

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4, e200z4
Core Size	32-Bit Tri-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	129
Program Memory Size	4MB (4M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5747gsk1mku6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Timer
 - 16 Periodic Interrupt Timers (PITs)
 - Three System Timer Module (STM)
 - Four Software WatchDog Timers (SWT)
 - 96 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
- Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) and 1149.7 (cJTAG)
- Security
 - Hardware Security Module (HSMv2)
 - Password and Device Security (PASS and TDM) supporting advanced censorship and life-cycle management
 - One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
- Functional Safety
 - ISO26262 ASIL compliance
- Multiple operating modes
 - Includes enhanced low power operation

General

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias	_	-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.

5. VIN1_CMP_REF \leq VDD_HV_A

6. This supply is shorted VDD_HV_A on lower packages.

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD HV x} = 5 V$)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	—	4.5	5.5	V
V _{DD_HV_B}					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.15	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V
V _{IN1_CMP_REF} ⁵	Analog Comparator DAC reference voltage	_	3.15	5.5	V
I _{INJPAD}	Injected input current on any pin during overload condition	-	-3.0	3.0	mA
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias	_	-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with C_{flash_reg} .
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. This supply is shorted VDD_HV_A on lower packages.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
		T _a = 105 °C	—	114	206	mA
		$T_{a} = 125 \ ^{\circ}C^{4}$	_	131	277	mA
I _{DD_STOP}	STOP mode	T _a = 25 °C	—	11	_	mA
	Operating current	$V_{DD_{LV}} = 1.25 V$				
		T _a = 85 °C	—	19.8	105	
		V _{DD_LV} = 1.25 V				
		T _a = 105 °C		29	145	
		V _{DD_LV} = 1.25 V				
		$T_a = 125 \text{ °C}^4$	—	45	160	
		$V_{DD_{LV}} = 1.25 V$				
IDD_HV_ADC_REF ^{11, 12}	ADC REF	$T_a = 25 \ ^{\circ}C$	_	200	400	μA
	Operating current	2 ADCs operating at 80 MHz				
		$V_{DD_HV_ADC_REF} = 3.6 V$				
		$T_a = 125 \text{ °C }^4$	—	200	400	
		2 ADCs operating at 80 MHz				
		$V_{DD_HV_ADC_REF} = 5.5 V$				
I _{DD_HV_ADCx} ¹²	ADC HV	T _a = 25 °C	_	1	2	mA
	Operating current	ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 3.6 V$				
		$T_{a} = 125 \ ^{\circ}C^{4}$	_	1.2	2	
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 5.5 V$				
I _{DD_HV_FLASH}	Flash Operating	$T_{a} = 125 \ ^{\circ}C^{4}$	—	40	45	mA
	current during read access	3.3 V supplies				
		x MHz frequency				

Table 10. Current consumption characteristics (continued)

- 1. The content of the Conditions column identifies the components that draw the specific current.
- 2. ALL Modules enabled at maximum frequency: 2 x e200Z4 @ 160 MHz, e200Z2 at 80 MHz, Platform @ 160MHz, DMA (SRAM to SRAM), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals (500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH transmitting (USB-OTG only clocked), 2 x I2C transmitting (rest clocked), 1 x SAI transmitting (rest clocked), ADC0 converting using BCTU triggers triggered through PIT (other ADC clocked), RTC running, 3 x STM running, 2 x DSPI transmitting (rest clocked), 2 x SPI transmitting (rest clocked), 4 x CAN state machines working(rest clocked), 9 x LINFlexD transmitting (rest clocked), 1 x eMIOS clocked (used OPWFMB mode) (Others clock gated), SDHC,3 x CMP only clocked, FIRC, SIRC, FXOSC, SXOSC, PLL running. All others modules clock gated if not specifically mentioned. I/O supply current excluded.
- 3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C.
- 4. Tj=150°C. Assumes Ta=125°C
 - Assumes maximum θJA. SeeThermal attributes
- 5. Enabled Modules in Gateway mode: 2 x e200Z4 @160 MHz (Instruction and Data cache enabled), Platform @160MHz, e200Z2 at 80 MHz(Instruction cache enabled), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH Transmitting, USB-OTG clocked, 2 x I2C transmitting, (2 x I2C clock gated), 1 x SAI transmitting (2 x SAI clock gated), ADC0 converting in continuous mode (ADC1 clock gated), PIT clocked, RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(Other DSPS clock gated), 2 x SPI transmitting(Other SPIs clock gated), 4

NOTE

The above specification is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The above specification is measured between 20% / 80%.

5.4 DC electrical specifications @ 5 V Range

Table 17. DC electrical specifications @ 5 V Range

Symbol	Parameter	Va	lue	Unit
		Min	Max	
VDD_LV	LV (core) Supply Voltage	1.08	1.32	V
VDD_HV_x ¹	I/O Supply Voltage	4.5	5.5	V
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.7*VDD_HV_x	VDD_HV_x + 0.3	V
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VSS_LV- 0.3	0.45*VDD_HV_ x	V
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.55 * VDD_HV_x	VDD_HV_x + 0.3	V
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VSS_LV - 0.3	0.4 * VDD_HV_x	V
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x		V
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.65* VDD_HV_x	VDD_HV_x + 0.3	V
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VSS_LV - 0.3	0.35*VDD_HV_ x	V
Pull_IIH (pad_i_hv)	Weak Pullup Current Low	23		μA
Pull_IIH (pad_i_hv)	Weak Pullup Current High		82	μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	40		μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		130	μA
Pull_loh	Weak Pullup Current ⁴	30	80	μA
Pull_lol	Weak Pulldown Current ⁵	30	80	μA
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA
Voh	Output High Voltage ⁶	0.8 * VDD_HV_x	—	V
Vol	Output Low Voltage ⁷ Output Low Voltage ⁸	_	0.2 * VDD_HV_x 0.1*VDD_HV_x	V

Table continues on the next page...

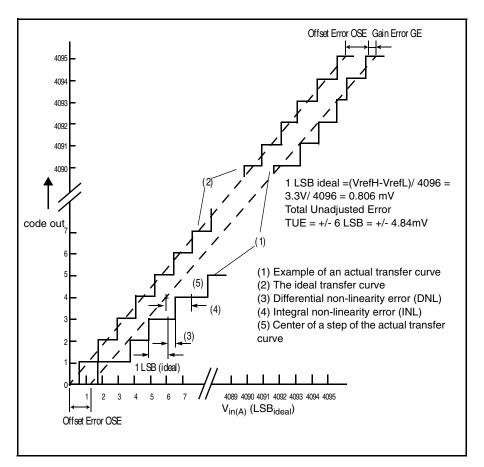


Figure 5. ADC characteristics and error definitions

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
R _{AD} ⁶	Internal resistance of analog source	_	-	_	825	Ω
INL	Integral non-linearity (precise channel)	—	-2	_	2	LSB
INL	Integral non-linearity (standard channel)	—	-3	—	3	LSB
DNL	Differential non-linearity	—	-1	—	1	LSB
OFS	Offset error	—	-6	—	6	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (precision channel)	150 °C	_	_	250	nA
(pad going to one ADC)	Max leakage (standard channel)	150 °C	—	—	2500	nA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max leakage (standard channel)	105 °C _{TA}	_	5	250	nA
	Max positive/negative injection		-5	_	5	mA
TUE _{precision channels}	Total unadjusted error for precision	Without current injection	-6	+/-4	6	LSB
	channels	With current injection		+/-5		LSB
TUE _{standard/extended}	Total unadjusted error for standard/	Without current injection	-8	+/-6	8	LSB
channels	extended channels	With current injection ⁷		+/-8		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 20. ADC conversion characteristics (for 12-bit) (continued)

- Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required relation between IO_supply_A,B,C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the ADC is lower.
- 6. See Figure 2.
- 7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

Table 21. ADC conversion characteristics (for 10-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency.)		15.2	80	80	MHz
f _s	Sampling frequency	—	_	_	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	275	_	_	ns

Table continues on the next page...

Symbol	Parameter	Conditions	Min	Typ ¹	Мах	Unit
t _{conv}	Conversion time ⁴	80 MHz	550	—		ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard channels)	80 MHz	1	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for extended channels)		1.5	_	—	
C _S	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁵	ADC input pin capacitance 1	—	_	—	5	pF
C _{P2} ⁵	ADC input pin capacitance 2	—	_	—	0.8	pF
R _{SW1} ⁵	Internal resistance of analog	V _{REF} range = 4.5 to 5.5 V	—	—	0.3	kΩ
	source	V_{REF} range = 3.15 to 3.6 V	_	—	875	Ω
R _{AD} ⁵	Internal resistance of analog source	_	—	—	825	Ω
INL	Integral non-linearity	—	-2	—	2	LSB
DNL	Differential non-linearity	—	-1	_	1	LSB
OFS	Offset error	—	-4	—	4	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (standard channel)	150 °C	_	—	2500	nA
(pad going to one ADC)	Max leakage (standard channel)	105 °C _{TA}	—	5	250	nA
ADO)	Max positive/negative injection		-5	—	5	mA
TUE _{standard/extended}	Total unadjusted error for standard	Without current injection	-4	+/-3	4	LSB
channels	channels	With current injection ⁶		+/-4		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 21. ADC conversion characteristics (for 10-bit) (continued)

- Active ADC Input, VinA < [min(ADC_ADV, IO_Supply_A,B,C)]. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions' for required relation between IO_supply_A, B, C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. See Figure 2
- 6. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: 'Absolute maximum ratings') must be honored to meet TUE spec quoted here

NOTE

The ADC input pins sit across all three I/O segments, VDD_HV_A, VDD_HV_B and VDD_HV_C.

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)		—	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)		5	11	μA
V _{AIN}	Analog input voltage	V _{SS}	_	V _{IN1_CMP_RE} F	V
V _{AIO}	Analog input offset voltage ¹	-42	_	42	mV
V _H	Analog comparator hysteresis ²	_	1	25	mV
	• CR0[HYSTCTR] = 00	_	20	50	mV
	• CR0[HYSTCTR] = 01	_	40	70	mV
	• CR0[HYSTCTR] = 10	_	60	105	mV
	 CR0[HYSTCTR] = 11 				
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1, 3}		_	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}		5	21	μs
	Analog comparator initialization delay, High speed mode ⁴	_	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	_	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8	_	0.8	LSB

1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_HV_A}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

Symbol	Characteristic ¹	Typ ²	Factory Programming ^{3, 4}		F	Field Update		Unit
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifeti	me Max ⁶	
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000		ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000		ms

Table 30. Flash memory program and erase specifications (continued)

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

- 3. Conditions: \leq 150 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.

5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.

6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

6.3.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.	-	_	512 x Tperiod x Nread	_
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	-	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	_	_	2048 x Tperiod x Nread	_
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	-	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	—	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	—	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65		356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	_	1,339.5	μs

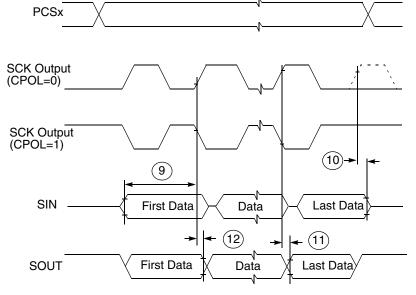


Figure 13. DSPI modified transfer format timing — master, CPHA = 1

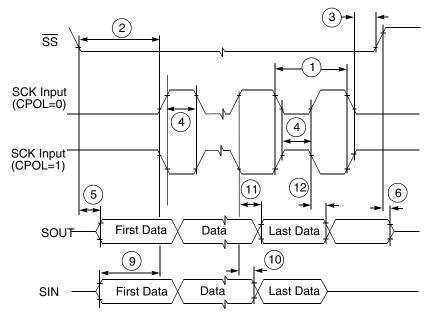


Figure 14. DSPI modified transfer format timing – slave, CPHA = 0

1. All parameters specified for VDD_HV_IOx = $3.3 \text{ V} \cdot 5\%$, +±10%, TJ = -40 oC / 150 oC.

6.4.3 uSDHC specifications

Table 41. uSDHC switching specifications

Num	Symbol	Description	Min.	Max.	Unit				
	Card input clock								
SD1	fpp	Clock frequency (Identification mode)	0	400	kHz				
	fpp	Clock frequency (SD\SDIO full speed)	0	25	MHz				
	fpp	Clock frequency (SD\SDIO high speed)	0	40	MHz				
	fpp	Clock frequency (MMC full speed)	0	20	MHz				
	f _{OD}	Clock frequency (MMC full speed)	0	40	MHz				
SD2	t _{WL}	Clock low time	7	—	ns				
SD3	t _{WH}	Clock high time	7	—	ns				
SD4	t _{TLH}	Clock rise time	_	3	ns				
SD5	t _{THL}	Clock fall time	—	3	ns				
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)					
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns				
		SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to	SDHC_CLK)					
SD7	t _{ISU}	SDHC input setup time	5	—	ns				
SD8	t _{IH}	SDHC input hold time	0	—	ns				

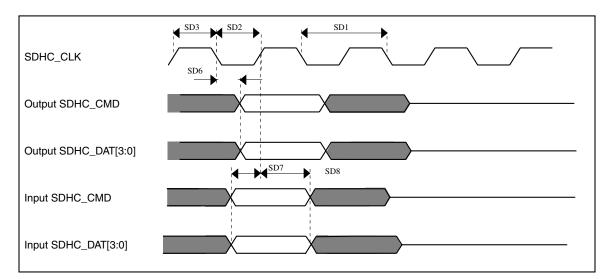


Figure 21. uSDHC timing

6.4.5 MediaLB (MLB) electrical specifications

6.4.5.1 MLB 3-pin interface DC characteristics

The section lists the MLB 3-pin interface electrical characteristics.


Table 44. MediaLB 3-Pin Interface Electrical DC Specifications

Parameter	Symbol	Test Conditions	Min	Max	Unit
Maximum input voltage	—	—	-	3.6	V
Low level input threshold	V _{IL}	-	—	0.7	V
High level input threshold	V _{IH}	See Note ¹	1.8	—	V
Low level output threshold	V _{OL}	$I_{OL} = -6 \text{ mA}$	—	0.4	V
High level output threshold	V _{OH}	I _{OH} = –6 mA	2.0	—	V
Input leakage current	IL	0 < Vin < VDD	—	±10	μA

1. Higher V_{IH} thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

6.4.5.2 MLB 3-pin interface electrical specifications

This section describes the timing electrical information of the MLB module.

MediaLB (MLB) electrical specifications

Ground = 0.0 V; Load Capacitance = 60 pF, input transition= 1 ns ; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK operating frequency	f _{mck}	11.264	25.6	MHz	256xFs at 44.0 kHz, 512xFs at 50.0 kHz
MLBCLK rise time	t _{mck} r		3	ns	V _{IL to VIH}
MLBCLK fall time	t _{mck} f		3	ns	V _{IH to VIL}
MLBCLK low time ¹	t _{mck} l	30	—	ns	256xFs
		14			512xFs
MLBCLK high time	t _{mck} h	30	—	ns	256xFs
		14			512xFs
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	—	ns	—
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	—	ns	—
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mck} l	ns	2
Bus output hold from MLBCLK low	t _{mdzh}	4	—	ns	2

Table 45. MLB 3-Pin 256/512 Fs Timing Parameters

1. MLBCLK low/high time includes the pluse width variation.

 The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Мах	Unit	Comment
MLBCLK Operating Frequency ¹	f _{mck}	45.056	-	MHz	1024 x fs at 44.0 kHz
		-	51.2	MHz	1024 x fs at 50.0 kHz
MLBCLK rise time	f _{mckr}		1	ns	V _{IL to} V _{IH}
MLBCLK fall time	f _{mckf}		1	ns	V _{IH to} V _{IL}
MLBCLK low time	t _{mckl}	6.1	—	ns	2
MLBCLK high time	t _{mckh}	9.3	—	ns	2
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	_	ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mckl}	ns	3
Bus Hold from MLBCLK low	t _{mdzh}	2	—	ns	3

Table 46. MLB 3-Pin 1024 Fs Timing Parameters

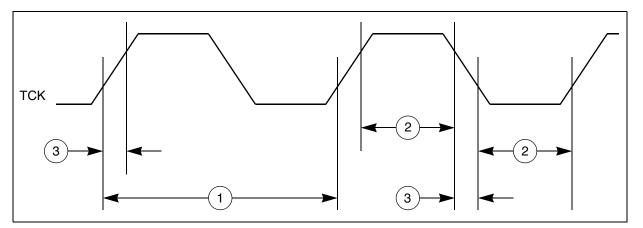


Figure 28. JTAG test clock input timing

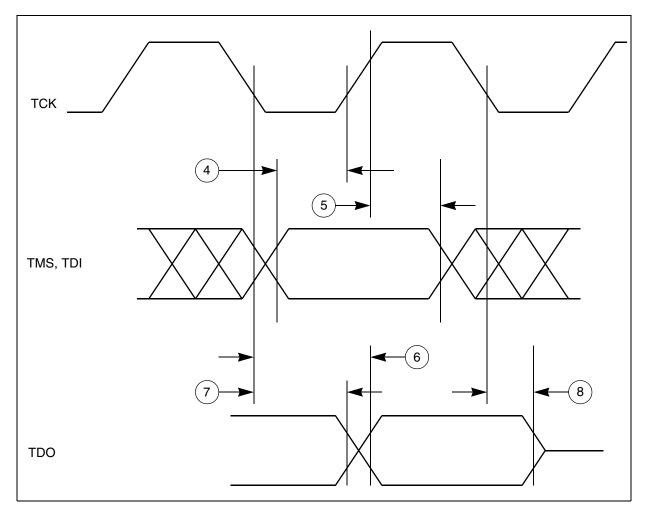


Figure 29. JTAG test access port timing

9 Pinouts

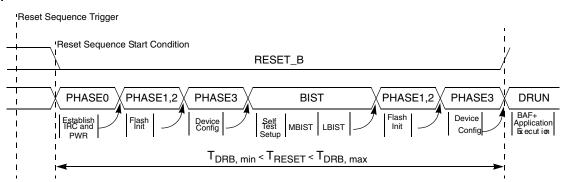
9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

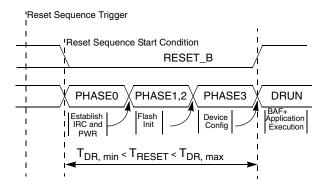
10 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

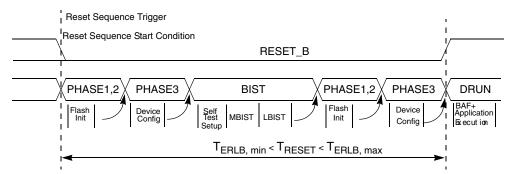
10.1 Reset sequence duration


Table 54 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter T _{Reset}			Unit	
				Typ ¹	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled		7.796		ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled 0.111		0.182		ms
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot 5.729 7.793		7.793		ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot 0.110		0.179		ms
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot 0.0		0.009		ms


Table 54. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.


Reset sequence

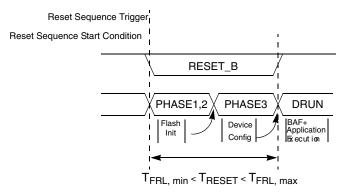


Figure 38. Functional reset sequence long

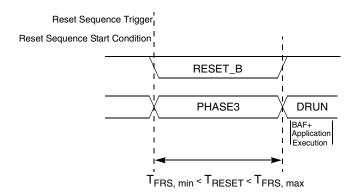


Figure 39. Functional reset sequence short

The reset sequences shown in Figure 38 and Figure 39 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	14 March 2013	Initial Release
1.1	16 May 2013	Updated Pinouts section
2	22 May 2014	 Removed Category (SR, CC, P, T, D, B) column from all the table of the Datasheet Revised the feature list. Revised Introduction section to remove classification information. Updated optional information in the ordering information figure. Revised Absolute maximum rating section: Removed category column from table Added footnote at Ta Revised Recommended operating conditions section Added notes Updated table: Recommended operating conditions (VDD_HV_x = 3.3 V) Updated table: Recommended operating conditions (VDD_HV_x = 5 V) Revised Voltage regulator electrical characteristics Updated figure: Voltage regulator capacitance connection Updated table: Voltage regulator electrical specifications Removed Brownout information
		 Revised Supply current characteristics section Updated table: Current consumption characteristics Updated table: Low Power Unit (LPU) Current consumption characteristics STANDBY Current consumption characteristics

 Table 56.
 Revision History

Table continues on the next page ...

Rev. No.	Date	Substantial Changes
		 Removed row for symbol 'V_{SS_LV}' Removed footnote from 'Max' column of symbols 'V_{DD_HV_ADC0}' and 'V_{DD_HV_ADC1}'
		 In section: Recommended operating conditions In table: Recommended operating conditions (V_{DD_HV_x} = 5 V) Added footnote to 'Conditions' cloumn Updated footnote from symbols 'V_{DD_HV_A'}, 'V_{DD_HV_B}', and 'V_{DD_HV_C}' Removed footnote from symbols 'V_{SS_HV}' Updated 'Parameter' column for symbol 'V_{DD_HV_ADC1_REF}' 'V_{DD_HV_ADC1_REF}', 'V_{DD_LV}' Updated 'Min' columnn of symbol 'V_{DD_HV_ADC0}' and 'V_{DD_HV_ADC1}' Updated 'Parameter', 'Min' 'Max' column for symbol 'V_{SS_HV_ADC0}' and 'V_{SS_HV_ADC0}' and 'V_{SS_HV_ADC1}' Added footnote to symbol 'V_{DD_LV}' Removed row for symbol 'V_{DD_LV}' Added row for symbol 'V_{SS_LV}' Added row for symbol 'V_{SS_LV}' Added row for symbol 'V_{IN1_CMP_REF}' and corresponding footnotes to the symbol
		 In section: Voltage regulator electrical characteristics In table: Voltage regulator electrical specifications Added note to symbol 'Cbe_fpreg' In section: Voltage monitor electrical characteristics In table: Voltage monitor electrical characteristics In table: Voltage monitor electrical characteristics Updated column 'Parameter', 'Min' and 'Max' (of fall/rise trimmed condition) for symbol 'V_{HVD_LV_cold}' and 'V_{LVD_IO_A_HI'} Updated column 'Parameter', 'Min' and 'Typ' (of fall/rise trimmed condition) for symbol) 'V_{LVD_LV_PD2_hot}', 'V_{LVD_LV_PD2_cold LV'} Updated column 'Parameter' for symbol 'V_{LVD_LV_PD0_hot}' Updated column 'Typ' and 'Max' (of fall/rise trimmed condition) for symbol) 'V_{LVD_FLASH}' Updated footnote on symbol 'V_{LVD_IO_A_LO}' and 'V_{LVD_IO_A_HI'}
		 In section: Supply current characteristics In table: Current consumption characteristics Updated column 'Typ' for symbol 'I_{DD_FULL}' for temperature 85, 105, 125 Updated column 'Typ' for symbol 'I_{DD_GWY}' for temperature 85, 105, 125 and column 'Max' for temperature 105 Updated column 'Typ' for symbol 'I_{DD_BODY1}' for temperature 85, 105, 125 updated column 'Typ' for symbol 'I_{DD_BODY2}' for temperature 85, 105, 125 Updated column 'Typ' for symbol 'I_{DD_BODY2}' for temperature 85, 105, 125 and 'Max' for temperature 125 Added 'Typ' value for temperature 25 for symbol 'I_{DD_STOP}' Updated column 'Typ' and 'Max' for symbol 'I_{DD_STOP}' for temperature 85, 105, 125 In table: Low Power Unit (LPU) Current consumption characteristics Updated column 'Typ' for symbol 'LPU_RUN' for tempeature 25 and 125 Added 'Typ' and 'Max' value for temperature 85 and 105 for symbol 'LPU_RUN' Updated column 'Typ' for symbol 'LPU_STOP' for tempeature 25 and 125 Added 'Typ' and 'Max' value for temperature 85 and 105 for symbol 'LPU_STOP' In table: STANDBY Current consumption characteristics Updated to have one STANDBY

Table 56. Revision History (continued)

• In section: I/O parameters

Table continues on the next page...

Table 56.	Revision	History	(continued)
	1101131011	instory	(continucu)

Rev. No.	Date	Substantial Changes
		 In table: Functional Pad AC Specifications @ 3.3 V Range Updated values for symbol 'pad_sr_hv (output)' In table: DC electrical specifications @ 3.3V Range Updtaed values for VDD_HV_x, Vih, Vhys Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys In table: Functional Pad AC Specifications @ 5 V Range Updated values for symbol 'pad_sr_hv (output)' In table DC electrical specifications @ 5 V Range Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys
		 In section: PORST electrical specifications In table: PORST electrical specifications Updated 'Min' value for W_{NFPORST} Corrected 'Unit' for V_{IH} and V_{IL}
		 In section: Peripheral operating requirements and behaviours Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion characteristics (for 10-bit)
		 In section: Analogue Comparator (CMP) electrical specifications In table: Comparator and 6-bit DAC electrical specifications Updated 'Max' value of I_{DDLS} Updated 'Min' and 'Max' for V_{AIO} and DNL Updated 'Descripton' 'Min' 'Max' od V_H Updated row for tDHS Added row for tDLS Removed row for VCMPOh and VCMPOI
		 In section: Clocks and PLL interfaces modules Revised table: Main oscillator electrical characteristics In table: 16 MHz RC Oscillator electrical specifications Updated 'Max' of Tstartup In table: 128 KHz Internal RC oscillator electrical specifications Removed Uncaliberated 'Condition' for Fosc Updated 'Min' and 'Max' of Caliberated Fosc Updated 'Temperature dependence' and 'Supply dependence' In table: PLL electrical specifications Removed Input Clock Low Level, Input Clock High Level, Power consumption, Regulator Maximum Output Current, Analog Supply, Digital Supply (VDD_LV), Modulation Depth (Down Spread), PLL reset assertion time, and Power Consumption Removed 'Typ' value of Duty Cycle at pllclkout Removed 'Min' from calibration mode of Lock Time
		In table: Jitter calculation Added 1 Sigma Random Jitter value for Long term jitter In section Flash read wait state and address pipeline control settings
		 Revised table: Flash Read Wait State and Address Pipeline Control Removed section: On-chip peripherals Added section: 'Reset sequence'
Rev4	Feb 10 2017	 Added VDD_HV_BALLAST footnote in Voltage regulator electrical characteristics Added Note to clarify In-Rush current and pin capacitance in Voltage regulator electrical characteristics Updated SIUL2_MSCRn[SRC 1:0]=11@25pF max value; SIUL2_MSCRn[SRC 1:0]=11@50pF min value; SIUL2_MSCRn[SRC 1:0]=10@25pF min and max values in AC specifications @ 3.3 V Range

Table continues on the next page...

Rev. No.	. No. Date Substantial Changes		
		 Updated VIH min and VIL max values in Main oscillator electrical characteristics Replaced ipp_sre[1:0] by SIUL2_MSCRn[SRC 1:0] in AC specifications @ 3.3 V Range, DC electrical specifications @ 3.3V Range Functional reset sequence short, unsecure boot corrected Reset sequence duration Added NVM memory map and RAM memory map Family comparison Added BAF execution duration section BAF execution duration Supply names (VDD_LV, VSS_LV replace dvss, avss, dvdd, avdd) corrected in Jitter calculation table PLL electrical specifications Updated Ordering information: Fab and Mask version indicator Updated tpsus typical and max values Flash memory AC timing specifications Added Notes on IBIS models use in AC specifications @ 3.3 V Range AC specifications @ 3.3 V Range Updated Vol value in DC electrical specifications @ 3.3V Range DC electrical specifications @ 3.3V Range Added Notes on IBIS models in Functional Pad AC Specifications @ 5 V Range AC specifications @ 5 V Range Updated Vol values in DC electrical specifications @5V Range DC electrical specifications @ 5 V Range Updated IDD Current values Supply current characteristics Updated STANDBY current consumption with FIRC ON Supply current characteristics Thermal numbers update for 256MAPBGA Thermal attributes POR_HV Trim values removed Voltage monitor electrical characteristics ADC analog pad leakage for 105 C added ADC electrical specifications 	
Rev5	July 31 2017	 Updated Standby2 value to 125 C in Standby current consumption characteristics Corrected typo in Note from "case" to "cause" Voltage regulator electrical characteristics Updated propagation delay from 14 to 21 in ACMP electrical specifications 	

Table 56. Revision History (continued)