

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4, e200z4
Core Size	32-Bit Tri-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	129
Program Memory Size	4MB (4M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5747gsk1mku6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Block diagram

Figure 1. MPC5748G block diagram

2 Family comparison

The following table provides a summary of the different members of the MPC5748G family and their proposed features. This information is intended to provide an understanding of the range of functionality offered by this family. For full details of all of the family derivatives please contact your marketing representative.

NOTE

All optional features (Flash memory, RAM, Peripherals) start with lowest peripheral number (for example: STM_0) or memory address and end at the highest available peripheral number or memory address (for example: MPC574xC have 2 STM, ending with STM_1).

Feature	MPC5747C	MPC5748C	MPC5746G	MPC5747G	MPC5748G
CPUs	e200z4	e200z4	e200z4	e200z4	e200z4
	e200z2	e200z2	e200z4	e200z4	e200z4
			e200z2	e200z2	e200z2
FPU	e200z4	e200z4	e200z4	e200z4	e200z4
			e200z4	e200z4	e200z4
Maximum	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)
Operating Frequency ²	80MHz (z2)	80MHz (z2)	160MHz (z4)	160MHz (z4)	160MHz (z4)
Frequency			80MHz (z2)	80MHz (z2)	80MHz (z2)
Flash memory	4 MB	6 MB	3 MB	4 MB	6 MB
EEPROM support	32 KB to 128	KB emulated	32	KB to 192 KB emula	ted
RAM	512 KB		768	KB	
ECC			End to End		
SMPU	24 e	ntry		32 entry	
DMA			32 channels		
10-bit ADC			48 Standard channels	6	
			32 External channels		
12-bit ADC			16 Precision channels	6	
			16 Standard channels	3	
			32 External channels		
AnalogComparator			3		
BCTU			1		
SWT	2	2		4 ³	
STM	2	2		3	
PIT-RTI			16 channels PIT		
			1 channels RTI		
RTC/API			Yes		
Total Timer I/O ⁴			96 channels		
			16-bits		
LINFlexD	1 M/S	15 M		1 M/S, 17 M	
FlexCAN		8 wit	h optional CAN FD su	ipport	
DSPI/SPI			4 x DSPI		
			6 x SPI		

Table 1. MPC5748G Family Comparison1

Table continues on the next page...

Table 1. MPC5748G Family Comparison1 (continued)

Feature	MPC5747C	MPC5748C	MPC5746G	MPC5747G	MPC5748G	
l ² C			4			
SAI/I ² S			3			
FXOSC	8 - 40 MHz					
SXOSC			32 KHz			
FIRC			16 MHz			
SIRC			128 KHz			
FMPLL			Yes			
LPU			Yes			
FlexRay 2.1 (dual channel)			Yes, 128 MB			
MLB150	()		1		
USB 2.0 SPH	()		1		
USB 2.0 OTG	()		1		
SDHC			1			
Ethernet (RMII, MII + 1588, Muti queue AVB support)			Up to 2			
3 Port L2 Ethernet Switch			Optional			
CRC			1			
MEMU			2			
STCU			1			
HSM-v2 (security)			Optional			
Censorship			Yes			
FCCU			1			
Safety level		Specifi	c functions ASIL-B ce	rtifiable		
User MBIST			Yes			
User LBIST			Yes			
I/O Retention in Standby			Yes			
GPIO ⁵		Up to 2	264 GPI and up to 246	6 GPIO		
Debug			JTAGC,			
			cJTAG			
Nexus			Z4 N3+			
			Z2 N3+			
Packages			176 LQFP-EP			
			256 BGA, 324 BGA			

1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

2. Based on 125°C ambient operating temperature and subject to full device characterisation.

- 3. Additional SWT included when HSM option selected
- 4. Refer device datasheet and reference manual for information on to timer channel configuration and functions.

5. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

Table 2. MPC5748G Family Comparison - NVM Memory Map 1

Start Address	End Address	Flash block	RWW	MPC5746	MPC5747	MPC5748
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	6	available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	6	available	available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	6	available	available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	available	available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	available	available	available
0x01280000	0x012BFFFF	256 KB code Flash block 10	7	not available	available	available
0x012C0000	0x012FFFFF	256 KB code flash block 11	7	not available	available	available
0x01300000	0x0133FFFF	256 KB code flash block 12	7	not available	available	available
0x01340000	0x0137FFFF	256 KB code flash block 13	7	not available	available	available
0x01380000	0x013BFFFF	256 KB code flash block 14	7	not available	not available	available
0x013C0000	0x013FFFFF	256 KB code flash block 15	7	not available	not available	available
0x01400000	0x0143FFFF	256 KB code flash block 16	8	not available	not available	available
0x01440000	0x0147FFFF	256 KB code flash block 17	8	not available	not available	available
0x01480000	0x014BFFFF	256 KB code flash block 18	8	not available	not available	available
0x14C0000	0x014FFFFF	256 KB code flash block 19	9	not available	not available	available
0x01500000	0x0153FFFF	256 KB code flash block 20	9	not available	not available	available
0x01540000	0x0157FFFF	256 KB code flash block 21	9	not available	not available	available

General

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias		-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.

5. VIN1_CMP_REF \leq VDD_HV_A

6. This supply is shorted VDD_HV_A on lower packages.

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD HV x} = 5 V$)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit			
V _{DD_HV_A}	HV IO supply voltage	—	4.5	5.5	V			
V _{DD_HV_B}								
V _{DD_HV_C}								
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V			
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.15	5.5	V			
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V			
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V			
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V			
V _{IN1_CMP_REF} ⁵	Analog Comparator DAC reference voltage	_	3.15	5.5	V			
I _{INJPAD}	Injected input current on any pin during overload condition	-	-3.0	3.0	mA			
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C			
TJ	Junction temperature under bias	_	-40	150	°C			

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with C_{flash_reg} .
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. This supply is shorted VDD_HV_A on lower packages.

Figure 2. Voltage regulator capacitance connection

Table 8.	Voltage regulator	electrical	specifications
----------	-------------------	------------	----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} 1	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	—	0.001	—	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31		4.7		
C _{flash_reg} ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm

Table continues on the next page...

General

x FlexCAN state machines clocked(other FLEXCAN clock gated), 4 x LINFlexD transmitting (Other clock gated), 1x eMIOS clocked(used OPWFMB mode) (Others clock gated), FIRC, SIRC, FXOSC, SXOSC, PLL running, BCTU, DMAMUX, ACMP clock gated. All others modules clock gated if not specifically mentioned. I/O supply current excluded

- 6. Recommended Transistors:MJD31@85°C, 105°C and 125°C.
- 7. Enabled Modules in Body mode enabled at maximum frequency: 2 x e200Z4 @ 120Mhz(Instruction and Data cache enabled),Platform@120MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- 8. Recommended Transistors: BCP56, BCP68 or MJD31@85°C, BCP56, BCP68 or MJD31@105°C and MJD31@125°C.
- 9. Enabled Modules in Body mode enabled at maximum frequency:2 x e200Z4 @80Mhz(Instruction and Data cache enabled),Platform@80MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- 10. Recommended Transistors:BCP56, BCP68 or MJD31@85°C, 105°C and 125°C
- Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
 This value is the total support for two ADCs Fach ADC might compute on A structure.
- 12. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
LPU_RUN	with 256K RAM,	T _a = 25 °C	_	8.9		mA
	but only one RAM being accessed	SYS_CLK = 16MHz				
	ling and the	ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 25 °C		10.2		
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 85 °C	—	12.5	22	
		$T_a = 105 \ ^{\circ}C$	—	14.5	24	
		T _a = 125 °C ^{, 2}	—	16	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	T _a = 25 °C	—	0.535		mA
		T _a = 85 °C	—	0.72	6	
		$T_a = 105 \text{ °C}$	_	1	8	
		$T_a = 125 \ ^{\circ}C^2$	—	1.6	10.6	

Table 11. Low Power Unit (LPU) Current consumption characteristics

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes 3. Slew rate control modes

4. Input slope = 2ns

NOTE

The specification given above is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The specification given above is measured between 20% / 80%.

5.2 DC electrical specifications @ 3.3V Range

Symbol	Parameter	Va	lue	Unit	
		Min	Max		
VDD	LV (core) Supply Voltage	1.08	1.32	V	
VDD_HV_x ¹	I/O Supply Voltage	3.15	3.63	V	
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.72*VDD_HV_ x	VDD_HV_x + 0.3	V	
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VSS_LV - 0.3	0.45*VDD_HV_ x	V	
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.11*VDD_HV_ x		V	
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.67*VDD_HV_ x	VDD_HV_x + 0.3	V	
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VSS_LV - 0.3	0.35*VDD_HV_ x	V	
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.57 * VDD_HV_x	VDD_HV_x + 0.3	V	
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VSS_LV - 0.3	0.4 * VDD_HV_x	V	
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x		V	
Pull_IIH (pad_i_hv)	Weak Pullup Current Low	15		μA	
Pull_IIH (pad_i_hv)	Weak Pullup Current High		55	μA	
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	28		μA	
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		85	μA	
Pull_loh	Weak Pullup Current ⁴	15	50	μA	
Pull_lol	Weak Pulldown Current ⁵	15	50	μA	
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA	
Voh	Output High Voltage ⁶	0.8 *VDD_HV_x		V	
Vol	Output Low Voltage ⁷	—	0.2 *VDD_HV_x	V	

Table 15. DC electrical specifications @ 3.3V Range

Table continues on the next page...

Analog

6.1.1.1 Input equivalent circuit and ADC conversion characteristics

Figure 6. Input equivalent circuit

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel.

Table 20. ADC conversion characteristics (for 12-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
fск	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency)	_	15.2	80	80	MHz
f _s	Sampling frequency	80 MHz	_		1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	250	—	_	ns
t _{conv}	Conversion time ⁴	80 MHz	700	_	—	ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard and extended channels)	80 MHz	1.5 ⁵	_		μs
	Total Conversion time t _{sample} + t _{conv} (for precision channels)		1	_		
C _S	ADC input sampling capacitance	—	_	3	5	pF
C _{P1} ⁶	ADC input pin capacitance 1	—	—	_	5	pF
C _{P2} ⁶	ADC input pin capacitance 2	—	_	_	0.8	pF
R _{SW1} ⁶	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V	—	_	0.3	kΩ
	source	V _{REF} range = 3.15 to 3.6 V			875	Ω

Table continues on the next page...

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
R _{AD} ⁶	Internal resistance of analog source	_	-	_	825	Ω
INL	Integral non-linearity (precise channel)	—	-2	_	2	LSB
INL	Integral non-linearity (standard channel)	—	-3	_	3	LSB
DNL	Differential non-linearity	—	-1	—	1	LSB
OFS	Offset error	—	-6	—	6	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (precision channel)	150 °C	_	_	250	nA
(pad going to one ADC)	Max leakage (standard channel)	150 °C	_	—	2500	nA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max leakage (standard channel)	stance of analoglinearity (precise2linearity (standard3linearity (standard3non-linearity1664e (precision channel)150 °Ce (standard channel)150 °Cbe (standard channel)105 °C TAbe (standard channel)105 °C TA-5be/negative injection-5usted error for precisionWithout current injection-6With current injection-8+/-6with current injection-8+/-6With current injection-8+/-6	250	nA		
	Max positive/negative injection		-5	_	5	mA
TUE _{precision channels}	Total unadjusted error for precision	Without current injection	-6	+/-4	6	LSB
	channels	With current injection		+/-5		LSB
TUE _{standard/extended}	Total unadjusted error for standard/	Without current injection	-8	+/-6	8	LSB
channels	extended channels	With current injection ⁷		+/-8		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 20. ADC conversion characteristics (for 12-bit) (continued)

- Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required relation between IO_supply_A,B,C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the ADC is lower.
- 6. See Figure 2.
- 7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

Table 21. ADC conversion characteristics (for 10-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency.)		15.2	80	80	MHz
f _s	Sampling frequency	—	_	_	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	275	_	_	ns

Table continues on the next page...

Symbol	Parameter	Conditions	Min	Typ ¹	Мах	Unit
t _{conv}	Conversion time ⁴	80 MHz	550	—		ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard channels)	80 MHz	1	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for extended channels)		1.5	_	—	
C _S	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁵	ADC input pin capacitance 1	—	_	—	5	pF
C _{P2} ⁵	ADC input pin capacitance 2	—	_	—	0.8	pF
R _{SW1} ⁵	Internal resistance of analog	V _{REF} range = 4.5 to 5.5 V	—	—	0.3	kΩ
	source	V_{REF} range = 3.15 to 3.6 V	_	—	875	Ω
R _{AD} ⁵	Internal resistance of analog source	_	—	—	825	Ω
INL	Integral non-linearity	—	-2	—	2	LSB
DNL	Differential non-linearity	—	-1	_	1	LSB
OFS	Offset error	—	-4	—	4	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (standard channel)	150 °C	_	—	2500	nA
(pad going to one ADC)	Max leakage (standard channel)	105 °C _{TA}	—	5	250	nA
ADO)	Max positive/negative injection		-5	—	5	mA
TUE _{standard/extended}	Total unadjusted error for standard	Without current injection	-4	+/-3	4	LSB
channels	channels	With current injection ⁶		+/-4		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 21. ADC conversion characteristics (for 10-bit) (continued)

- Active ADC Input, VinA < [min(ADC_ADV, IO_Supply_A,B,C)]. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions' for required relation between IO_supply_A, B, C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. See Figure 2
- 6. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: 'Absolute maximum ratings') must be honored to meet TUE spec quoted here

NOTE

The ADC input pins sit across all three I/O segments, VDD_HV_A, VDD_HV_B and VDD_HV_C.

Memory interfaces

- 2. This jitter component is added when the PLL is working in the fractional mode.
- 3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.
- 4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding specified value of jitter table

Table 29. Percentage of sample exceeding specified value of jitter

N	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10

6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol Characteristic¹ Typ² Factory **Field Update** Unit Programming^{3, 4} Initial Typical Lifetime Max⁶ Initial Max, Full End of Max Temp Life⁵ 20°C ≤T_A -40°C ≤T_J ≤ 1,000 -40°C ≤T,J ≤ 250,000 ≤30°C ≤150°C ≤150°C cycles cycles 500 Doubleword (64 bits) program time 43 100 150 55 μs t_{dwpgm} 200 300 108 500 Page (256 bits) program time 73 μs t_{ppgm} Quad-page (1024 bits) program 268 800 1,200 396 2,000 μs t_{qppgm} time 16 KB Block erase time 168 290 320 250 1,000 ms t_{16kers} 40 1,000 16 KB Block program time 34 45 50 ms t_{16kpgm}

Table 30. Flash memory program and erase specifications

Table continues on the next page...

6.3.3 Flash memory module life specifications Table 32. Flash memory module life specifications

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks.	—	250,000	-	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks.	—	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	-	Years
		Blocks with 100,000 P/E cycles.	20	-	Years
		Blocks with 250,000 P/E cycles.	10	-	Years

6.3.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

6.4 Communication interfaces

6.4.1 DSPI timing

Table 35. DSPI electrical specifications

No	Symbol	Parameter	Conditions	High Spe	eed Mode	low Spe	ed mode	Unit
				Min	Max	Min	Мах	1
1	t _{SCK}	DSPI cycle	Master (MTFE = 0)	25	—	50	—	ns
		time	Slave (MTFE = 0)	40	_	60	—	1
2	t _{csc}	PCS to SCK delay		16		_	_	ns
3	t _{ASC}	After SCK delay	—	16		_	_	ns
4	t _{SDC}	SCK duty cycle	—	t _{SCK} /2 - 10	t _{SCK} /2 + 10	_	_	ns
5	t _A	Slave access time	SS active to SOUT valid	—	40	_	_	ns
6	t _{DIS}	Slave SOUT disable time	_{SS} inactive to SOUT High-Z or invalid	—	10	—	_	ns
7	t _{PCSC}	PCSx to PCSS time	—	13	—	_	_	ns
8	t _{PASC}	PCSS to PCSx time		13		_	_	ns
9	t _{SUI}	Data setup	Master (MTFE = 0)	NA	_	20	—	ns
		time for inputs	Slave	2	—	2	—	
		inputo	Master (MTFE = 1, CPHA = 0)	15	—	8 ¹	—	

Table continues on the next page ...

6.4.4 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

6.4.4.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

NOTE

ENET0 supports the following xMII interfaces: MII, MII_Lite and RMII. ENET1 supports the following xMII interfaces: MII_Lite.

NOTE

It is only possible to use ENET0 and ENET1 simultaneously when both are configured for MII_Lite.

NOTE

In certain pinout configurations ENET1 MII-Lite signals can be across multiple VDD_HV_A/B/C domains. If these configuration are used, VDD_HV IO domains need to be at the same voltage (for example: 3.3V)

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
_	TXCLK frequency	—	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2		ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	—	25	ns

Table 42. MII signal switching specifications

FlexRay electrical specifications

Figure 23. RMII/MII receive signal timing diagram

6.4.4.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Num	Description	Min.	Max.	Unit
—	EXTAL frequency (RMII input clock RMII_CLK)	—	50	MHz
RMII1	RMII1 RMII_CLK pulse width high		65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	—	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	_	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	—	15	ns

Table 43. RMII signal switching specifications

Debug specifications

6.5 Debug specifications

6.5.1 JTAG interface timing

Table 50. JTAG pin AC electrical characteristics ¹

#	Symbol	Characteristic	Min	Max	Unit
1	t _{JCYC}	TCK Cycle Time ²	62.5	—	ns
2	t _{JDC}	TCK Clock Pulse Width	40	60	%
3	t _{TCKRISE}	TCK Rise and Fall Times (40% - 70%)	-	3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI Data Setup Time	5	_	ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI Data Hold Time	5	_	ns
6	t _{TDOV}	TCK Low to TDO Data Valid	—	20 ³	ns
7	t _{TDOI}	TCK Low to TDO Data Invalid	0		ns
8	t _{TDOHZ}	TCK Low to TDO High Impedance	—	15	ns
11	t _{BSDV}	TCK Falling Edge to Output Valid	—	600 ⁴	ns
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	_	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	_	600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15	_	ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

1. These specifications apply to JTAG boundary scan only.

- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

Figure 30. JTAG boundary scan timing

6.5.2 Nexus timing

Table 51. Nexus debug port timing ¹

No.	Symbol	Parameter	Condition	Min	Max	Unit
			S			
1	t _{MCYC}	MCKO Cycle Time	—	15.6	—	ns
2	t _{MDC}	MCKO Duty Cycle	—	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	—	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	—	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	—	1	_	tMCYC
6	t _{TCYC}	TCK Cycle Time ³		62.5	—	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time		8		ns

Table continues on the next page...

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
Single- layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	39.5	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	22.9	°C/W	1,23
Single- layer (1s)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	28.5	°C/W	1,3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	18.3	°C/W	1,3
_	R _{θJB}	Thermal resistance, junction to board	9.5	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	5.8	°C/W	5
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	6
	Ψ _{JB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	6.4	°C/W	7

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.,
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in package drawing.

To find a package drawing, go to www.nxp.com and perform a keyword search for the drawing's document number:

Package	NXP Document Number
176-pin LQFP-EP	98ASA00673D
256 MAPBGA	98ASA00346D
324 MAPBGA	98ASA10582D

Figure 39. Functional reset sequence short

The reset sequences shown in Figure 38 and Figure 39 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	14 March 2013	Initial Release
1.1	16 May 2013	Updated Pinouts section
2	22 May 2014	 Removed Category (SR, CC, P, T, D, B) column from all the table of the Datasheet Revised the feature list. Revised Introduction section to remove classification information. Updated optional information in the ordering information figure. Revised Absolute maximum rating section: Removed category column from table Added footnote at Ta Revised Recommended operating conditions section Added notes Updated table: Recommended operating conditions (VDD_HV_x = 3.3 V) Updated table: Recommended operating conditions (VDD_HV_x = 5 V) Revised Voltage regulator electrical characteristics Updated figure: Voltage regulator capacitance connection Updated table: Voltage regulator electrical specifications Removed Brownout information
		 Revised Supply current characteristics section Updated table: Current consumption characteristics Updated table: Low Power Unit (LPU) Current consumption characteristics STANDBY Current consumption characteristics

 Table 56.
 Revision History

Table continues on the next page ...