corrected 'Unit' for V_{IH} and V_{IL} In section: Peripheral operating requirements and behaviours Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion 	
		 In section: Analogue Comparator (CMP) electrical specifications In table: Comparator and 6-bit DAC electrical specifications Updated 'Max' value of I_{DDLS} Updated 'Min' and 'Max' for V_{AIO} and DNL Updated 'Descripton' 'Min' 'Max' od V_H Updated row for tDHS Added row for tDLS Removed row for VCMPOh and VCMPOI 	
		 In section: Clocks and PLL interfaces modules Revised table: Main oscillator electrical characteristics In table: 16 MHz RC Oscillator electrical specifications Updated 'Max' of Tstartup In table: 128 KHz Internal RC oscillator electrical specifications Removed Uncaliberated 'Condition' for Fosc Updated 'Min' and 'Max' of Caliberated Fosc Updated 'Temperature dependence' and 'Supply dependence' In table: PLL electrical specifications Removed Input Clock Low Level, Input Clock High Level, Power consumption, Regulator Maximum Output Current, Analog Supply, Digital Supply (VDD_LV), Modulation Depth (Down Spread), PLL reset assertion time, and Power Consumption Removed 'Typ' value of Duty Cycle at pllclkout Removed 'Min' from calibration mode of Lock Time In table: Jitter calculation Added 1 Sigma Random Jitter value for Long term jitter 	
		 In section Flash read wait state and address pipeline control settings Revised table: Flash Read Wait State and Address Pipeline Control Removed section: On-chip peripherals Added section: 'Reset sequence' 	
Rev4	Feb 10 2017	 Added VDD_HV_BALLAST footnote in Voltage regulator electrical characteristics Added Note to clarify In-Rush current and pin capacitance in Voltage regulator electrical characteristics Updated SIUL2_MSCRn[SRC 1:0]=11@25pF max value; SIUL2_MSCRn[SRC 1:0]=11@50pF min value; SIUL2_MSCRn[SRC 1:0]=10@25pF min and max values in AC specifications @ 3.3 V Range 	

Table continues on the next page...