

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

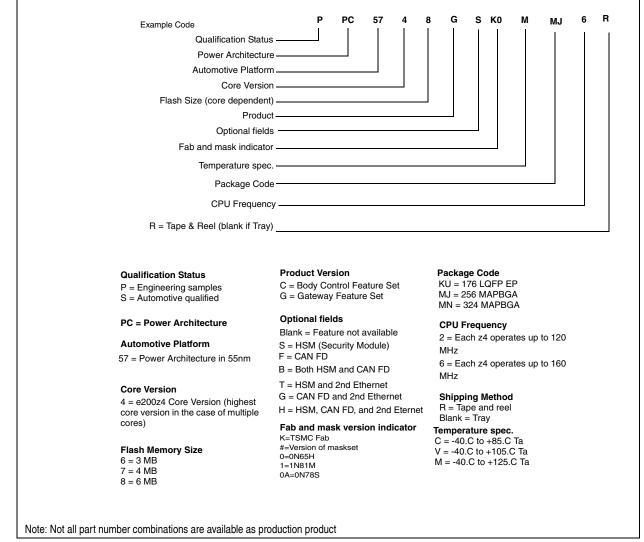
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	
Flouder Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	178
Program Memory Size	4MB (4M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPPBGA (17x17)
	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5747ck1vmj6

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

Table 2. MPC5748G Family Comparison - NVM Memory Map 1

Start Address	End Address	Flash block	RWW	MPC5746	MPC5747	MPC5748
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	6	available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	6	available	available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	6	available	available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	available	available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	available	available	available
0x01280000	0x012BFFFF	256 KB code Flash block 10	7	not available	available	available
0x012C0000	0x012FFFFF	256 KB code flash block 11	7	not available	available	available
0x01300000	0x0133FFFF	256 KB code flash block 12	7	not available	available	available
0x01340000	0x0137FFFF	256 KB code flash block 13	7	not available	available	available
0x01380000	0x013BFFFF	256 KB code flash block 14	7	not available	not available	available
0x013C0000	0x013FFFFF	256 KB code flash block 15	7	not available	not available	available
0x01400000	0x0143FFFF	256 KB code flash block 16	8	not available	not available	available
0x01440000	0x0147FFFF	256 KB code flash block 17	8	not available	not available	available
0x01480000	0x014BFFFF	256 KB code flash block 18	8	not available	not available	available
0x14C0000	0x014FFFFF	256 KB code flash block 19	9	not available	not available	available
0x01500000	0x0153FFFF	256 KB code flash block 20	9	not available	not available	available
0x01540000	0x0157FFFF	256 KB code flash block 21	9	not available	not available	available

3.2 Ordering Information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{HV_VDD_A}	VDD_HV_A supply capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	—	μF
C _{HV_VDD_B}	VDD_HV_B supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_VDD_C}	VDD_HV_C supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	—	—	μF
C _{HV_ADC0} C _{HV_ADC1}	HV ADC supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_ADR} ⁶	HV ADC SAR reference supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.47		_	μF
V _{DD_HV_BALL} AST ⁷	FPREG Ballast collector supply voltage	When collector of NPN ballast is directly supplied by an on board supply source (not shared with VDD_HV_A supply pin) without any series resistance, that is, R _{C_BALLAST} less than 0.01 Ohm.	2.25	_	5.5	V
R _{C_BALLAST}	Series resistor on collector of FPREG ballast	When VDD_HV_BALLAST is shorted to VDD_HV_A on the board	—	_	0.1	Ohm
t _{SU}	Start-up time after main supply stabilization	Cfp_reg = 3 µF	_	74	_	μs
t _{ramp}	Load current transient	lload from 15% to 55% $C_{\rm fp_{reg}} = 3 \ \mu F$		1.0		μs

 Table 8. Voltage regulator electrical specifications (continued)

- 1. Split capacitance on each pair VDD_LV pin should sum up to a total value of C_{fp_reg}
- 2. Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and maximum values.
- 3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is recommended. The tolerance +/-20% is acceptable.
- 4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing inductance should be less than 1nH.
- 5. 1. For VDD_HV_A, VDD_HV_B, and VDD_HV_C, 1µf on each side of the chip
 - a. 0.1 µf close to each VDD/VSS pin pair.
 - b. 10 µf near for each power supply source
 - c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as specified by CFP_REG parameter.
 - For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this
 amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as
 specified by CFP_REG parameter
- 6. Only applicable to ADC1

General

- 7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If V_{DD_HV_BALLAST} is supplied from the same source as VDD_HV_A this condition is implicitly met):
 - During power-up, V_{DD_HV_BALLAST} must have met the min spec of 2.25V before VDD_HV_A reaches the POR_HV_RISE min of 2.75V.
 - During power-down, $V_{DD_HV_BALLAST}$ must not drop below the min spec of 2.25V until VDD_HV_A is below POR_HV_FALL min of 2.7V.

NOTE

For a typical configuration using an external ballast transistor with separate supply for VDD_HV_A and the ballast collector, a bulk storage capacitor (as defined in Table 8) is required on VDD_HV_A close to the device pins to ensure a stable supply voltage.

Extra care must be taken if the VDD_HV_A supply is also being used to power the external ballast transistor or the device is running in internal regulation mode. In these modes, the inrush current on device Power Up or on exit from Low Power Modes is significant and may cause the VDD_HV_A voltage to drop resulting in an LVD reset event. To avoid this, the board layout should be optimized to reduce common trace resistance or additional capacitance at the ballast transistor collector (or VDD_HV_A pins in the case of internal regulation mode) is required. NXP recommends that customers simulate the external voltage supply circuitry.

In all circumstances, the voltage on VDD_HV_A must be maintained within the specified operating range (see Recommended operating conditions) to prevent LVD events.

4.4 Voltage monitor electrical characteristics

Symbol	Parameter	State	Conditions		Configuration			Threshold		
				Powe r Up ¹	Mas k Opt	Reset Type	Min	Тур	Max	v
V _{POR_LV}	LV supply	Fall	Untrimmed	Yes	No	Powerup	0.930	0.979	1.028	V
	power on reset detector	-	Trimmed				0.959	0.979	0.999	V
		Rise	Untrimmed				0.980	1.029	1.078	V
			Trimmed				1.009	1.029	1.049	V

 Table 9. Voltage monitor electrical characteristics

Table continues on the next page...

Symbol	Parameter	State	Conditions		Conf	iguration	1	Thresho	ld	Unit	
				Powe r Up ¹	Mas k Opt	Reset Type	Min	Тур	Max	V	
V _{HVD_LV_cold}	LV supply high	Fall	Untrimmed	ed No Yes I		Functional	Disable	Disabled at Start			
	voltage monitoring,		Trimmed				1.325	1.345	1.375	V	
	detecting at	Rise	Untrimmed				Disable	ed at Sta	irt		
	the device pin		Trimmed				1.345	1.365	1.395	V	
V _{LVD_LV_PD2_hot}	LV supply low	Fall	Untrimmed	Yes	Yes No	Powerup	1.080	1.120	1.160	V	
	voltage monitoring,		Trimmed]			1.125	1.143	1.160	V	
	detecting in	Rise	Untrimmed				1.100	1.140	1.180	V	
(hot) area	the PD2 core (hot) area		Trimmed				1.145	1.163	1.180	V	
V _{LVD_LV_PD1_hot}	LV supply low	Fall	Untrimmed	Yes	No	Powerup	1.080	1.120	1.160	V	
	voltage monitoring,		Trimmed				1.114	1.137	1.160	V	
	detecting in	Rise	Untrimmed				1.100	1.140	1.180	V	
	the PD1 core (hot) area		Trimmed				1.134	1.157	1.180	V	
V _{LVD_LV_PD0_hot} V _{LVD_LV_PD0_hot} voltage monitoring,	LV supply low	Fall	Untrimmed	Yes	No	Powerup	1.080	1.120	1.160	V	
		Trimmed]			1.114	1.137	1.160	V		
	detecting in	Rise	Untrimmed]			1.100	1.140	1.180	V	
	the PD0 core (hot) area		Trimmed				1.134	1.157	1.180	V	
V _{POR_HV}	HV supply	Fall	Untrimmed	Yes	No	Powerup	2.700	2.850	3.000	V	
	power on reset detector	Rise	Untrimmed				2.750	2.900	3.050	V	
V _{LVD_IO_A_LO} , ²	HV IO_A	Fall	Untrimmed	Yes	No	Powerup	2.750	2.923	3.095	V	
	supply low voltage		Trimmed				2.978	3.039	3.100	V	
	monitoring -	Rise	Untrimmed				2.780	2.953	3.125	V	
	low range		Trimmed				3.008	3.069	3.130	V	
V _{LVD_IO_A_HI²}	HV IO_A supply low	Fall	Trimmed	No	Yes	Functional		ed at Sta		V	
	voltage	Rise	Trimmed	-			4.060 4.151 4.240 V Disabled at Start				
	monitoring - high range	nise	Thinned			4.115	4.201	4.3	V		
V _{LVD_LV_PD2_cold}	LV supply low	Fall	Untrimmed	No	Yes	Functional	Disable	ed at Sta	ırt	1	
	voltage		Trimmed	1			1.14	1.158	1.175	V	
	monitoring, detecting at	Rise	Untrimmed	1			Disable	ed at Sta	ırt	1	
	the device pin		Trimmed	1			1.16	1.178	1.195	V	

Table 9. Voltage monitor electrical characteristics (continued)

 All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. There is no voltage monitoring on the $V_{DD_HV_ADC0}$, $V_{DD_HV_ADC1}$, $V_{DD_HV_B}$ and $V_{DD_HV_C}$ I/O segments. For applications requiring monitoring of these segments, either connect these to $V_{DD_HV_A}$ at the PCB level or monitor externally.

General

x FlexCAN state machines clocked(other FLEXCAN clock gated), 4 x LINFlexD transmitting (Other clock gated), 1x eMIOS clocked(used OPWFMB mode) (Others clock gated), FIRC, SIRC, FXOSC, SXOSC, PLL running, BCTU, DMAMUX, ACMP clock gated. All others modules clock gated if not specifically mentioned. I/O supply current excluded

- 6. Recommended Transistors:MJD31@85°C, 105°C and 125°C.
- 7. Enabled Modules in Body mode enabled at maximum frequency: 2 x e200Z4 @ 120Mhz(Instruction and Data cache enabled),Platform@120MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- 8. Recommended Transistors: BCP56, BCP68 or MJD31@85°C, BCP56, BCP68 or MJD31@105°C and MJD31@125°C.
- 9. Enabled Modules in Body mode enabled at maximum frequency:2 x e200Z4 @80Mhz(Instruction and Data cache enabled),Platform@80MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- 10. Recommended Transistors:BCP56, BCP68 or MJD31@85°C, 105°C and 125°C
- Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
 This value is the total support for two ADCs Fach ADC might compute on A structure.
- 12. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
LPU_RUN	with 256K RAM,	T _a = 25 °C	_	8.9		mA
	but only one RAM being accessed	SYS_CLK = 16MHz				
	ling and the	ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 25 °C		10.2		
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 85 °C	—	12.5	22	
		$T_a = 105 \ ^{\circ}C$	—	14.5	24	
		T _a = 125 °C ^{, 2}	—	16	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	T _a = 25 °C	—	0.535		mA
		T _a = 85 °C	—	0.72	6	
		$T_a = 105 \text{ °C}$	_	1	8	
		$T_a = 125 \ ^{\circ}C^2$	—	1.6	10.6	

Table 11. Low Power Unit (LPU) Current consumption characteristics

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY0	STANDBY with	T _a = 25 °C		71	_	μA
	8K RAM	T _a = 85 °C	_	175	800	
		T _a = 105 °C	_	338	1725	1
		T _a = 125 °C	_	750	2775	
STANDBY1	STANDBY with	T _a = 25 °C		72		μA
	64K RAM	T _a = 85 °C	—	176	815	1
		T _a = 105 °C		350	1775	1
		T _a = 125 °C	_	825	3000	1
STANDBY2	STANDBY with	T _a = 25 °C	—	75		μA
	128K RAM	T _a = 85 °C	_	182	830	
		T _a = 105 °C	_	366	1825	1
		T _a = 125 °C	_	900	3250	1
STANDBY3	STANDBY with	T _a = 25 °C	_	80		μA
	256K RAM	T _a = 85 °C	_	197	860	
		T _a = 105 °C	—	400	1875	1
		T _a = 125 °C	—	975	3500	1
STANDBY3	FIRC ON	T _a = 25 °C	_	500	_	μA

Table 12. STANDBY Current consumption characteristics

1. The content of the Conditions column identifies the components that draw the specific current.

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 13. ESD ratings

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
	(Human Body Model)				

Table continues on the next page ...

I/O parameters

Table 17.	DC electrical s	specifications @ \$	5 V Range	(continued)
-----------	-----------------	---------------------	-----------	-------------

Symbol	Parameter	Va	lue	Unit
		Min	Мах	
loh_f	Full drive loh ⁹ (SIUL2_MSCRn[SRC 1:0]= 11)	38	132	mA
lol_f	Full drive Iol ⁹ (SIUL2_MSCRn[SRC 1:0]= 11)	48	220	mA
loh_h	Half drive loh ⁹ (SIUL2_MSCRn[SRC 1:0]= 10)	19	66	mA
lol_h	Half drive Iol ⁹ (SIUL2_MSCRn[SRC 1:0]= 10)	24	110	mA

- 1. Max power supply ramp rate is 500 V / ms
- 2. Measured when pad=0.69*VDD_HV_x
- 3. Measured when pad=0.49*VDD_HV_x
- 4. Measured when pad = 0 V
- 5. Measured when pad = VDD_HV_x
- 6. Measured when pad is sourcing 2 mA
- 7. Measured when pad is sinking 2 mA
- 8. Measured when pad is sinking 1.5 mA
- 9. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

5.5 Reset pad electrical characteristics

The device implements a dedicated bidirectional RESET pin.

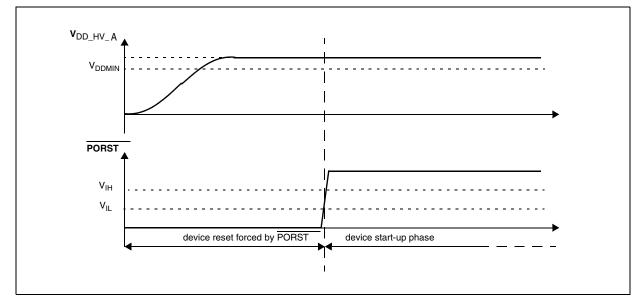


Figure 3. Start-up reset requirements

Symbol	Parameter	Conditions	Min	Typ ¹	Мах	Unit
t _{conv}	Conversion time ⁴	80 MHz	550	—		ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard channels)	80 MHz	1	—	_	μs
	Total Conversion time t _{sample} + t _{conv} (for extended channels)		1.5	_	—	
C _S	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁵	ADC input pin capacitance 1	—	_	—	5	pF
C _{P2} ⁵	ADC input pin capacitance 2	—	_	—	0.8	pF
R _{SW1} ⁵	Internal resistance of analog	V _{REF} range = 4.5 to 5.5 V	—	—	0.3	kΩ
	source	V_{REF} range = 3.15 to 3.6 V	_	—	875	Ω
R _{AD} ⁵	Internal resistance of analog source	_	—	—	825	Ω
INL	Integral non-linearity	—	-2	—	2	LSB
DNL	Differential non-linearity	—	-1	_	1	LSB
OFS	Offset error	—	-4	—	4	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (standard channel)	150 °C	_	—	2500	nA
(pad going to one ADC)	Max leakage (standard channel)	105 °C _{TA}	—	5	250	nA
ADO)	Max positive/negative injection		-5	—	5	mA
TUE _{standard/extended}	Total unadjusted error for standard	Without current injection	-4	+/-3	4	LSB
channels	channels	With current injection ⁶		+/-4		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 21. ADC conversion characteristics (for 10-bit) (continued)

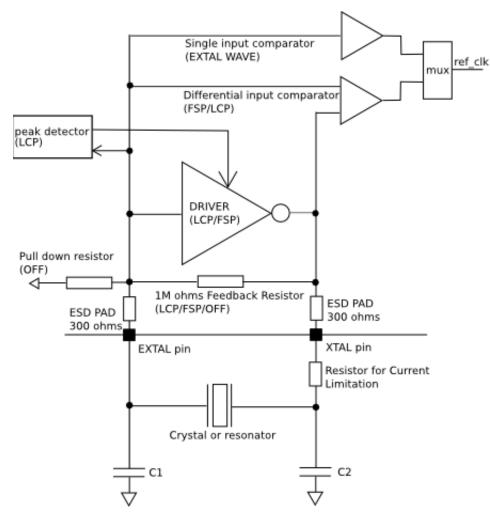
- Active ADC Input, VinA < [min(ADC_ADV, IO_Supply_A,B,C)]. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions' for required relation between IO_supply_A, B, C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. See Figure 2
- 6. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: 'Absolute maximum ratings') must be honored to meet TUE spec quoted here

NOTE

The ADC input pins sit across all three I/O segments, VDD_HV_A, VDD_HV_B and VDD_HV_C.

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	—	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)		5	11	μA
V _{AIN}	Analog input voltage	V _{SS}	_	V _{IN1_CMP_RE} F	V
V _{AIO}	Analog input offset voltage ¹	-42	_	42	mV
V _H	Analog comparator hysteresis ²	_	1	25	mV
	• CR0[HYSTCTR] = 00	_	20	50	mV
	• CR0[HYSTCTR] = 01	_	40	70	mV
	• CR0[HYSTCTR] = 10	_	60	105	mV
	 CR0[HYSTCTR] = 11 				
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1, 3}		_	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}		5	21	μs
	Analog comparator initialization delay, High speed mode ⁴	_	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	_	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8	_	0.8	LSB


1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_HV_A}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

Table 23.	Main oscillator	electrical	characteristics
-----------	-----------------	------------	-----------------

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
f _{xoschs}	Oscillator frequency	FSP/LCP		8		40	MHz
g _{mXOSCHS}	Driver	LCP			23		mA/V
	Transconduct ance	FSP			33		
V _{XOSCHS}	Oscillation Amplitude	LCP	8 MHz		1.0		V _{PP}
			16 MHz	1	1.0		
			40 MHz		0.8		
T _{XOSCHSSU}	Startup time	FSP/LCP	8 MHz		2		ms
			16 MHz		1		
			40 MHz		0.5		
	Oscillator	FSP	8 MHz		2.2		mA
	Analog Circuit	current	16 MHz	1	2.2		
	supply current		40 MHz	-	3.2		

Table continues on the next page...

Spec	Characteristics	Pad Drive/Load	Value		
			Min	Мах	
tSCK	SCK cycle timing	strong/50 pF	100 ns	-	
-	PCS valid after SCK	strong/50 pF	-	15 ns	
-	PCS valid after SCK	strong/50 pF	-4 ns	-	

 Table 36.
 Continuous SCK timing

Table 37. DSPI high speed mode I/Os

DSPI	High speed SCK	High speed SIN	High speed SOUT
DSPI2	GPIO[78]	GPIO[76]	GPIO[77]
DSPI3	GPIO[100]	GPIO[101]	GPIO[98]
SPI1	GPIO[173]	GPIO[175]	GPIO[176]
SPI2	GPIO[79]	GPIO[110]	GPIO[111]

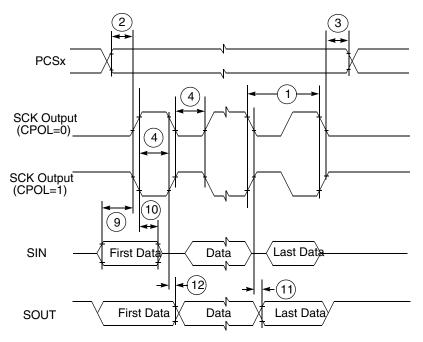


Figure 8. DSPI classic SPI timing — master, CPHA = 0

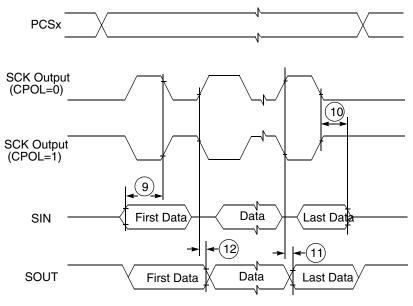


Figure 9. DSPI classic SPI timing — master, CPHA = 1

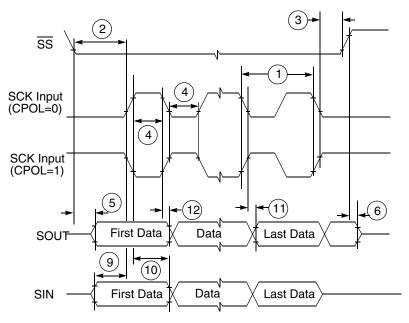


Figure 10. DSPI classic SPI timing — slave, CPHA = 0

Communication interfaces

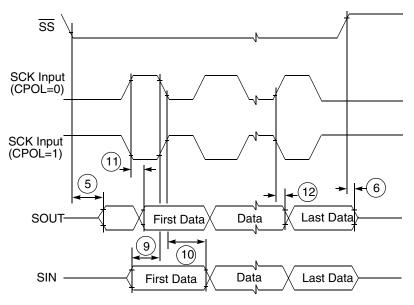


Figure 11. DSPI classic SPI timing — slave, CPHA = 1

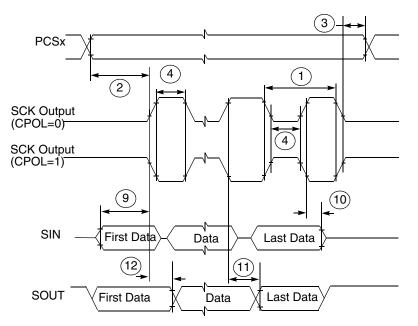
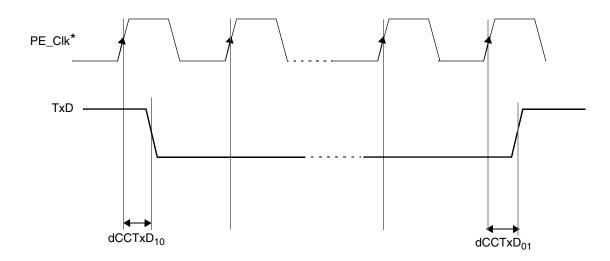



Figure 12. DSPI modified transfer format timing — master, CPHA = 0

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	—	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	_	25	ns

Table 39. TxD output characteristics (continued)

1. All parameters specified for $V_{DD_HV_IOx} = 3.3 \text{ V} - 5\%$, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF. 2. For 3.3 V ± 10% operation, this specification is 10 ns.

*FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays

6.4.2.4 **RxD**

Name	Description ¹	Min	Мах	Unit
C_CCRxD	Input capacitance on RxD pin	—	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge	_	10	ns

1. All parameters specified for VDD_HV_IOx = $3.3 \text{ V} \cdot 5\%$, +±10%, TJ = -40 oC / 150 oC.

6.4.3 uSDHC specifications

Table 41. uSDHC switching specifications

Num	Symbol	Description	Min.	Max.	Unit
		Card input clock			
SD1	fpp	Clock frequency (Identification mode)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed)	0	25	MHz
	fpp	Clock frequency (SD\SDIO high speed)	0	40	MHz
	fpp	Clock frequency (MMC full speed)	0	20	MHz
	f _{OD}	Clock frequency (MMC full speed)	0	40	MHz
SD2	t _{WL}	Clock low time	7	—	ns
SD3	t _{WH}	Clock high time	7	—	ns
SD4	t _{TLH}	Clock rise time	_	3	ns
SD5	t _{THL}	Clock fall time	_	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to	SDHC_CLK)	
SD7	t _{ISU}	SDHC input setup time	5	—	ns
SD8	t _{IH}	SDHC input hold time	0	—	ns

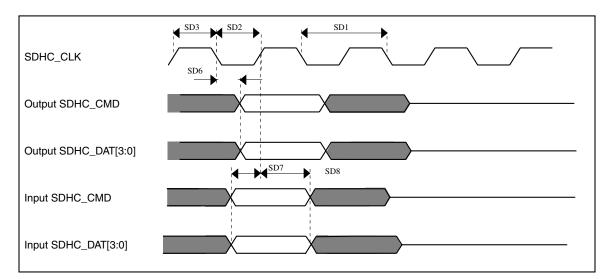
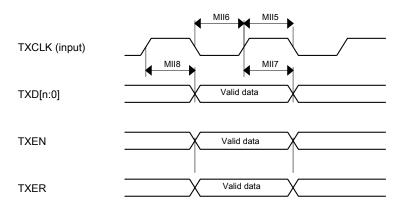



Figure 21. uSDHC timing

FlexRay electrical specifications

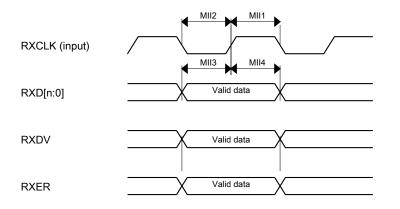


Figure 23. RMII/MII receive signal timing diagram

6.4.4.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Num	Description	Min.	Max.	Unit
—	EXTAL frequency (RMII input clock RMII_CLK)	—	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	—	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	_	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	—	15	ns

Table 43. RMII signal switching specifications

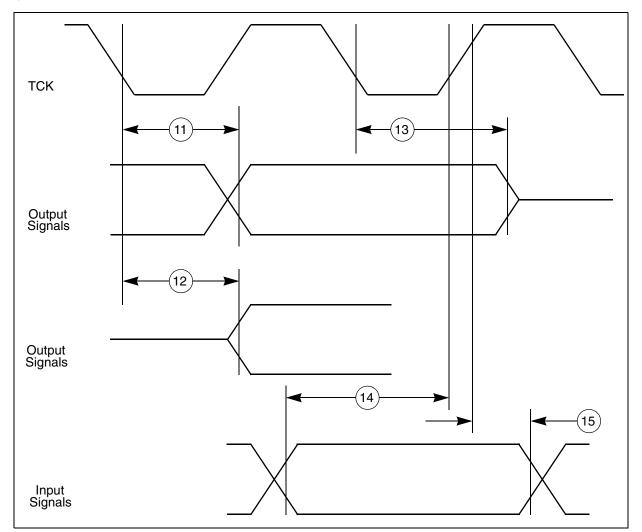


Figure 30. JTAG boundary scan timing

6.5.2 Nexus timing

Table 51. Nexus debug port timing ¹

No.	Symbol	Parameter	Condition	Min	Max	Unit
			S			
1	t _{MCYC}	MCKO Cycle Time	—	15.6	—	ns
2	t _{MDC}	MCKO Duty Cycle	_	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	—	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	—	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	_	1	_	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	—	62.5	—	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time		8		ns

Table continues on the next page...

Table 51. Nexus debug port timing ¹ (continued)

No.	Symbol	Parameter	Condition s	Min	Max	Unit
9	t _{NTDIH} , t _{NTMSH}	TDI, TMS Data Hold Time	_	5	—	ns
10	t _{JOV}	TCK Low to TDO/RDY Data Valid	—	0	25	ns

1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

- 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. The system clock frequency needs to be four times faster than the TCK frequency.

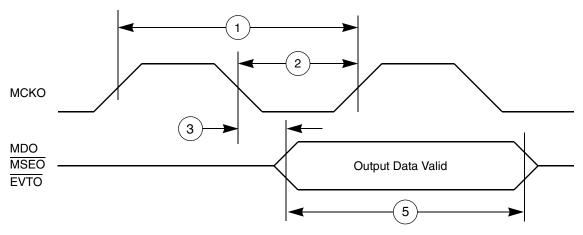


Figure 31. Nexus output timing

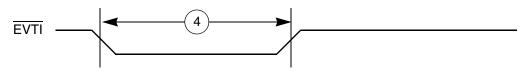


Figure 32. Nexus EVTI Input Pulse Width