

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core Processore200z2, e200z4Core Size32-Bit Dual-CoreSpeed80MHz/160MHzConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size4MB (4M x 8)Program Memory TypeFLASHEEPROM Size-Nuffage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASurpe Converters256-LBGA		
Core Size32-Bit Dual-CoreSpeed80MHz/160MHzConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size4MB (4M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size512K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASurface MARD RAD RAD RAD RAD RAD RAD RAD RAD RAD	Product Status	Active
Speed80MHz/160MHzConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size4MB (4M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size512K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Core Processor	e200z2, e200z4
ConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size4MB (4M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size512K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Core Size	32-Bit Dual-Core
PeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size4MB (4M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size512K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Speed	80MHz/160MHz
Number of I/O178Program Memory Size4MB (4M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size512K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Package / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Program Memory Size4MB (4M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size512K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Peripherals	DMA, LVD, POR, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size512K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Number of I/O	178
EEPROM Size-RAM Size512K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Program Memory Size	4MB (4M x 8)
RAM Size512K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	EEPROM Size	-
Data ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	RAM Size	512K x 8
Oscillator Type Internal Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 256-LBGA Supplier Device Package 256-MAPPBGA (17x17)	Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Operating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Data Converters	A/D 80x10b, 64x12b
Mounting Type Surface Mount Package / Case 256-LBGA Supplier Device Package 256-MAPPBGA (17x17)	Oscillator Type	Internal
Package / Case 256-LBGA Supplier Device Package 256-MAPPBGA (17x17)	Operating Temperature	-40°C ~ 105°C (TA)
Supplier Device Package 256-MAPPBGA (17x17)	Mounting Type	Surface Mount
	Package / Case	256-LBGA
Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5747ck1vmj6r	Supplier Device Package	256-MAPPBGA (17x17)
	Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5747ck1vmj6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

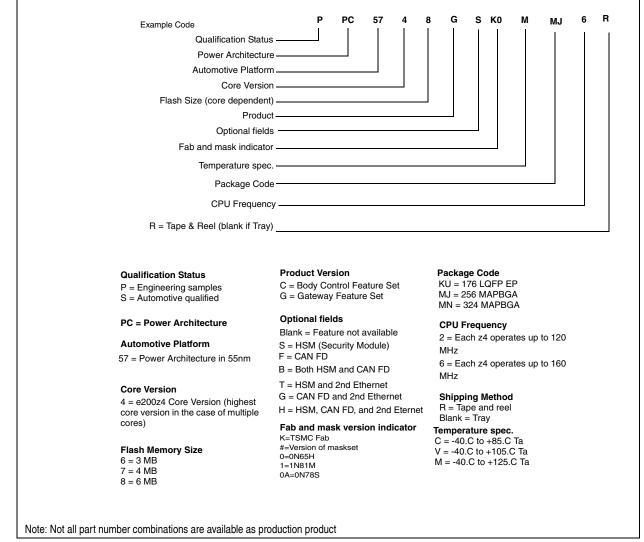
Table 2. MPC5748G Family Comparison - NVM Memory Map 1

Start Address	End Address	Flash block	RWW	MPC5746	MPC5747	MPC5748
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	6	available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	6	available	available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	6	available	available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	available	available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	available	available	available
0x01280000	0x012BFFFF	256 KB code Flash block 10	7	not available	available	available
0x012C0000	0x012FFFFF	256 KB code flash block 11	7	not available	available	available
0x01300000	0x0133FFFF	256 KB code flash block 12	7	not available	available	available
0x01340000	0x0137FFFF	256 KB code flash block 13	7	not available	available	available
0x01380000	0x013BFFFF	256 KB code flash block 14	7	not available	not available	available
0x013C0000	0x013FFFFF	256 KB code flash block 15	7	not available	not available	available
0x01400000	0x0143FFFF	256 KB code flash block 16	8	not available	not available	available
0x01440000	0x0147FFFF	256 KB code flash block 17	8	not available	not available	available
0x01480000	0x014BFFFF	256 KB code flash block 18	8	not available	not available	available
0x14C0000	0x014FFFFF	256 KB code flash block 19	9	not available	not available	available
0x01500000	0x0153FFFF	256 KB code flash block 20	9	not available	not available	available
0x01540000	0x0157FFFF	256 KB code flash block 21	9	not available	not available	available

Start Address	End Address	Flash block	RWW	MPC5747C	MPC5746G
				MPC5748C	MPC5747G
					MPC5748G
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	available	available
0x00FB0000	0x00FB7FFF	32 KB data Flash	2	not available	available
0x00FB8000	0x00FBFFFF	32 KB data flash	3	not available	available

 Table 3.
 MPC5748G Family Comparison - NVM Memory Map 2

 Table 4.
 MPC5748G Family Comparison - RAM Memory Map


Start Address	End Address	Allocated size [KB]	MPC5747C	MPC5748C MPC5746G MPC5747G MPC5748G
0x4000000	0x40001FFF	8	available	available
0x40002000	0x4000FFFF	56	available	available
0x40010000	0x4001FFFF	64	available	available
0x40020000	0x4003FFFF	128	available	available
0x40040000	0x4007FFFF	256	available	available
0x40080000	0x400BFFFF	256	not available	available

3 Ordering parts

3.1 Determining valid orderable parts

To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the following device number: MPC5748G.

3.2 Ordering Information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

General

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias	_	-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.

5. VIN1_CMP_REF \leq VDD_HV_A

6. This supply is shorted VDD_HV_A on lower packages.

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD HV x} = 5 V$)

		i					
Symbol	Parameter	Conditions ¹	Min ²	Max	Unit		
V _{DD_HV_A}	HV IO supply voltage	—	4.5	5.5	V		
V _{DD_HV_B}							
V _{DD_HV_C}							
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V		
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.15	5.5	V		
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V		
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V		
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V		
V _{IN1_CMP_REF} ⁵	Analog Comparator DAC reference voltage	_	3.15	5.5	V		
I _{INJPAD}			-3.0	3.0	mA		
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C		
TJ	Junction temperature under bias	_	-40	150	°C		

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with C_{flash_reg} .
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. This supply is shorted VDD_HV_A on lower packages.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_FULL}	RUN Full Mode	LV supply + HV supply + HV Flash supply +	—	219	292	mA
2, 3	Operating current	2 x HV ADC supplies				
		$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	230	328	mA
		T _a = 125 °C	—	249	400	mA
I _{DD_GWY} 5, 6	RUN Gateway Mode Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	_	183	260	mA
0, 0	current	$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	196	294	mA
		$T_a = 125^{\circ}C^4$	—	215	348	mA
I _{DD_BODY_1} 7, 8	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	-	149	223	mA
7,0	current	T _a = 85 °C				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	158	270	mA
		$T_{a} = 125^{\circ}C^{4}$	—	175	310	mA
IDD_BODY_2 ^{9, 10}	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	_	105	174	mA
	current	T _a = 85 °C				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				

Table 10. Current consumption characteristics

Table continues on the next page ...

I/O parameters

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
		conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	C3A	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

 Table 13.
 ESD ratings (continued)

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

4.7 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC specifications @ 3.3 V Range

Table 14. Functional Pad AC Specifications @ 3.3 V Range

Symbol	Prop. Delay (ns) ¹ L>H/H>L		Rise/Fall	Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	Min	Max	Min	Max	1 Г	MSB,LSB
pad_sr_hv		6/6		1.9/1.5	25	11
(output)	2.5/2.5	8.25/7.5	0.8/0.6	3.25/3	50	
(output)	6.4/5	19.5/19.5	3.5/2.5	12/12	200	
	2.2/2.5 8/8 0.55/0.5 3.9/3.5	25	10			
	0.090	1.1	0.035	1.1	asymmetry ²	
	2.9/3.5	12.5/11	1/1	7/6	50	
	11/8	35/31	7.7/5	25/21	200	
	8.3/9.6	45/45	4/3.5	25/25	50	01
	13.5/15	65/65	6.3/6.2	30/30	200	
	13/13	75/75	6.8/6	40/40	50	00 ³
	21/22	100/100	11/11	51/51	200	
pad_i_hv/ pad_sr_hv		2/2		0.5/0.5	0.5	NA
(input) ⁴						

- 1. As measured from 50% of core side input to Voh/Vol of the output
- 2. This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF load. Required for the Flexray spec.

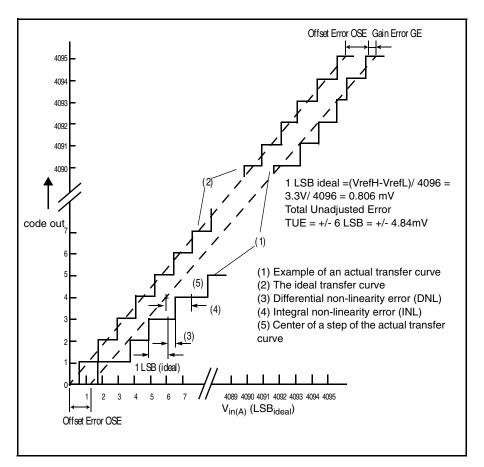


Figure 5. ADC characteristics and error definitions

Symbol	Parameter	Conditions	Min	Typ ¹	Мах	Unit
t _{conv}	Conversion time ⁴	80 MHz	550	—		ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard channels)	80 MHz	1	—	_	μs
	Total Conversion time t _{sample} + t _{conv} (for extended channels)		1.5	_	—	
C _S	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁵	ADC input pin capacitance 1	—	_	—	5	pF
C _{P2} ⁵	ADC input pin capacitance 2	—	_	—	0.8	pF
R _{SW1} ⁵	Internal resistance of analog	V _{REF} range = 4.5 to 5.5 V	_	—	0.3	kΩ
	source	V _{REF} range = 3.15 to 3.6 V —		—	875	Ω
R _{AD} ⁵	Internal resistance of analog source	_	—	—	825	Ω
INL	Integral non-linearity	—	-2	—	2	LSB
DNL	Differential non-linearity	—	-1	_	1	LSB
OFS	Offset error	—	-4	—	4	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (standard channel)	150 °C	_	—	2500	nA
(pad going to one ADC)	Max leakage (standard channel)	105 °C _{TA}	—	5	250	nA
ADO)	Max positive/negative injection		-5	—	5	mA
TUE _{standard/extended}	Total unadjusted error for standard	Without current injection	-4	+/-3	4	LSB
channels	channels	With current injection ⁶		+/-4		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 21. ADC conversion characteristics (for 10-bit) (continued)

- Active ADC Input, VinA < [min(ADC_ADV, IO_Supply_A,B,C)]. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions' for required relation between IO_supply_A, B, C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. See Figure 2
- 6. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: 'Absolute maximum ratings') must be honored to meet TUE spec quoted here

NOTE

The ADC input pins sit across all three I/O segments, VDD_HV_A, VDD_HV_B and VDD_HV_C.

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	—	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)		5	11	μA
V _{AIN}	Analog input voltage	V _{SS}	_	V _{IN1_CMP_RE} F	V
V _{AIO}	Analog input offset voltage ¹	-42	_	42	mV
V _H	Analog comparator hysteresis ²	_	1	25	mV
	• CR0[HYSTCTR] = 00	_	20	50	mV
	• CR0[HYSTCTR] = 01		40	70	mV
	• CR0[HYSTCTR] = 10	_	60	105	mV
	 CR0[HYSTCTR] = 11 				
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1, 3}		_	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}		5	21	μs
	Analog comparator initialization delay, High speed mode ⁴	_	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	_	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8	_	0.8	LSB

1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_HV_A}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

6.2.4 128 KHz Internal RC oscillator Electrical specifications Table 26. 128 KHz Internal RC oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
F _{oscu} ¹	Oscillator frequency	Calibrated	119	128	136.5	KHz
	Temperature dependence				600	ppm/C
	Supply dependence				18	%/V
	Supply current	Clock running			2.75	μΑ
		Clock stopped			200	nA

1. Vdd=1.2 V, 1.32V, T_a=-40 C, 125 C

6.2.5 PLL electrical specifications

Table 27. PLL electrical specifications

Parameter	Min	Тур	Max	Unit	Comments
Input Frequency	8		40	MHz	
VCO Frequency Range	600		1280	MHz	
Duty Cycle at pllclkout	48%		52%		This specification is guaranteed at PLL IP boundary
Period Jitter			See Table 28	ps	NON SSCG mode
TIE			See Table 28		at 960 M Integrated over 1MHz offset not valid in SSCG mode
Modulation Depth (Center Spread)	+/- 0.25%		+/- 3.0%		
Modulation Frequency			32	KHz	
Lock Time			60	μs	Calibration mode

Table 28. Jitter calculation

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Period Jitter	60 ps	3% of pllclkout1,2	Modulation depth	0.1% of pllclkout1,2	+/-(J _{SN} +J _{SDM} +J _{SSCG} +N ^[4] ×J _{RJ})
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

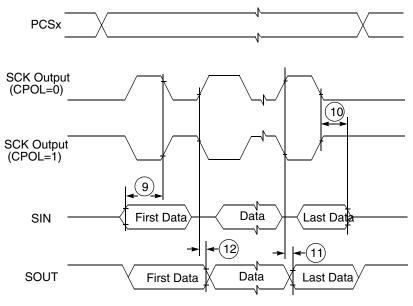


Figure 9. DSPI classic SPI timing — master, CPHA = 1

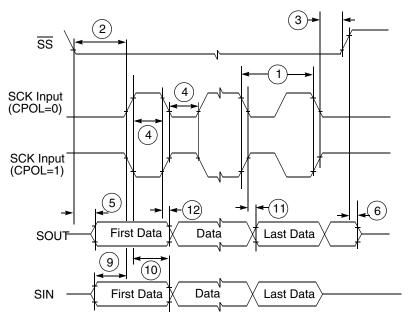


Figure 10. DSPI classic SPI timing — slave, CPHA = 0

6.4.4 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

6.4.4.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

NOTE

ENET0 supports the following xMII interfaces: MII, MII_Lite and RMII. ENET1 supports the following xMII interfaces: MII_Lite.

NOTE

It is only possible to use ENET0 and ENET1 simultaneously when both are configured for MII_Lite.

NOTE

In certain pinout configurations ENET1 MII-Lite signals can be across multiple VDD_HV_A/B/C domains. If these configuration are used, VDD_HV IO domains need to be at the same voltage (for example: 3.3V)

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
_	TXCLK frequency	—	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2		ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	—	25	ns

Table 42. MII signal switching specifications

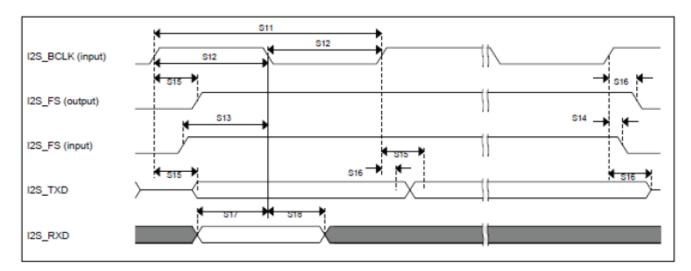
MediaLB (MLB) electrical specifications

Ground = 0.0 V; Load Capacitance = 60 pF, input transition= 1 ns ; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK operating frequency	f _{mck}	11.264	25.6	MHz	256xFs at 44.0 kHz, 512xFs at 50.0 kHz
MLBCLK rise time	t _{mck} r		3	ns	V _{IL to VIH}
MLBCLK fall time	t _{mck} f		3	ns	V _{IH to VIL}
MLBCLK low time ¹	t _{mck} l	30	—	ns	256xFs
		14			512xFs
MLBCLK high time	t _{mck} h	30	_	ns	256xFs
		14			512xFs
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	—	ns	—
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	—	ns	—
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mck} l	ns	2
Bus output hold from MLBCLK low	t _{mdzh}	4	—	ns	2

Table 45. MLB 3-Pin 256/512 Fs Timing Parameters

1. MLBCLK low/high time includes the pluse width variation.


 The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Мах	Unit	Comment
MLBCLK Operating Frequency ¹	f _{mck}	45.056	-	MHz	1024 x fs at 44.0 kHz
		-	51.2	MHz	1024 x fs at 50.0 kHz
MLBCLK rise time	f _{mckr}		1	ns	V _{IL to} V _{IH}
MLBCLK fall time	f _{mckf}		1	ns	V _{IH to} V _{IL}
MLBCLK low time	t _{mckl}	6.1	—	ns	2
MLBCLK high time	t _{mckh}	9.3	—	ns	2
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	_	ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mckl}	ns	3
Bus Hold from MLBCLK low	t _{mdzh}	2	—	ns	3

Table 46. MLB 3-Pin 1024 Fs Timing Parameters

Debug specifications

6.5 Debug specifications

6.5.1 JTAG interface timing

Table 50. JTAG pin AC electrical characteristics ¹

#	Symbol	Characteristic	Min	Max	Unit
1	t _{JCYC}	TCK Cycle Time ²	62.5	—	ns
2	t _{JDC}	TCK Clock Pulse Width	40	60	%
3	t _{TCKRISE}	TCK Rise and Fall Times (40% - 70%)	—	3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI Data Setup Time	5	_	ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI Data Hold Time	5	_	ns
6	t _{TDOV}	TCK Low to TDO Data Valid	—	20 ³	ns
7	t _{TDOI}	TCK Low to TDO Data Invalid	0		ns
8	t _{TDOHZ}	TCK Low to TDO High Impedance	—	15	ns
11	t _{BSDV}	TCK Falling Edge to Output Valid	—	600 ⁴	ns
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	_	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	_	600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15	—	ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

1. These specifications apply to JTAG boundary scan only.

- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

Debug specifications

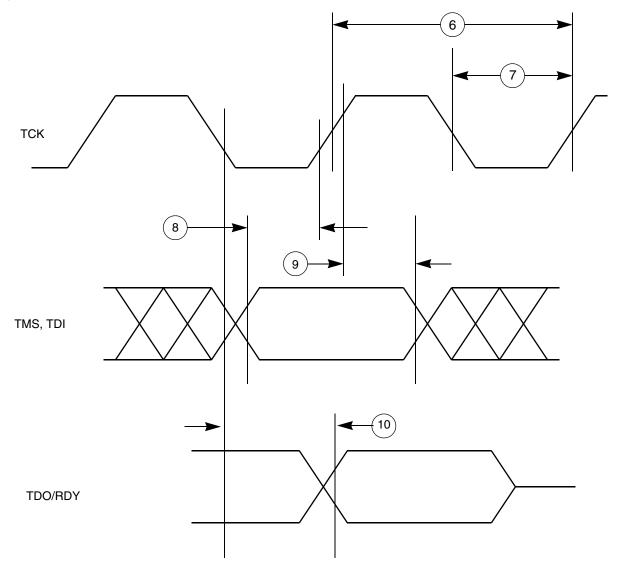


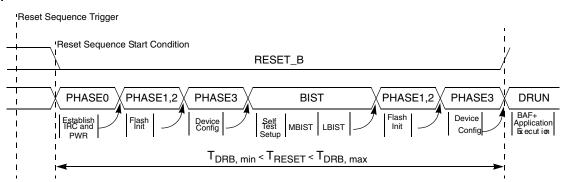
Figure 33. Nexus TDI, TMS, TDO timing

6.5.3 WKPU/NMI timing

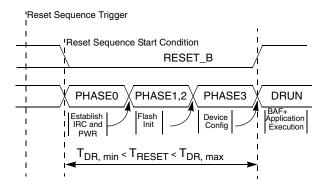
Table 52. WKPU/NMI glitch filter

No.	Symbol	Parameter	Min	Тур	Max	Unit
1	W _{FNMI}	NMI pulse width that is rejected	_	—	20	ns
2	W _{NFNMI} D	NMI pulse width that is passed	400			ns

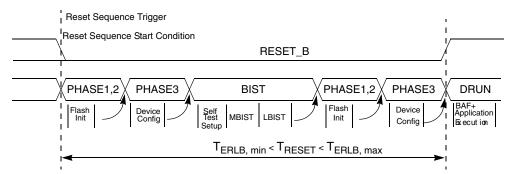
Thermal attributes


Board type	Symbol	Description	176LQFP	Unit	Notes
—	Ψ_{JT}	Thermal characterization parameter, junction to package top	0.2	°C/W	7

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.


Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single- layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	25.5	°C/W	1, 2
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	19.0	°C/W	1,23
Single- layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	18.1	°C/W	1, 3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	14.8	°C/W	1,3
—	R _{θJB}	Thermal resistance, junction to board	10.4	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	8.4	°C/W	5
_	Ψ _{JT}	Thermal characterization parameter, junction to package top natural convection)	0.45	°C/W	6
_	Ψ_{JB}	Thermal characterization parameter, junction to package top natural convection)	2.65	°C/W	7

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.,
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.


Reset sequence

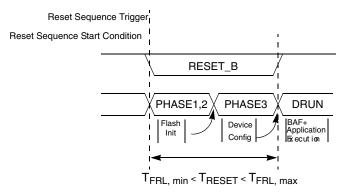


Figure 38. Functional reset sequence long

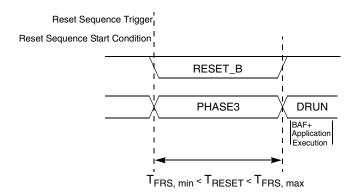


Figure 39. Functional reset sequence short

The reset sequences shown in Figure 38 and Figure 39 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	14 March 2013	Initial Release
1.1	16 May 2013	Updated Pinouts section
2	22 May 2014	 Removed Category (SR, CC, P, T, D, B) column from all the table of the Datasheet Revised the feature list. Revised Introduction section to remove classification information. Updated optional information in the ordering information figure. Revised Absolute maximum rating section: Removed category column from table Added footnote at Ta Revised Recommended operating conditions section Added notes Updated table: Recommended operating conditions (VDD_HV_x = 3.3 V) Updated table: Recommended operating conditions (VDD_HV_x = 5 V) Revised Voltage regulator electrical characteristics Updated figure: Voltage regulator capacitance connection Updated table: Voltage regulator electrical specifications Removed Brownout information
		 Revised Supply current characteristics section Updated table: Current consumption characteristics Updated table: Low Power Unit (LPU) Current consumption characteristics STANDBY Current consumption characteristics

 Table 56.
 Revision History

Table continues on the next page ...

Table 56.	Revision	History	(continued)
	1101131011	i listoi y	(continucu)

Rev. No.	Date	Substantial Changes
		 In table: Functional Pad AC Specifications @ 3.3 V Range Updated values for symbol 'pad_sr_hv (output)' In table: DC electrical specifications @ 3.3V Range Updtaed values for VDD_HV_x, Vih, Vhys Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys In table: Functional Pad AC Specifications @ 5 V Range Updated values for symbol 'pad_sr_hv (output)' In table DC electrical specifications @ 5 V Range Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys
		 In section: PORST electrical specifications In table: PORST electrical specifications Updated 'Min' value for W_{NFPORST} Corrected 'Unit' for V_{IH} and V_{IL}
		 In section: Peripheral operating requirements and behaviours Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion characteristics (for 10-bit)
		 In section: Analogue Comparator (CMP) electrical specifications In table: Comparator and 6-bit DAC electrical specifications Updated 'Max' value of I_{DDLS} Updated 'Min' and 'Max' for V_{AIO} and DNL Updated 'Descripton' 'Min' 'Max' od V_H Updated row for tDHS Added row for tDLS Removed row for VCMPOh and VCMPOI
		 In section: Clocks and PLL interfaces modules Revised table: Main oscillator electrical characteristics In table: 16 MHz RC Oscillator electrical specifications Updated 'Max' of Tstartup In table: 128 KHz Internal RC oscillator electrical specifications Removed Uncaliberated 'Condition' for Fosc Updated 'Min' and 'Max' of Caliberated Fosc Updated 'Temperature dependence' and 'Supply dependence' In table: PLL electrical specifications Removed Input Clock Low Level, Input Clock High Level, Power consumption, Regulator Maximum Output Current, Analog Supply, Digital Supply (VDD_LV), Modulation Depth (Down Spread), PLL reset assertion time, and Power Consumption Removed 'Typ' value of Duty Cycle at pllclkout Removed 'Min' from calibration mode of Lock Time
		Added 1 Sigma Random Jitter value for Long term jitter In section Flash read wait state and address pipeline control settings Revised table: Flash Read Wait State and Address Pipeline Control
		 Removed section: On-chip peripherals Added section: 'Reset sequence'
Rev4	Feb 10 2017	 Added VDD_HV_BALLAST footnote in Voltage regulator electrical characteristics Added Note to clarify In-Rush current and pin capacitance in Voltage regulator electrical characteristics Updated SIUL2_MSCRn[SRC 1:0]=11@25pF max value; SIUL2_MSCRn[SRC 1:0]=11@50pF min value; SIUL2_MSCRn[SRC 1:0]=10@25pF min and max values in AC specifications @ 3.3 V Range

Table continues on the next page...

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2013–2017 NXP B.V.

Document Number MPC5748G Revision 5, 07/2017

