

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4, e200z4
Core Size	32-Bit Tri-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	178
Program Memory Size	6MB (6M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5748ggk1mmj6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

Table 2. MPC5748G Family Comparison - NVM Memory Map 1

Start Address	End Address	Flash block	RWW	MPC5746	MPC5747	MPC5748
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	6	available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	6	available	available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	6	available	available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	available	available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	available	available	available
0x01280000	0x012BFFFF	256 KB code Flash block 10	7	not available	available	available
0x012C0000	0x012FFFFF	256 KB code flash block 11	7	not available	available	available
0x01300000	0x0133FFFF	256 KB code flash block 12	7	not available	available	available
0x01340000	0x0137FFFF	256 KB code flash block 13	7	not available	available	available
0x01380000	0x013BFFFF	256 KB code flash block 14	7	not available	not available	available
0x013C0000	0x013FFFFF	256 KB code flash block 15	7	not available	not available	available
0x01400000	0x0143FFFF	256 KB code flash block 16	8	not available	not available	available
0x01440000	0x0147FFFF	256 KB code flash block 17	8	not available	not available	available
0x01480000	0x014BFFFF	256 KB code flash block 18	8	not available	not available	available
0x14C0000	0x014FFFFF	256 KB code flash block 19	9	not available	not available	available
0x01500000	0x0153FFFF	256 KB code flash block 20	9	not available	not available	available
0x01540000	0x0157FFFF	256 KB code flash block 21	9	not available	not available	available

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{array}{c} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}^2 \end{array}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
V _{DD_HV_FLA} ^{3, 4}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁵	Decoupling pin for low power regulators ⁶	—	-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁷	3.3 V / 5.0 V ADC1 high reference voltage		-0.3	6	V
V _{DD_HV_ADC0}	3.3 V to 5.5V ADC supply voltage		-0.3	6.0	V
V _{DD_HV_ADC1}					
V _{SS_HV_ADC0}	3.3V to 5.5V ADC supply ground		-0.1	0.1	V
V _{SS_HV_ADC1}					
V _{DD_LV}	Core logic supply voltage	—	-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V $_{\rm SS_HV}$)	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	-5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition		-50	50	mA
T _{ramp}	Supply ramp rate	—	0.5 V / min	100V/ms	—
T _A ⁸	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature		-55	165	°C

Table 5. Absolute maximum ratings

1. All voltages are referred to VSS_HV unless otherwise specified

- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 5. This pin should be decoupled with low ESR 1 μF capacitor.
- 6. Not available for input voltage, only for decoupling internal regulators
- 7. 10-bit ADC does not have dedicated reference and its reference is double bonded to 10-bit ADC supply(VDD_HV_ADC0).
- 8. T_J=150°C. Assumes T_A=125°C
 - Assumes maximum θJA. SeeThermal attributes

4.2 **Recommended operating conditions**

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded in order to guarantee proper operation and reliability. The ranges in this table are design targets and actual data may vary in the given range.

NOTE

- For normal device operations, all supplies must be within operating range corresponding to the range mentioned in following tables. This is required even if some of the features are not used.
- If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be externally supplied using a 3.3V source. If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be shorted to VDD_HV_A.
- VDD_HV_A, VDD_HV_B and VDD_HV_C are all independent supplies and can each be set to 3.3V or 5V. The following tables: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' and table 'Recommended operating conditions (VDD_HV_x = 5 V)' specify their ranges when configured in 3.3V or 5V respectively.

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	_	3.15	3.6	V
V _{DD_HV_B}					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage		3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage		3.0	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	3.6	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	-	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage		3.15	3.6	V
I _{INJPAD}	Injected input current on any pin during overload condition	—	-3.0	3.0	mA

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$)

General

- 7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If V_{DD_HV_BALLAST} is supplied from the same source as VDD_HV_A this condition is implicitly met):
 - During power-up, V_{DD_HV_BALLAST} must have met the min spec of 2.25V before VDD_HV_A reaches the POR_HV_RISE min of 2.75V.
 - During power-down, $V_{DD_HV_BALLAST}$ must not drop below the min spec of 2.25V until VDD_HV_A is below POR_HV_FALL min of 2.7V.

NOTE

For a typical configuration using an external ballast transistor with separate supply for VDD_HV_A and the ballast collector, a bulk storage capacitor (as defined in Table 8) is required on VDD_HV_A close to the device pins to ensure a stable supply voltage.

Extra care must be taken if the VDD_HV_A supply is also being used to power the external ballast transistor or the device is running in internal regulation mode. In these modes, the inrush current on device Power Up or on exit from Low Power Modes is significant and may cause the VDD_HV_A voltage to drop resulting in an LVD reset event. To avoid this, the board layout should be optimized to reduce common trace resistance or additional capacitance at the ballast transistor collector (or VDD_HV_A pins in the case of internal regulation mode) is required. NXP recommends that customers simulate the external voltage supply circuitry.

In all circumstances, the voltage on VDD_HV_A must be maintained within the specified operating range (see Recommended operating conditions) to prevent LVD events.

4.4 Voltage monitor electrical characteristics

Symbol	Parameter	State	State Conditions Configuration Threshold			Configuration			ld	Unit		
				Powe r Up ¹	Mas k Opt	Reset Type	Min	Тур	Мах	v		
V _{POR_LV}	LV supply	Fall	Untrimmed	Yes	No	Powerup	0.930	0.979	1.028	V		
	power on reset detector		Trimmed				0.959	0.979	0.999	V		
		Rise	Untrimmed						0.980	1.029	1.078	V
			Trimmed				1.009	1.029	1.049	V		

 Table 9. Voltage monitor electrical characteristics

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_FULL}	RUN Full Mode	LV supply + HV supply + HV Flash supply +	—	219	292	mA
2, 3	Operating current	2 x HV ADC supplies				
		$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	230	328	mA
		T _a = 125 °C	—	249	400	mA
I _{DD_GWY}	RUN Gateway Mode Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	-	183	260	mA
0,0	current	$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	196	294	mA
		$T_a = 125^{\circ}C^4$	—	215	348	mA
I _{DD_BODY_1}	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	-	149	223	mA
	current	$T_a = 85 \ ^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	158	270	mA
		$T_{a} = 125^{\circ}C^{4}$	—	175	310	mA
IDD_BODY_2 ^{9, 10}	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	—	105	174	mA
	current	T _a = 85 °C				
		$V_{DD_LV} = 1.25 V$				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				

Table 10. Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Мах	Unit
		T _a = 105 °C	_	114	206	mA
		$T_a = 125 \text{ °C }^4$	—	131	277	mA
I _{DD_STOP}	STOP mode	T _a = 25 °C	—	11	_	mA
	Operating current	$V_{DD_LV} = 1.25 V$				
		T _a = 85 °C	—	19.8	105	
		V _{DD_LV} = 1.25 V				
		T _a = 105 °C		29	145	
		V _{DD_LV} = 1.25 V				
		$T_a = 125 \ ^{\circ}C^4$	—	45	160	
		$V_{DD_{LV}} = 1.25 V$				
IDD_HV_ADC_REF ^{11, 12}	ADC REF	T _a = 25 °C	—	200	400	μA
	Operating current	2 ADCs operating at 80 MHz				
		$V_{DD_HV_ADC_REF} = 3.6 V$				
		$T_a = 125 \text{ °C }^4$	—	200	400	
		2 ADCs operating at 80 MHz				
		$V_{DD_HV_ADC_REF} = 5.5 V$				
I _{DD_HV_ADCx} ¹²	ADC HV	T _a = 25 °C	—	1	2	mA
	Operating current	ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 3.6 V$				
		$T_a = 125 \degree C^4$	—	1.2	2]
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 5.5 V$				
I _{DD_HV_FLASH}	Flash Operating	$T_a = 125 \text{ °C }^4$	—	40	45	mA
	current during	3.3 V supplies				
		x MHz frequency				

Table 10. Current consumption characteristics (continued)

- 1. The content of the Conditions column identifies the components that draw the specific current.
- 2. ALL Modules enabled at maximum frequency: 2 x e200Z4 @ 160 MHz, e200Z2 at 80 MHz, Platform @ 160MHz, DMA (SRAM to SRAM), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals (500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH transmitting (USB-OTG only clocked), 2 x I2C transmitting (rest clocked), 1 x SAI transmitting (rest clocked), ADC0 converting using BCTU triggers triggered through PIT (other ADC clocked), RTC running, 3 x STM running, 2 x DSPI transmitting (rest clocked), 2 x SPI transmitting (rest clocked), 4 x CAN state machines working(rest clocked), 9 x LINFlexD transmitting (rest clocked), 1 x eMIOS clocked (used OPWFMB mode) (Others clock gated), SDHC,3 x CMP only clocked, FIRC, SIRC, FXOSC, SXOSC, PLL running. All others modules clock gated if not specifically mentioned. I/O supply current excluded.
- 3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C.
- 4. Tj=150°C. Assumes Ta=125°C
 - Assumes maximum θJA. SeeThermal attributes
- Enabled Modules in Gateway mode: 2 x e200Z4 @160 MHz (Instruction and Data cache enabled), Platform @160MHz, e200Z2 at 80 MHz(Instruction cache enabled), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting, USB-SPH Transmitting, USB-OTG clocked, 2 x I2C transmitting, (2 x I2C clock gated), 1 x SAI transmitting (2 x SAI clock gated), ADC0 converting in continuous mode (ADC1 clock gated), PIT clocked, RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(Other DSPS clock gated), 2 x SPI transmitting(Other SPIs clock gated), 4

General

x FlexCAN state machines clocked(other FLEXCAN clock gated), 4 x LINFlexD transmitting (Other clock gated), 1x eMIOS clocked(used OPWFMB mode) (Others clock gated), FIRC, SIRC, FXOSC, SXOSC, PLL running, BCTU, DMAMUX, ACMP clock gated. All others modules clock gated if not specifically mentioned. I/O supply current excluded

- 6. Recommended Transistors:MJD31@85°C, 105°C and 125°C.
- 7. Enabled Modules in Body mode enabled at maximum frequency: 2 x e200Z4 @ 120Mhz(Instruction and Data cache enabled),Platform@120MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- 8. Recommended Transistors: BCP56, BCP68 or MJD31@85°C, BCP56, BCP68 or MJD31@105°C and MJD31@125°C.
- 9. Enabled Modules in Body mode enabled at maximum frequency:2 x e200Z4 @80Mhz(Instruction and Data cache enabled),Platform@80MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- 10. Recommended Transistors:BCP56, BCP68 or MJD31@85°C, 105°C and 125°C
- Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
 This value is the total support for two ADCs Fach ADC might compute on A structure.
- 12. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
LPU_RUN	with 256K RAM,	T _a = 25 °C	—	8.9		mA
	but only one RAM being accessed	SYS_CLK = 16MHz				
		ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 25 °C		10.2		
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 85 °C	—	12.5	22	
		T _a = 105 °C	—	14.5	24	
		T _a = 125 °C ^{, 2}	—	16	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	T _a = 25 °C	_	0.535		mA
		T _a = 85 °C	—	0.72	6	
		T _a = 105 °C	—	1	8	
		$T_{a} = 125 \ ^{\circ}C^{2}$		1.6	10.6	

Table 11. Low Power Unit (LPU) Current consumption characteristics

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

NOTE

The above specification is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The above specification is measured between 20% / 80%.

5.4 DC electrical specifications @ 5 V Range

Table 17. DC electrical specifications @ 5 V Range

Symbol	Parameter	Va	Unit	
		Min	Max	
VDD_LV	LV (core) Supply Voltage	1.08	1.32	V
VDD_HV_x ¹	I/O Supply Voltage	4.5	5.5	V
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.7*VDD_HV_x	VDD_HV_x + 0.3	V
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VSS_LV- 0.3	0.45*VDD_HV_ x	V
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.55 * VDD_HV_x	VDD_HV_x + 0.3	V
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VSS_LV - 0.3	0.4 * VDD_HV_x	V
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x		V
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.65* VDD_HV_x	VDD_HV_x + 0.3	V
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VSS_LV - 0.3	0.35*VDD_HV_ x	V
Pull_IIH (pad_i_hv)	Weak Pullup Current Low	23		μA
Pull_IIH (pad_i_hv)	Weak Pullup Current High		82	μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	40		μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		130	μA
Pull_loh	Weak Pullup Current ⁴	30	80	μA
Pull_lol	Weak Pulldown Current ⁵	30	80	μA
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA
Voh	Output High Voltage ⁶	0.8 * VDD_HV_x	—	V
Vol	Output Low Voltage ⁷ Output Low Voltage ⁸	_	0.2 * VDD_HV_x	V
			0.1*VDD_HV_x	

Analog

6.1.1.1 Input equivalent circuit and ADC conversion characteristics

Figure 6. Input equivalent circuit

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel.

Table 20. ADC conversion characteristics (for 12-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Мах	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency)	_	15.2	80	80	MHz
f _s	Sampling frequency	80 MHz	—	—	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	250	_	_	ns
t _{conv}	Conversion time ⁴	80 MHz	700	_	_	ns
t _{total_conv}	Total Conversion time $t_{sample} + t_{conv}$ (for standard and extended channels)	80 MHz	1.5 ⁵	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for precision channels)		1	—	—	
C _S	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁶	ADC input pin capacitance 1	—	_	_	5	pF
C _{P2} ⁶	ADC input pin capacitance 2	—	_	_	0.8	pF
R _{SW1} ⁶	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V	_	—	0.3	kΩ
	source	V _{REF} range = 3.15 to 3.6 V	_	_	875	Ω

Table continues on the next page...

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
R _{AD} ⁶	Internal resistance of analog source	—	-	_	825	Ω
INL	Integral non-linearity (precise channel)	—	-2	_	2	LSB
INL	Integral non-linearity (standard channel)	—	-3	_	3	LSB
DNL	Differential non-linearity	—	-1	—	1	LSB
OFS	Offset error	—	-6	—	6	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (precision channel)	150 °C	_	—	250	nA
(pad going to one	Max leakage (standard channel)	150 °C	—	—	2500	nA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max leakage (standard channel)	105 °C _{TA}	_	5	250	nA
	Max positive/negative injection		-5	—	5	mA
TUEprecision channels	Total unadjusted error for precision	Without current injection	-6	+/-4	6	LSB
	channels	With current injection		+/-5		LSB
TUE _{standard/extended}	Total unadjusted error for standard/	Without current injection	-8	+/-6	8	LSB
channels	extended channels	With current injection ⁷		+/-8		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 20. ADC conversion characteristics (for 12-bit) (continued)

- Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required relation between IO_supply_A,B,C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the ADC is lower.
- 6. See Figure 2.
- 7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

Table 21. ADC conversion characteristics (for 10-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency.)	_	15.2	80	80	MHz
f _s	Sampling frequency	—	—	—	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	275	_	_	ns

Table continues on the next page...

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Clocks and PLL interfaces modules

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
V _{IL}	Input low level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3			1.25	V

 Table 23.
 Main oscillator electrical characteristics (continued)

6.2.2 32 kHz Oscillator electrical specifications Table 24. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	s

1. This parameter is characterized before qualification rather than 100% tested.

2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 16 MHz RC Oscillator electrical specifications Table 25. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value		Unit	
			Min	Тур	Max	1
F _{Target}	IRC target frequency	—	—	16	—	MHz
PTA	IRC frequency variation after trimming	—	-5	—	5	%
T _{startup}	Startup time	—		—	1.5	us
T _{STJIT}	Cycle to cycle jitter		_	—	1.5	%
T _{LTJIT}	Long term jitter				0.2	%

NOTE

The above start up time of 1 us is equivalent to 16 cycles of 16 MHz.

6.3.3 Flash memory module life specifications Table 32. Flash memory module life specifications

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks.	—	250,000	_	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks.	—	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	—	Years
		Blocks with 100,000 P/E cycles.	20	_	Years
		Blocks with 250,000 P/E cycles.	10	_	Years

6.3.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

Figure 9. DSPI classic SPI timing — master, CPHA = 1

Figure 10. DSPI classic SPI timing — slave, CPHA = 0

Figure 13. DSPI modified transfer format timing — master, CPHA = 1

Figure 14. DSPI modified transfer format timing – slave, CPHA = 0

6.4.2.3 TxD

Figure 19. TxD Signal

Table 39.	TxD output characteristics
-----------	----------------------------

Name	Description ¹	Min	Max	Unit
dCCT _{xAsym}	Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100 ns)	-2.45	2.45	ns
dCCTxD _{RISE25} +dCCTx D _{FALL25}	Sum of Rise and Fall time of TxD signal at the output	—	9 ²	ns

Table continues on the next page...

1. All parameters specified for VDD_HV_IOx = $3.3 \text{ V} \cdot 5\%$, +±10%, TJ = -40 oC / 150 oC.

6.4.3 uSDHC specifications

Table 41. uSDHC switching specifications

Num	Symbol	Description	Min.	Max.	Unit			
	Card input clock							
SD1	fpp	Clock frequency (Identification mode)	0	400	kHz			
	fpp	Clock frequency (SD\SDIO full speed)	0	25	MHz			
	fpp	Clock frequency (SD\SDIO high speed)	0	40	MHz			
	fpp	Clock frequency (MMC full speed)	0	20	MHz			
	f _{OD}	Clock frequency (MMC full speed)	0	40	MHz			
SD2	t _{WL}	Clock low time	7	—	ns			
SD3	t _{WH}	Clock high time	7	_	ns			
SD4	t _{TLH}	Clock rise time	_	3	ns			
SD5	t _{THL}	Clock fall time	_	3	ns			
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)				
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns			
	SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)							
SD7	t _{ISU}	SDHC input setup time	5	—	ns			
SD8	t _{IH}	SDHC input hold time	0	_	ns			

Figure 21. uSDHC timing

MediaLB (MLB) electrical specifications

Ground = 0.0 V; Load Capacitance = 60 pF, input transition= 1 ns ; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK operating frequency	f _{mck}	11.264	25.6	MHz	256xFs at 44.0 kHz, 512xFs at 50.0 kHz
MLBCLK rise time	t _{mck} r		3	ns	V _{IL to VIH}
MLBCLK fall time	t _{mck} f		3	ns	V _{IH to V_{IL}}
MLBCLK low time ¹	t _{mck} l	30	—	ns	256xFs
		14			512xFs
MLBCLK high time	t _{mck} h	30	—	ns	256xFs
		14			512xFs
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	_	ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mck} l	ns	2
Bus output hold from MLBCLK low	t _{mdzh}	4	_	ns	2

Table 45. MLB 3-Pin 256/512 Fs Timing Parameters

1. MLBCLK low/high time includes the pluse width variation.

 The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK Operating Frequency ¹	f _{mck}	45.056	-	MHz	1024 x fs at 44.0 kHz
		-	51.2	MHz	1024 x fs at 50.0 kHz
MLBCLK rise time	f _{mckr}		1	ns	V _{IL to} V _{IH}
MLBCLK fall time	f _{mckf}		1	ns	V _{IH to} V _{IL}
MLBCLK low time	t _{mckl}	6.1		ns	2
MLBCLK high time	t _{mckh}	9.3	—	ns	2
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	—	ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mckl}	ns	3
Bus Hold from MLBCLK low	t _{mdzh}	2	_	ns	3

Table 46. MLB 3-Pin 1024 Fs Timing Parameters

- 1. The controller can shut off MLBCLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLBCLK.
- 2. MLBCLK low/high time includes the pluse width variation.
- The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

6.4.6 USB electrical specifications

6.4.6.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

6.4.6.2 ULPI timing specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in the following table. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin.

Num	Description	Min.	Тур.	Max.	Unit
	USB_CLKIN operating frequency	_	60	_	MHz
	USB_CLKIN duty cycle	_	50		%
U1	USB_CLKIN clock period	—	16.67	—	ns
U2	Input setup (control and data)	5	_	_	ns
U3	Input hold (control and data)	1	_	_	ns
U4	Output valid (control and data)		_	9.5	ns
U5	Output hold (control and data)	1	—	—	ns

 Table 47.
 ULPI timing specifications

Figure 30. JTAG boundary scan timing

6.5.2 Nexus timing

Table 51. Nexus debug port timing ¹

No.	Symbol	Parameter	Condition	Min	Max	Unit
			S			
1	t _{MCYC}	MCKO Cycle Time	_	15.6	—	ns
2	t _{MDC}	MCKO Duty Cycle	_	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	_	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	—	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	_	1	—	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	_	62.5	—	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time		8		ns