

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4, e200z4
Core Size	32-Bit Tri-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	129
Program Memory Size	6MB (6M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	768K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5748gsk1mku6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. MPC5748G Family Comparison1 (continued)

Feature	MPC5747C	MPC5748C	MPC5746G	MPC5747G	MPC5748G			
l ² C			4					
SAI/I ² S		3						
FXOSC		8 - 40 MHz						
SXOSC			32 KHz					
FIRC			16 MHz					
SIRC			128 KHz					
FMPLL			Yes					
LPU			Yes					
FlexRay 2.1 (dual channel)			Yes, 128 MB					
MLB150	0)		1				
USB 2.0 SPH	0)		1				
USB 2.0 OTG	0)		1				
SDHC			1					
Ethernet (RMII, MII + 1588, Muti queue AVB support)	Up to 2							
3 Port L2 Ethernet Switch			Optional					
CRC			1					
MEMU			2					
STCU			1					
HSM-v2 (security)			Optional					
Censorship			Yes					
FCCU			1					
Safety level		Specifi	c functions ASIL-B ce	rtifiable				
User MBIST			Yes					
User LBIST			Yes					
I/O Retention in Standby			Yes					
GPIO ⁵		Up to 2	264 GPI and up to 240	6 GPIO				
Debug			JTAGC,					
			cJTAG					
Nexus			Z4 N3+					
			Z2 N3+					
Packages			176 LQFP-EP					
			256 BGA, 324 BGA					

1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

2. Based on 125°C ambient operating temperature and subject to full device characterisation.

- 3. Additional SWT included when HSM option selected
- 4. Refer device datasheet and reference manual for information on to timer channel configuration and functions.

3.2 Ordering Information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
$C_{_{HV_VDD_A}}$	VDD_HV_A supply capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1			μF
$C_{_{HV_VDD_B}}$	VDD_HV_B supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1			μF
$C_{_{HV_VDD_C}}$	VDD_HV_C supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	—	μF
C _{HV_ADC0} C _{HV_ADC1}	HV ADC supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
$C_{HV_ADR}^{6}$	HV ADC SAR reference supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.47	_	_	μF
V _{DD_HV_BALL}	FPREG Ballast collector supply voltage	When collector of NPN ballast is directly supplied by an on board supply source (not shared with VDD_HV_A supply pin) without any series resistance, that is, R _{C_BALLAST} less than 0.01 Ohm.	2.25	_	5.5	V
R _{C_BALLAST}	Series resistor on collector of FPREG ballast	When VDD_HV_BALLAST is shorted to VDD_HV_A on the board	_	_	0.1	Ohm
t _{SU}	Start-up time after main supply stabilization	Cfp_reg = 3 µF	—	74	_	μs
t _{ramp}	Load current transient	lload from 15% to 55% $C_{fp_{reg}} = 3 \ \mu F$		1.0		μs

 Table 8. Voltage regulator electrical specifications (continued)

- 1. Split capacitance on each pair VDD_LV pin should sum up to a total value of C_{fp_reg}
- 2. Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and maximum values.
- 3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is recommended. The tolerance +/-20% is acceptable.
- 4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing inductance should be less than 1nH.
- 5. 1. For VDD_HV_A, VDD_HV_B, and VDD_HV_C, 1µf on each side of the chip
 - a. 0.1 µf close to each VDD/VSS pin pair.
 - b. 10 µf near for each power supply source
 - c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as specified by CFP_REG parameter.
 - For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this
 amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as
 specified by CFP_REG parameter
- 6. Only applicable to ADC1

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

General

x FlexCAN state machines clocked(other FLEXCAN clock gated), 4 x LINFlexD transmitting (Other clock gated), 1x eMIOS clocked(used OPWFMB mode) (Others clock gated), FIRC, SIRC, FXOSC, SXOSC, PLL running, BCTU, DMAMUX, ACMP clock gated. All others modules clock gated if not specifically mentioned. I/O supply current excluded

- 6. Recommended Transistors:MJD31@85°C, 105°C and 125°C.
- 7. Enabled Modules in Body mode enabled at maximum frequency: 2 x e200Z4 @ 120Mhz(Instruction and Data cache enabled),Platform@120MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- 8. Recommended Transistors: BCP56, BCP68 or MJD31@85°C, BCP56, BCP68 or MJD31@105°C and MJD31@125°C.
- 9. Enabled Modules in Body mode enabled at maximum frequency:2 x e200Z4 @80Mhz(Instruction and Data cache enabled),Platform@80MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC, SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
- 10. Recommended Transistors:BCP56, BCP68 or MJD31@85°C, 105°C and 125°C
- Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
 This value is the total support for two ADCs Fach ADC might compute on A structure.
- 12. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
LPU_RUN	LPU_RUN with 256K RAM,	T _a = 25 °C	—	8.9		mA
	but only one RAM being accessed	SYS_CLK = 16MHz				
	Ŭ	ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 25 °C		10.2		
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 85 °C	—	12.5	22	
		T _a = 105 °C	—	14.5	24	
		T _a = 125 °C ^{, 2}	—	16	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	T _a = 25 °C	_	0.535		mA
		T _a = 85 °C		0.72	6	
		T _a = 105 °C	—	1	8	
		$T_{a} = 125 \ ^{\circ}C^{2}$		1.6	10.6	

Table 11. Low Power Unit (LPU) Current consumption characteristics

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes I/O parameters

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
		conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	C3A	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

 Table 13.
 ESD ratings (continued)

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

4.7 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC specifications @ 3.3 V Range

Table 14. Functional Pad AC Specifications @ 3.3 V Range

Symbol	Prop. Delay (ns) ¹ L>H/H>L		Prop. Delay (ns) ¹ Rise/Fall Edg L>H/H>L		Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	Min	Max	Min	Мах		MSB,LSB
pad_sr_hv		6/6		1.9/1.5	25	11
(output)	2.5/2.5	8.25/7.5	0.8/0.6	3.25/3	50	
(output)	6.4/5	19.5/19.5	3.5/2.5	12/12	200	
	2.2/2.5	8/8	0.55/0.5	3.9/3.5	25	10
	0.090	1.1	0.035	1.1	asymmetry ²	
	2.9/3.5	12.5/11	1/1	7/6	50	
	11/8	35/31	7.7/5	25/21	200	
	8.3/9.6	45/45	4/3.5	25/25	50	01
	13.5/15	65/65	6.3/6.2	30/30	200	
	13/13	75/75	6.8/6	40/40	50	00 ³
	21/22	100/100	11/11	51/51	200	
pad_i_hv/ pad_sr_hv (input) ⁴		2/2		0.5/0.5	0.5	NA

- 1. As measured from 50% of core side input to Voh/Vol of the output
- 2. This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF load. Required for the Flexray spec.

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

I/O parameters

Symbol	Parameter Value		lue	Unit
		Min	Max	
	Output Low Voltage ⁸		0.1 *VDD_HV_x	
loh_f	Full drive loh ⁹ (SIUL2_MSCRn[SRC 1:0]= 11)	18	70	mA
lol_f	Full drive Iol ⁹ (SIUL2_MSCRn[SRC 1:0]= 11)	21	120	mA
loh_h	Half drive loh ⁹ (SIUL2_MSCRn[SRC 1:0]= 10)	9	35	mA
lol_h	Half drive Iol ⁹ (SIUL2_MSCRn[SRC 1:0]= 10)	10.5	60	mA

- 1. Max power supply ramp rate is 500 V / ms
- 2. Measured when pad=0.69*VDD_HV_x
- 3. Measured when pad=0.49*VDD_HV_x
- 4. Measured when pad = 0 V
- 5. Measured when $pad = VDD_HV_x$
- 6. Measured when pad is sourcing 2 mA $\,$
- 7. Measured when pad is sinking 2 mA
- 8. Measured when pad is sinking 1.5 mA
- 9. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

5.3 AC specifications @ 5 V Range

Table 16. Functional Pad AC Specifications @ 5 V Range

Symbol	Prop. Delay (ns) ¹		Rise/Fal	l Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]	
	L>H/H>L		L>H/H>L				
	Min	Max	Min	Max		MSB,LSB	
pad_sr_hv		4.5/4.5		1.3/1.2	25	11	
(output)		6/6		2.5/2	50		
(output)		13/13		9/9	200		
		5.25/5.25		3/2	25	10	
		9/8		5/4	50		
		22/22		18/16	200		
		27/27		13/13	50	01 ²	
		40/40		24/24	200		
		40/40		24/24	50	00 ²	
		65/65		40/40	200		
pad_i_hv/ pad_sr_hv		1.5/1.5		0.5/0.5	0.5	NA	
(input)							

1. As measured from 50% of core side input to Voh/Vol of the output

2. Slew rate control modes

NOTE

The above specification is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The above specification is measured between 20% / 80%.

5.4 DC electrical specifications @ 5 V Range

Table 17. DC electrical specifications @ 5 V Range

Symbol	Parameter	Va	lue	Unit
		Min	Max	
VDD_LV	LV (core) Supply Voltage	1.08	1.32	V
VDD_HV_x ¹	I/O Supply Voltage	4.5	5.5	V
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.7*VDD_HV_x	VDD_HV_x + 0.3	V
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VSS_LV- 0.3	0.45*VDD_HV_ x	V
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.55 * VDD_HV_x	VDD_HV_x + 0.3	V
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VSS_LV - 0.3	0.4 * VDD_HV_x	V
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x		V
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis 0.65* VDD_H' enabled) VDD_HV_x 0.3		VDD_HV_x + 0.3	V
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VSS_LV - 0.3	0.35*VDD_HV_ x	V
Pull_IIH (pad_i_hv)	Weak Pullup Current Low	23		μA
Pull_IIH (pad_i_hv)	Weak Pullup Current High		82	μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	40		μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		130	μA
Pull_loh	Weak Pullup Current ⁴	30	80	μA
Pull_lol	Weak Pulldown Current ⁵	30	80	μA
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA
Voh	Output High Voltage ⁶	0.8 * VDD_HV_x	—	V
Vol	Output Low Voltage ⁷ Output Low Voltage ⁸	_	0.2 * VDD_HV_x	V
			0.1*VDD_HV_x	

Table continues on the next page...

I/O parameters

Figure 4. Noise filtering on reset signal

Table 18.	Functional	reset pad	electrical	specifications
-----------	------------	-----------	------------	----------------

Symbol	Parameter	Conditions		Value		
			Min	Тур	Max	
V _{IH}	Input high level TTL (Schmitt Trigger)	-	2.0	-	V _{DD_HV_A} +0.4	V
V _{IL}	Input low level TTL (Schmitt Trigger)	—	-0.4	—	0.8	V
V _{HYS}	Input hysteresis TTL (Schmitt Trigger)	—	300	—	_	mV
V _{DD_POR}	Minimum supply for strong pull-down activation	—	_	-	1.2	V
I _{OL_R}	Strong pull-down current ¹	Device under power-on reset $V_{DD_HV_A} = V_{DD_POR}$ $V_{OL} = 0.35^*V_{DD_HV_A}$	0.2	_		mA
		Device under power-on reset $V_{DD_{-}HV_{-}A} = V_{DD_{-}POR}$ $V_{OL} = 0.35^{*}V_{DD_{-}HV_{-}IO}$	11	-		mA
W _{FRST}	RESET input filtered pulse	—	—	—	500	ns
W _{NFRST}	RESET input not filtered pulse	—	2000	—	—	ns
ll _{wpu} l	Weak pull-up current absolute value	RESET pin $V_{IN} = V_{DD}$	23	_	82	μA

1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.

6.2.4 128 KHz Internal RC oscillator Electrical specifications Table 26. 128 KHz Internal RC oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
F _{oscu} ¹	Oscillator frequency	Calibrated	119	128	136.5	KHz
	Temperature dependence				600	ppm/C
	Supply dependence				18	%/V
	Supply current	Clock running			2.75	μΑ
		Clock stopped			200	nA

1. Vdd=1.2 V, 1.32V, T_a=-40 C, 125 C

6.2.5 PLL electrical specifications

Table 27. PLL electrical specifications

Parameter	Min	Тур	Max	Unit	Comments
Input Frequency	8		40	MHz	
VCO Frequency Range	600		1280	MHz	
Duty Cycle at pllclkout	48%		52%		This specification is guaranteed at PLL IP boundary
Period Jitter			See Table 28	ps	NON SSCG mode
TIE			See Table 28		at 960 M Integrated over 1MHz offset not valid in SSCG mode
Modulation Depth (Center Spread)	+/- 0.25%		+/- 3.0%		
Modulation Frequency			32	KHz	
Lock Time			60	μs	Calibration mode

Table 28. Jitter calculation

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Period Jitter	60 ps	3% of pllclkout1,2	Modulation depth	0.1% of pllclkout1,2	+/-(J _{SN} +J _{SDM} +J _{SSCG} +N ^[4] ×J _{RJ})
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

Memory interfaces

- 2. This jitter component is added when the PLL is working in the fractional mode.
- 3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.
- 4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding specified value of jitter table

Table 29. Percentage of sample exceeding specified value of jitter

Ν	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10

6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol Characteristic¹ Typ² Factory **Field Update** Unit Programming^{3, 4} Initial Typical Lifetime Max⁶ Initial Max, Full End of Max Temp Life⁵ 20°C ≤T_A -40°C ≤T_J ≤ 1,000 -40°C ≤T,J ≤ 250,000 ≤30°C ≤150°C ≤150°C cycles cycles 500 Doubleword (64 bits) program time 43 100 150 55 μs t_{dwpgm} 200 300 108 500 Page (256 bits) program time 73 μs t_{ppgm} Quad-page (1024 bits) program 268 800 1,200 396 2,000 μs t_{qppgm} time 16 KB Block erase time 168 290 320 250 1,000 ms t_{16kers} 40 1,000 16 KB Block program time 34 45 50 ms t_{16kpgm}

Table 30. Flash memory program and erase specifications

Table continues on the next page...

Symbol	Characteristic ¹	Typ ²	Factory Programming ^{3, 4}		Field Update			Unit
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifeti	me Max ⁶	
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	_	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000		ms

Table 30. Flash memory program and erase specifications (continued)

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

- 3. Conditions: \leq 150 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.

5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.

6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

6.3.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.	_	_	512 x Tperiod x Nread	_
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	_	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	_	_	2048 x Tperiod x Nread	—
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	_	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	—	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	—	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65		356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	_	1,339.5	μs

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

6.4 Communication interfaces

6.4.1 DSPI timing

Table 35. DSPI electrical specifications

No	Symbol	Parameter	Conditions	High Spe	eed Mode	low Spe	ed mode	Unit
				Min	Max	Min	Max	
1	t _{SCK}	DSPI cycle	Master (MTFE = 0)	25	—	50	—	ns
		time	Slave (MTFE = 0)	40	—	60	—	
2	t _{CSC}	PCS to SCK delay	_	16	—	_	—	ns
3	t _{ASC}	After SCK delay		16	—		_	ns
4	t _{SDC}	SCK duty cycle	_	t _{SCK} /2 - 10	t _{SCK} /2 + 10	_		ns
5	t _A	Slave access time	SS active to SOUT valid	_	40	_	—	ns
6	t _{DIS}	Slave SOUT disable time	_{SS} inactive to SOUT High-Z or invalid	_	10	_	—	ns
7	t _{PCSC}	PCSx to PCSS time	—	13	—	_	—	ns
8	t _{PASC}	PCSS to PCSx time		13	—	_		ns
9	t _{SUI}	Data setup	Master (MTFE = 0)	NA	_	20	—	ns
		time for	Slave	2	—	2	—	
			Master (MTFE = 1, CPHA = 0)	15		8 ¹		

Table continues on the next page ...

No	Symbol	Parameter	Conditions	High Spo	eed Mode	low Spe	ed mode	Unit
				Min	Max	Min	Max	1
			Master (MTFE = 1, CPHA = 1)	15	_	20	_	
10	t _{HI}	Data hold	Master (MTFE = 0)	NA	—	-5	_	ns
		time for	Slave	4	—	4	_	
		inputo	Master (MTFE = 1, CPHA = 0)	0	—	11 ¹	_	
			Master (MTFE = 1, CPHA = 1)	0	_	-5	_	
11	t _{SUO}	Data valid	Master (MTFE = 0)	_	NA	_	4	ns
		(after SCK	Slave	_	15	_	23	
		euge)	Master (MTFE = 1, CPHA = 0)	_	4	_	16 ¹	
			Master (MTFE = 1, CPHA = 1)	_	4	_	4	
12	t _{HO}	Data hold time for outputs	Master (MTFE = 0)	NA	_	-2	_	ns
			Slave	4	_	6	_	
			Master (MTFE = 1, CPHA = 0)	-2	—	10 ¹	_	
			Master (MTFE = 1, CPHA = 1)	-2	—	-2	_	

Table 35. DSPI electrical specifications (continued)

1. SMPL_PTR should be set to 1

NOTE

Restriction For High Speed modes

- DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master mode SCK
- DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave SCK frequency
- Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode
- For Master mode MTFE will be 1 for high speed mode
- For high speed slaves, their master have to be in MTFE=1 mode or should be able to support 15ns tSUO delay

NOTE

For numbers shown in the following figures, see Table 35

1. All parameters specified for VDD_HV_IOx = $3.3 \text{ V} \cdot 5\%$, +±10%, TJ = -40 oC / 150 oC.

6.4.3 uSDHC specifications

Table 41. uSDHC switching specifications

Num	Symbol	Description	Min.	Max.	Unit
		Card input clock			
SD1	fpp	Clock frequency (Identification mode)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed)	0	25	MHz
	fpp	Clock frequency (SD\SDIO high speed)	0	40	MHz
	fpp	Clock frequency (MMC full speed)	0	20	MHz
	f _{OD}	Clock frequency (MMC full speed)	0	40	MHz
SD2	t _{WL}	Clock low time	7	—	ns
SD3	t _{WH}	Clock high time	7	_	ns
SD4	t _{TLH}	Clock rise time	_	3	ns
SD5	t _{THL}	Clock fall time	_	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to	SDHC_CLK)	
SD7	t _{ISU}	SDHC input setup time	5	—	ns
SD8	t _{IH}	SDHC input hold time	0	_	ns

Figure 21. uSDHC timing

MediaLB (MLB) electrical specifications

Ground = 0.0 V; Load Capacitance = 60 pF, input transition= 1 ns ; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK operating frequency	f _{mck}	11.264	25.6	MHz	256xFs at 44.0 kHz, 512xFs at 50.0 kHz
MLBCLK rise time	t _{mck} r		3	ns	V _{IL to VIH}
MLBCLK fall time	t _{mck} f		3	ns	V _{IH to V_{IL}}
MLBCLK low time ¹	t _{mck} l	30	—	ns	256xFs
		14			512xFs
MLBCLK high time	t _{mck} h	30	—	ns	256xFs
		14			512xFs
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	_	ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mck} l	ns	2
Bus output hold from MLBCLK low	t _{mdzh}	4	_	ns	2

Table 45. MLB 3-Pin 256/512 Fs Timing Parameters

1. MLBCLK low/high time includes the pluse width variation.

 The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK Operating Frequency ¹	f _{mck}	45.056	-	MHz	1024 x fs at 44.0 kHz
		-	51.2	MHz	1024 x fs at 50.0 kHz
MLBCLK rise time	f _{mckr}		1	ns	V _{IL to} V _{IH}
MLBCLK fall time	f _{mckf}		1	ns	V _{IH to} V _{IL}
MLBCLK low time	t _{mckl}	6.1		ns	2
MLBCLK high time	t _{mckh}	9.3	—	ns	2
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	—	ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mckl}	ns	3
Bus Hold from MLBCLK low	t _{mdzh}	2	_	ns	3

Table 46. MLB 3-Pin 1024 Fs Timing Parameters

Figure 25. ULPI timing diagram

6.4.7 SAI electrical specifications

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device

Table 48. Master mode SAI Timing

no	Parameter Value			Unit
		Min	Max	
	Operating Voltage	2.7	3.6	V
S1	SAI_MCLK cycle time	40	-	ns
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	-	BCLK period
S4	SAI_BCLK pulse width high/low	45%	55%	ns
S5	SAI_BCLK to SAI_FS output valid	-	15	ns
S6	SAI_BCLK to SAI_FS output invalid	0	-	ns
S7	SAI_BCLK to SAI_TXD valid	-	15	ns
S8	SAI_BCLK to SAI_TXD invalid	0	-	ns
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	28	-	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	0	-	ns

USB electrical specifications

Figure 26. Master mode SAI Timing

Table 49. Slave mode SAI Timing

No	Parameter	Va	Unit	
		Min	Мах	
	Operating Voltage	2.7	3.6	V
S11	SAI_BCLK cycle time (input)	80	-	ns
S12	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S13	SAI_FS input setup before SAI_BCLK	10	-	ns
S14	SAI_FS input hold after SAI_BCLK	2	-	ns
S15	SAI_BCLK to SAI_TXD/SAI_FS output valid	-	28	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	-	ns
S17	SAI_RXD setup before SAI_BCLK	10	-	ns
S18	SAI_RXD hold after SAI_BCLK	2	-	ns

Figure 30. JTAG boundary scan timing

6.5.2 Nexus timing

Table 51. Nexus debug port timing ¹

No.	Symbol	Parameter	Condition	Min	Max	Unit
			S			
1	t _{MCYC}	MCKO Cycle Time	—	15.6	—	ns
2	t _{MDC}	MCKO Duty Cycle	—	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	—	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	—	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	—	1	—	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	—	62.5	—	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time		8		ns

Table continues on the next page...

Figure 39. Functional reset sequence short

The reset sequences shown in Figure 38 and Figure 39 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes	
1	14 March 2013	Initial Release	
1.1	16 May 2013	Updated Pinouts section	
2	22 May 2014	 Removed Category (SR, CC, P, T, D, B) column from all the table of the Datasheet Revised the feature list. Revised Introduction section to remove classification information. Updated optional information in the ordering information figure. Revised Absolute maximum rating section: Removed category column from table Added footnote at Ta Revised Recommended operating conditions section Added notes Updated table: Recommended operating conditions (VDD_HV_x = 3.3 V) Updated table: Recommended operating conditions (VDD_HV_x = 5 V) Revised Voltage regulator electrical characteristics Updated table: Voltage regulator capacitance connection Updated table: Voltage regulator electrical specifications Removed Brownout information 	
		 Revised Supply current characteristics section Updated table: Current consumption characteristics Updated table: Low Power Unit (LPU) Current consumption characteristics STANDBY Current consumption characteristics 	

 Table 56.
 Revision History

Table continues on the next page...

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

Rev. No.	Date	Substantial Changes
		 Updated VIH min and VIL max values in Main oscillator electrical characteristics Replaced ipp_sre[1:0] by SIUL2_MSCRn[SRC 1:0] in AC specifications @ 3.3 V Range, DC electrical specifications @ 3.3V Range Functional reset sequence short, unsecure boot corrected Reset sequence duration Added NVM memory map and RAM memory map Family comparison Added BAF execution duration section BAF execution duration Supply names (VDD_LV, VSS_LV replace dvss, avss, dvdd, avdd) corrected in Jitter calculation table PLL electrical specifications Updated Ordering information: Fab and Mask version indicator Updated tpsus typical and max values Flash memory AC timing specifications Added Notes on IBIS models use in AC specifications @ 3.3 V Range AC specifications @ 3.3 V Range Updated Vol value in DC electrical specifications @ 3.3V Range DC electrical specifications @ 3.3V Range Added Notes on IBIS models in Functional Pad AC Specifications @ 5 V Range AC specifications @ 5 V Range Updated Vol values in DC electrical specifications @5V Range DC electrical specifications @ 5 V Range Updated IDD Current values Supply current characteristics Updated STANDBY current consumption with FIRC ON Supply current characteristics Thermal numbers update for 256MAPBGA Thermal attributes POR_HV Trim values removed Voltage monitor electrical specifications ADC analog pad leakage for 105 C added ADC electrical specifications
Rev5	July 31 2017	 Updated Standby2 value to 125 C in Standby current consumption characteristics Corrected typo in Note from "case" to "cause" Voltage regulator electrical characteristics Updated propagation delay from 14 to 21 in ACMP electrical specifications

Table 56. Revision History (continued)