

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

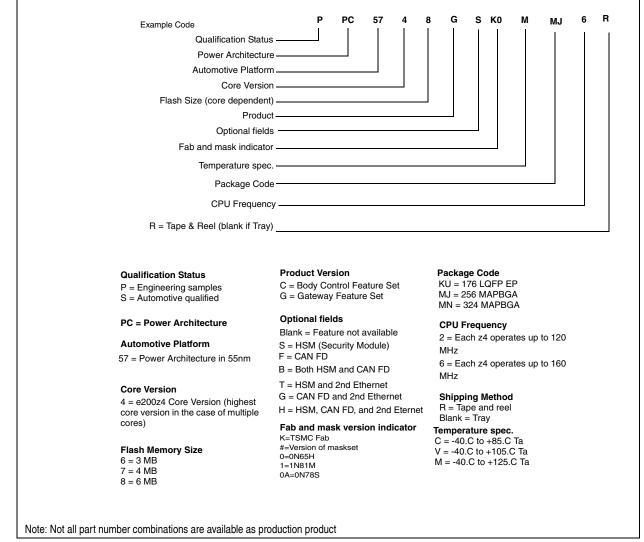
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core Processore200z2, e200z4Core Size32-Bit Dual-CoreSpeed80MHz/160MHzConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size6MB (6M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASurpe Converters256-LBGA		
Core Size32-Bit Dual-CoreSpeed80MHz/160MHzConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size6MB (6M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASurface MARD Size-26-MAPPBGA (17x17)	Product Status	Active
Speed80MHz/160MHzConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size6MB (6M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Core Processor	e200z2, e200z4
ConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size6MB (6M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Core Size	32-Bit Dual-Core
PeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size6MB (6M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Speed	80MHz/160MHz
Number of I/O178Program Memory Size6MB (6M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Program Memory Size6MB (6M x 8)Program Memory TypeFLASHEEPROM Size-RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Peripherals	DMA, LVD, POR, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Number of I/O	178
EEPROM Size-RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Program Memory Size	6MB (6M x 8)
RAM Size768K x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	EEPROM Size	-
Data ConvertersA/D 80x10b, 64x12bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	RAM Size	768K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Operating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case256-LBGASupplier Device Package256-MAPPBGA (17x17)	Data Converters	A/D 80x10b, 64x12b
Mounting Type Surface Mount Package / Case 256-LBGA Supplier Device Package 256-MAPPBGA (17x17)	Oscillator Type	Internal
Package / Case 256-LBGA Supplier Device Package 256-MAPPBGA (17x17)	Operating Temperature	-40°C ~ 125°C (TA)
Supplier Device Package 256-MAPPBGA (17x17)	Mounting Type	Surface Mount
	Package / Case	256-LBGA
Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5748ck1mmj6	Supplier Device Package	256-MAPPBGA (17x17)
	Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5748ck1mmj6

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

Table 2. MPC5748G Family Comparison - NVM Memory Map 1

Start Address	End Address	Flash block	RWW	MPC5746	MPC5747	MPC5748
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	6	available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	6	available	available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	6	available	available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	available	available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	available	available	available
0x01280000	0x012BFFFF	256 KB code Flash block 10	7	not available	available	available
0x012C0000	0x012FFFFF	256 KB code flash block 11	7	not available	available	available
0x01300000	0x0133FFFF	256 KB code flash block 12	7	not available	available	available
0x01340000	0x0137FFFF	256 KB code flash block 13	7	not available	available	available
0x01380000	0x013BFFFF	256 KB code flash block 14	7	not available	not available	available
0x013C0000	0x013FFFFF	256 KB code flash block 15	7	not available	not available	available
0x01400000	0x0143FFFF	256 KB code flash block 16	8	not available	not available	available
0x01440000	0x0147FFFF	256 KB code flash block 17	8	not available	not available	available
0x01480000	0x014BFFFF	256 KB code flash block 18	8	not available	not available	available
0x14C0000	0x014FFFFF	256 KB code flash block 19	9	not available	not available	available
0x01500000	0x0153FFFF	256 KB code flash block 20	9	not available	not available	available
0x01540000	0x0157FFFF	256 KB code flash block 21	9	not available	not available	available

3.2 Ordering Information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

4.2 **Recommended operating conditions**

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded in order to guarantee proper operation and reliability. The ranges in this table are design targets and actual data may vary in the given range.

NOTE

- For normal device operations, all supplies must be within operating range corresponding to the range mentioned in following tables. This is required even if some of the features are not used.
- If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be externally supplied using a 3.3V source. If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be shorted to VDD_HV_A.
- VDD_HV_A, VDD_HV_B and VDD_HV_C are all independent supplies and can each be set to 3.3V or 5V. The following tables: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' and table 'Recommended operating conditions (VDD_HV_x = 5 V)' specify their ranges when configured in 3.3V or 5V respectively.

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	_	3.15	3.6	V
$V_{DD_HV_B}$					
$V_{DD_HV_C}$					
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage		3.0	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	3.6	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage	_	3.15	3.6	V
I _{INJPAD}	Injected input current on any pin during overload condition	—	-3.0	3.0	mA

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$)

Table continues on the next page...

General

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias	_	-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.

5. VIN1_CMP_REF \leq VDD_HV_A

6. This supply is shorted VDD_HV_A on lower packages.

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD HV x} = 5 V$)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit	
V _{DD_HV_A}	HV IO supply voltage	—	4.5	5.5	V	
V _{DD_HV_B}						
V _{DD_HV_C}						
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V	
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.15	5.5	V	
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	V _{DD_HV_ADC0} HV ADC supply voltage		max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V	
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V	
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V	
V _{IN1_CMP_REF} ⁵	Analog Comparator DAC reference voltage	_	3.15	5.5	V	
I _{INJPAD}			-3.0	3.0	mA	
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C	
TJ	Junction temperature under bias	_	-40	150	°C	

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with C_{flash_reg} .
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. This supply is shorted VDD_HV_A on lower packages.

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_FULL}	RUN Full Mode	LV supply + HV supply + HV Flash supply +	—	219	292	mA
2, 3	Operating current	2 x HV ADC supplies				
		$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	230	328	mA
		T _a = 125 °C	—	249	400	mA
I _{DD_GWY} 5, 6	RUN Gateway Mode Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	_	183	260	mA
0, 0	current	$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	196	294	mA
		$T_a = 125^{\circ}C^4$	—	215	348	mA
I _{DD_BODY_1} 7, 8	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	-	149	223	mA
7,0	current	T _a = 85 °C				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	158	270	mA
		$T_{a} = 125^{\circ}C^{4}$	—	175	310	mA
IDD_BODY_2 ^{9, 10}	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	_	105	174	mA
	current	T _a = 85 °C				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				

Table 10. Current consumption characteristics

Table continues on the next page ...

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY0	STANDBY with	T _a = 25 °C		71	_	μA
	8K RAM	T _a = 85 °C		175	800	
		T _a = 105 °C	_	338	1725	1
		T _a = 125 °C	_	750	2775	
STANDBY1	STANDBY with	T _a = 25 °C		72		μA
	64K RAM	T _a = 85 °C	—	176	815	1
	-	T _a = 105 °C		350	1775	1
		T _a = 125 °C	_	825	3000	1
STANDBY2	STANDBY with	T _a = 25 °C	—	75		μA
	128K RAM	T _a = 85 °C	_	182	830	30
		T _a = 105 °C	_	366	1825	
		T _a = 125 °C	_	900	3250	1
STANDBY3	STANDBY with	T _a = 25 °C	_	80		μA
	256K RAM	T _a = 85 °C	_	197	860	1
		T _a = 105 °C	—	400	1875	1
		T _a = 125 °C	—	975	3500	1
STANDBY3	FIRC ON	T _a = 25 °C	_	500	_	μA

Table 12. STANDBY Current consumption characteristics

1. The content of the Conditions column identifies the components that draw the specific current.

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 13. ESD ratings

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
	(Human Body Model)				

Table continues on the next page ...

NOTE

The above specification is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The above specification is measured between 20% / 80%.

5.4 DC electrical specifications @ 5 V Range

Table 17. DC electrical specifications @ 5 V Range

Symbol	Parameter	Va	lue	Unit	
		Min	Max		
VDD_LV	LV (core) Supply Voltage	1.08	1.32	V	
VDD_HV_x ¹	I/O Supply Voltage	4.5	5.5	V	
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.7*VDD_HV_x	VDD_HV_x + 0.3	V	
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VSS_LV- 0.3	0.45*VDD_HV_ x	V	
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V	
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.55 * VDD_HV_x	VDD_HV_x + 0.3	V	
Vil CMOS Input Buffer Low Voltage (with hysteresis disabled)		VSS_LV - 0.3	0.4 * VDD_HV_x	V	
Vhys	Vhys CMOS Input Buffer Hysteresis			V	
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.65* VDD_HV_x	VDD_HV_x + 0.3	V	
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VSS_LV - 0.3	0.35*VDD_HV_ x	V	
Pull_IIH (pad_i_hv)	Weak Pullup Current Low	23		μA	
Pull_IIH (pad_i_hv)	Weak Pullup Current High		82	μA	
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	40		μA	
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		130	μA	
Pull_loh	Weak Pullup Current ⁴	30	80	μA	
Pull_lol	Weak Pulldown Current ⁵	30	80	μA	
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA	
Voh	Output High Voltage ⁶	0.8 * VDD_HV_x	—	V	
Vol	Output Low Voltage ⁷ Output Low Voltage ⁸	_	0.2 * VDD_HV_x 0.1*VDD_HV_x	V	

Table continues on the next page...

5.6 PORST electrical specifications

Table 19. PORST electrical specifications

Symbol	Parameter		Value				
		Min	Тур	Max			
W _{FPORST}	PORST input filtered pulse	—	_	200	ns		
W _{NFPORST}	PORST input not filtered pulse	1000		—	ns		
V _{IH}	Input high level	—	0.65 x V _{DD_HV_A}	—	V		
V _{IL}	Input low level	_	0.35 x V _{DD_HV_A}		V		

6 Peripheral operating requirements and behaviours

6.1 Analog

6.1.1 ADC electrical specifications

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	—	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)		5	11	μA
V _{AIN}	Analog input voltage	V_{SS}	_	V _{IN1_CMP_RE} F	V
V _{AIO}	Analog input offset voltage ¹	-42	_	42	mV
V _H	Analog comparator hysteresis ²	_	1	25	mV
	• CR0[HYSTCTR] = 00	_	20	50	mV
	• CR0[HYSTCTR] = 01		40	70	mV
	• CR0[HYSTCTR] = 10	_	60	105	mV
	 CR0[HYSTCTR] = 11 				
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1, 3}		_	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}		5	21	μs
	Analog comparator initialization delay, High speed mode ⁴	_	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	_	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8	_	0.8	LSB

1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_HV_A}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

6.2.4 128 KHz Internal RC oscillator Electrical specifications Table 26. 128 KHz Internal RC oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
F _{oscu} ¹	Oscillator frequency	Calibrated	119	128	136.5	KHz
	Temperature dependence				600	ppm/C
	Supply dependence				18	%/V
	Supply current	Clock running			2.75	μA
		Clock stopped			200	nA

1. Vdd=1.2 V, 1.32V, T_a=-40 C, 125 C

6.2.5 PLL electrical specifications

Table 27. PLL electrical specifications

Parameter	Min	Тур	Max	Unit	Comments
Input Frequency	8		40	MHz	
VCO Frequency Range	600		1280	MHz	
Duty Cycle at pllclkout	48%		52%		This specification is guaranteed at PLL IP boundary
Period Jitter			See Table 28	ps	NON SSCG mode
TIE			See Table 28		at 960 M Integrated over 1MHz offset not valid in SSCG mode
Modulation Depth (Center Spread)	+/- 0.25%		+/- 3.0%		
Modulation Frequency			32	KHz	
Lock Time			60	μs	Calibration mode

Table 28. Jitter calculation

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Period Jitter	60 ps	3% of pllclkout1,2	Modulation depth	0.1% of pllclkout1,2	+/-(J _{SN} +J _{SDM} +J _{SSCG} +N ^[4] ×J _{RJ})
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.	_	9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.	_	_	100	ns
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	_	—	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP	_		5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.			80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods		20.42 plus four system clock periods	μs

6.3.5 Flash memory AC timing specifications

Table 33. Flash memory AC timing specifications

No	Symbol	Parameter	Conditions	High Spo	eed Mode	low Spe	ed mode	Unit
				Min	Max	Min	Max	
			Master (MTFE = 1, CPHA = 1)	15	_	20	_	
10	t _{HI}	Data hold	Master (MTFE = 0)	NA	—	-5	_	ns
		time for inputs	Slave	4	—	4	_	
		inputs	Master (MTFE = 1, CPHA = 0)	0	—	11 ¹	_	
			Master (MTFE = 1, CPHA = 1)	0	_	-5	_	
11	t _{suo}	Data valid	Master (MTFE = 0)	—	NA	—	4	ns
		(after SCK edge)	Slave	—	15	—	23	
		euge)	Master (MTFE = 1, CPHA = 0)	_	4	—	16 ¹	
			Master (MTFE = 1, CPHA = 1)	—	4	_	4	
12	t _{HO}	Data hold time for outputs	Master (MTFE = 0)	NA	_	-2	_	ns
			Slave	4	_	6	_	
			Master (MTFE = 1, CPHA = 0)	-2	-	10 ¹	-	
			Master (MTFE = 1, CPHA = 1)	-2	—	-2	—	

Table 35. DSPI electrical specifications (continued)

1. SMPL_PTR should be set to 1

NOTE

Restriction For High Speed modes

- DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master mode SCK
- DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave SCK frequency
- Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode
- For Master mode MTFE will be 1 for high speed mode
- For high speed slaves, their master have to be in MTFE=1 mode or should be able to support 15ns tSUO delay

NOTE

For numbers shown in the following figures, see Table 35

FlexRay electrical specifications

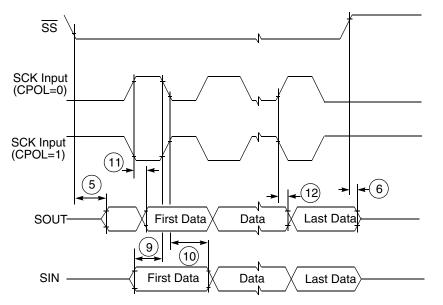


Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

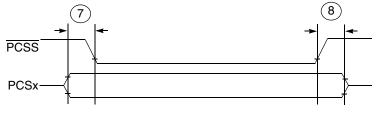


Figure 16. DSPI PCS strobe (PCSS) timing

6.4.2 FlexRay electrical specifications

6.4.2.1 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals. It should be noted that these are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

6.4.5 MediaLB (MLB) electrical specifications

6.4.5.1 MLB 3-pin interface DC characteristics

The section lists the MLB 3-pin interface electrical characteristics.


Table 44. MediaLB 3-Pin Interface Electrical DC Specifications

Parameter	Symbol	Test Conditions	Min	Max	Unit
Maximum input voltage	—	—	-	3.6	V
Low level input threshold	V _{IL}	-	—	0.7	V
High level input threshold	V _{IH}	See Note ¹	1.8	—	V
Low level output threshold	V _{OL}	$I_{OL} = -6 \text{ mA}$	—	0.4	V
High level output threshold	V _{OH}	I _{OH} = –6 mA	2.0	—	V
Input leakage current	IL	0 < Vin < VDD	—	±10	μA

1. Higher V_{IH} thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

6.4.5.2 MLB 3-pin interface electrical specifications

This section describes the timing electrical information of the MLB module.

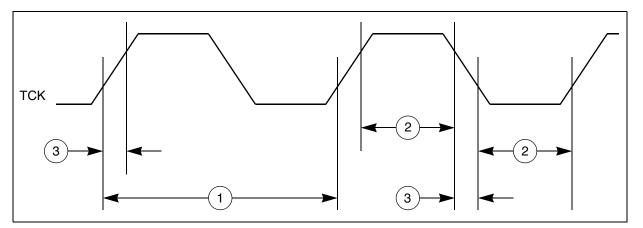


Figure 28. JTAG test clock input timing

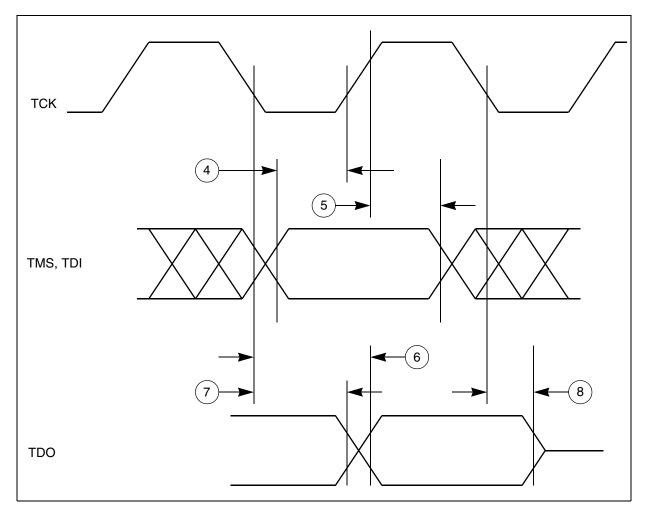


Figure 29. JTAG test access port timing

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

10.1 Reset sequence duration

Table 54 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter		T _{Reset}		
			Min	Typ ¹	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled	5.730	7.796		ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled		0.182		ms
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot		7.793		ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot	0.110	0.179		ms
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	0.007	0.009		ms

Table 54. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

10.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	-	200	-	μs
BAF execution time (boot header at last location)	-	320	-	μs

Table 55. BAF execution duration

10.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in Table 54.

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in Table 54 are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3.

Rev. No.	Date	Substantial Changes
		 Revised Electromagnetic Interference (EMI) characteristics section Revised DC electrical specifications @ 3.3V Range table for naming convections. Revised DC electrical specifications @ 5 V Range table for naming conventions Deleted MLB 6-pin Electrical Specifications Removed PORST characteristics from Functional reset pad electrical characteristics table Added section PORST electrical characteristics Revised Input impedance and ADC accuracy section to remove SNR, THD, SINAD, ENOB, Revised 32 kHz oscillator electrical specifications table to remove 'Vpp' row. Updated 16 MHz RC Oscillator electrical specifications table for statuptime, cycle to cycle jitter, and lonf term jitter Updated 128 KHz Internal RC oscillator electrical specifications table. Updated PLL electrical specifications table Added Jitter Calculation table Added Percentage of Sample exceeding specified value of jitter table
		 Revised Memory interfaces section Revised Communication interfaces section Updated note Added Continuous SCK timing table Added DSPI high speed mode I/Os table Updated input transition value in section MLB 3-pin interface electrical specifications Deleted MLB 6-pin interface DC characteristics section Deleted MLB 6-pin interface AC characteristics section Updated JTAG pin AC electrical characteristics table Revised table under Thermal attributes section Updated Obtaining package dimensions section for Freescale Document numbers
3	12 May 2015	 Editorial updates throughout the sections Renamed '176 LQFP' package to '176 LQFP-EP' Added following sections: Block diagram Family comparison Ordering Information In table: Absolute maximum ratings as follows: Removed row for symbol: 'V_{SS_HV}' Added symbol: 'V_{DD_LV}' Updated 'Max' column for symbol 'V_{INA}' Added footnote to 'Conditions' column Removed footnote from 'Max' column In section: Recommended operating conditions Added note: "V_{DD_HV_A}, V_{DD_HV_B} and V_{DD_HV_C} are all " Added footnote to 'Conditions' cloumn In table: Recommended operating conditions (V_{DD_HV_X} = 3.3 V) Added footnote to 'Conditions' cloumn Updated footnote for 'Min' column Bemoved footnote for Symbol: 'V_{SS_HV}' Updated footnote for Symbol: 'V_{SS_HV}' Updated footnote for Symbols' V_{DD_HV_A}', 'V_{DD_HV_B} and 'V_{DD_HV_C}' Removed footnote for Symbol: 'V_{SS_HV}' Updated footnote for Symbol: 'V_{SS_HV}' Updated footnote for Symbol: 'V_{SS_HV}' Updated 'Parameter' column for symbol 'V_{DD_HV_A}', 'V_{DD_HV_A}DC1_REF', 'V_{DD_LV}' Updated 'Parameter' Min' 'Max' column for symbol 'V_{SS_HV_ADC0}' and 'V_{SS_HV_ADC0}' and 'V_{SS_HV_ADC0}' Removed footnote to symbol 'V_{DD_LV}' Added footnote to symbol 'V_{DD_LV}'

 Table 56.
 Revision History (continued)

Table continues on the next page...