

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4, e200z4
Core Size	32-Bit Tri-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	129
Program Memory Size	6MB (6M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5748gsk1mku6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Block diagram

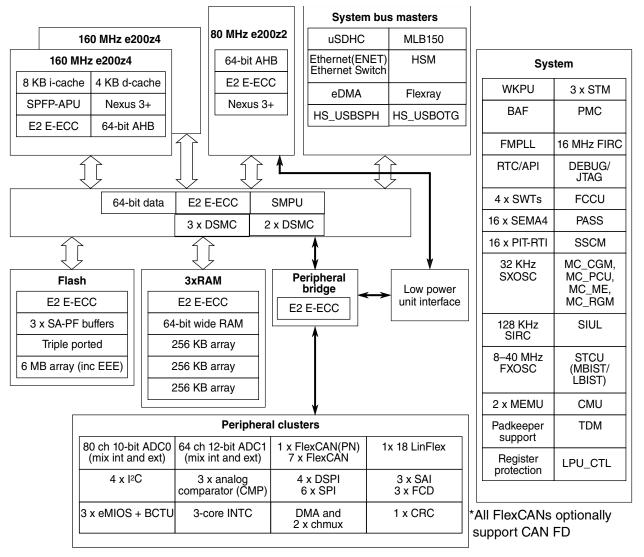


Figure 1. MPC5748G block diagram

2 Family comparison

The following table provides a summary of the different members of the MPC5748G family and their proposed features. This information is intended to provide an understanding of the range of functionality offered by this family. For full details of all of the family derivatives please contact your marketing representative.

NOTE

All optional features (Flash memory, RAM, Peripherals) start with lowest peripheral number (for example: STM_0) or memory address and end at the highest available peripheral number or memory address (for example: MPC574xC have 2 STM, ending with STM_1).

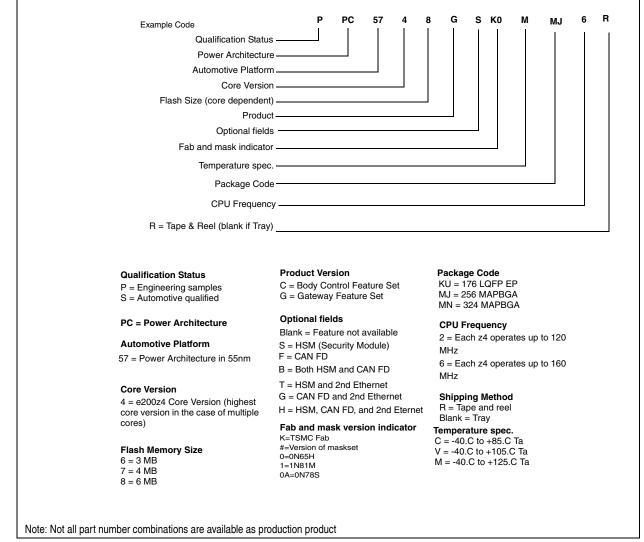
Feature	MPC5747C	MPC5748C	MPC5746G	MPC5747G	MPC5748G
CPUs	e200z4	e200z4	e200z4	e200z4	e200z4
	e200z2	e200z2	e200z4	e200z4	e200z4
			e200z2	e200z2	e200z2
FPU	e200z4	e200z4	e200z4	e200z4	e200z4
			e200z4	e200z4	e200z4
Maximum	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)
Operating Frequency ²	80MHz (z2)	80MHz (z2)	160MHz (z4)	160MHz (z4)	160MHz (z4)
Frequency			80MHz (z2)	80MHz (z2)	80MHz (z2)
Flash memory	4 MB	6 MB	3 MB	4 MB	6 MB
EEPROM support	32 KB to 128	KB emulated	32	KB to 192 KB emula	ted
RAM	512 KB		768	KB	
ECC			End to End		
SMPU	24 e	ntry		32 entry	
DMA			32 channels		
10-bit ADC			48 Standard channels	6	
	32 External channels				
12-bit ADC			16 Precision channels	6	
			16 Standard channels	3	
			32 External channels		
AnalogComparator			3		
BCTU			1		
SWT	2	2		4 ³	
STM	2	2		3	
PIT-RTI			16 channels PIT		
			1 channels RTI		
RTC/API			Yes		
Total Timer I/O ⁴			96 channels		
			16-bits		
LINFlexD	1 M/S	15 M		1 M/S, 17 M	
FlexCAN		8 wit	h optional CAN FD su	ipport	
DSPI/SPI			4 x DSPI		
			6 x SPI		

Table 1. MPC5748G Family Comparison1

Start Address	End Address	Flash block	RWW	MPC5747C	MPC5746G
				MPC5748C	MPC5747G
					MPC5748G
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	available	available
0x00FB0000	0x00FB7FFF	32 KB data Flash	2	not available	available
0x00FB8000	0x00FBFFFF	32 KB data flash	3	not available	available

 Table 3.
 MPC5748G Family Comparison - NVM Memory Map 2

 Table 4.
 MPC5748G Family Comparison - RAM Memory Map


Start Address	End Address	Allocated size [KB]	MPC5747C	MPC5748C MPC5746G MPC5747G MPC5748G
0x4000000	0x40001FFF	8	available	available
0x40002000	0x4000FFFF	56	available	available
0x40010000	0x4001FFFF	64	available	available
0x40020000	0x4003FFFF	128	available	available
0x40040000	0x4007FFFF	256	available	available
0x40080000	0x400BFFFF	256	not available	available

3 Ordering parts

3.1 Determining valid orderable parts

To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the following device number: MPC5748G.

3.2 Ordering Information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

4.2 **Recommended operating conditions**

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded in order to guarantee proper operation and reliability. The ranges in this table are design targets and actual data may vary in the given range.

NOTE

- For normal device operations, all supplies must be within operating range corresponding to the range mentioned in following tables. This is required even if some of the features are not used.
- If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be externally supplied using a 3.3V source. If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be shorted to VDD_HV_A.
- VDD_HV_A, VDD_HV_B and VDD_HV_C are all independent supplies and can each be set to 3.3V or 5V. The following tables: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' and table 'Recommended operating conditions (VDD_HV_x = 5 V)' specify their ranges when configured in 3.3V or 5V respectively.

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	—	3.15	3.6	V
$V_{DD_HV_B}$					
$V_{DD_HV_C}$					
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.0	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	3.6	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage	_	3.15	3.6	V
I _{INJPAD}	Injected input current on any pin during overload condition	—	-3.0	3.0	mA

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$)

General

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias	_	-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.

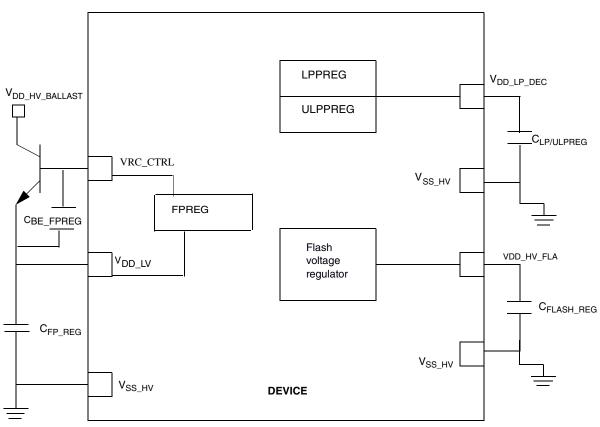
5. VIN1_CMP_REF \leq VDD_HV_A

6. This supply is shorted VDD_HV_A on lower packages.

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD HV x} = 5 V$)


Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	—	4.5	5.5	V
V _{DD_HV_B}					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.15	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V
V _{IN1_CMP_REF} ⁵	Analog Comparator DAC reference voltage	_	3.15	5.5	V
I _{INJPAD}	Injected input current on any pin during overload condition	-	-3.0	3.0	mA
T _A	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias	_	-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with C_{flash_reg} .
- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. This supply is shorted VDD_HV_A on lower packages.

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

Figure 2. Voltage regulator capacitance connection

Table 8.	Voltage regulator	electrical	specifications
----------	-------------------	------------	----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} 1	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	—	0.001	—	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31		4.7		
C _{flash_reg} ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
R _{AD} ⁶	Internal resistance of analog source	_	-	_	825	Ω
INL	Integral non-linearity (precise channel)	—	-2	_	2	LSB
INL	Integral non-linearity (standard channel)	—	-3	_	3	LSB
DNL	Differential non-linearity	—	-1	—	1	LSB
OFS	Offset error	—	-6	—	6	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (precision channel)	150 °C	_	_	250	nA
(pad going to one ADC)	Max leakage (standard channel)	150 °C	_	—	2500	nA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max leakage (standard channel)	105 °C _{TA}	_	5	250	nA
	Max positive/negative injection		-5	_	5	mA
TUE _{precision channels}	Total unadjusted error for precision	Without current injection	-6	+/-4	6	LSB
	channels	With current injection		+/-5		LSB
TUE _{standard/extended}	Total unadjusted error for standard/	Without current injection	-8	+/-6	8	LSB
channels	extended channels	With current injection ⁷		+/-8		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 20. ADC conversion characteristics (for 12-bit) (continued)

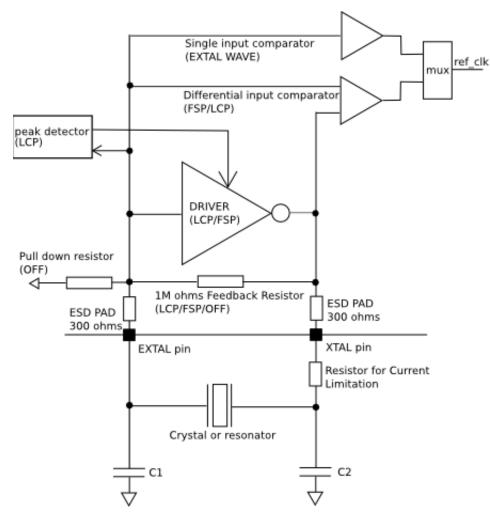

- Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required relation between IO_supply_A,B,C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the ADC is lower.
- 6. See Figure 2.
- 7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

Table 21. ADC conversion characteristics (for 10-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency.)		15.2	80	80	MHz
f _s	Sampling frequency	—	_	_	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	275	_	_	ns

Table continues on the next page...

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

Table 23.	Main oscillator	electrical	characteristics
-----------	-----------------	------------	-----------------

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
f _{xoschs}	Oscillator frequency	FSP/LCP		8		40	MHz
g _{mXOSCHS}	Driver	LCP			23		mA/V
	Transconduct ance	FSP			33		
V _{XOSCHS}	Oscillation Amplitude	LCP	8 MHz		1.0		V _{PP}
		e	16 MHz		1.0		
			40 MHz		0.8		
T _{XOSCHSSU}	Startup time	FSP/LCP	8 MHz		2		ms
			16 MHz		1		
			40 MHz		0.5		
	Oscillator	FSP	8 MHz		2.2		mA
	Analog Circuit	supply current	16 MHz	1	2.2		
	supply current		40 MHz	1	3.2		

Clocks and PLL interfaces modules

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
V _{IL}	Input low level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3			1.25	V

 Table 23.
 Main oscillator electrical characteristics (continued)

6.2.2 32 kHz Oscillator electrical specifications Table 24. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	S

1. This parameter is characterized before qualification rather than 100% tested.

2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 16 MHz RC Oscillator electrical specifications Table 25. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value			Unit
			Min	Тур	Max	1
F _{Target}	IRC target frequency	—	—	16	—	MHz
PTA	IRC frequency variation after trimming	—	-5	_	5	%
T _{startup}	Startup time	—		_	1.5	us
T _{STJIT}	Cycle to cycle jitter		—	_	1.5	%
T _{LTJIT}	Long term jitter		_	_	0.2	%

NOTE

The above start up time of 1 us is equivalent to 16 cycles of 16 MHz.

Memory interfaces

- 2. This jitter component is added when the PLL is working in the fractional mode.
- 3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.
- 4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding specified value of jitter table

Table 29. Percentage of sample exceeding specified value of jitter

N	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10

6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol Characteristic¹ Typ² Factory **Field Update** Unit Programming^{3, 4} Initial Typical Lifetime Max⁶ Initial Max, Full End of Max Temp Life⁵ 20°C ≤T_A -40°C ≤T_J ≤ 1,000 -40°C ≤T,J ≤ 250,000 ≤30°C ≤150°C ≤150°C cycles cycles 500 Doubleword (64 bits) program time 43 100 150 55 μs t_{dwpgm} 200 300 108 500 Page (256 bits) program time 73 μs t_{ppgm} Quad-page (1024 bits) program 268 800 1,200 396 2,000 μs t_{qppgm} time 16 KB Block erase time 168 290 320 250 1,000 ms t_{16kers} 40 1,000 16 KB Block program time 34 45 50 ms t_{16kpgm}

Table 30. Flash memory program and erase specifications

6.3.6 Flash read wait state and address pipeline control settings

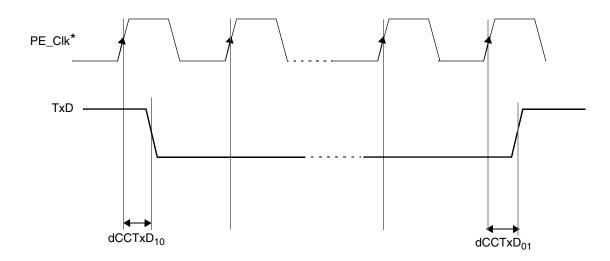
The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

6.4 Communication interfaces

6.4.1 DSPI timing


Table 35. DSPI electrical specifications

No	Symbol	Parameter	Conditions	High Spe	eed Mode	low Spe	ed mode	Unit
				Min	Max	Min	Мах	1
1	t _{SCK}	DSPI cycle	Master (MTFE = 0)	25	—	50	—	ns
		time	Slave (MTFE = 0)	40	_	60	—	1
2	t _{csc}	PCS to SCK delay		16		_	_	ns
3	t _{ASC}	After SCK delay	—	16		_	_	ns
4	t _{SDC}	SCK duty cycle	—	t _{SCK} /2 - 10	t _{SCK} /2 + 10	_	_	ns
5	t _A	Slave access time	SS active to SOUT valid	—	40	_	_	ns
6	t _{DIS}	Slave SOUT disable time	_{SS} inactive to SOUT High-Z or invalid	—	10	—	_	ns
7	t _{PCSC}	PCSx to PCSS time	—	13	—	_	_	ns
8	t _{PASC}	PCSS to PCSx time		13		_	_	ns
9	t _{SUI}	Data setup	Master (MTFE = 0)	NA	_	20	—	ns
		time for inputs	Slave	2	—	2	—	
		inputo	Master (MTFE = 1, CPHA = 0)	15	—	8 ¹	—	

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	—	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	—	25	ns

Table 39. TxD output characteristics (continued)

1. All parameters specified for $V_{DD_HV_IOx} = 3.3 \text{ V} - 5\%$, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF. 2. For 3.3 V ± 10% operation, this specification is 10 ns.

*FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays

6.4.2.4 **RxD**

Name	Description ¹	Min	Max	Unit
C_CCRxD	Input capacitance on RxD pin	—	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge	_	10	ns

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

1. All parameters specified for VDD_HV_IOx = $3.3 \text{ V} \cdot 5\%$, +±10%, TJ = -40 oC / 150 oC.

6.4.3 uSDHC specifications

Table 41. uSDHC switching specifications

Num	Symbol	Description	Min.	Max.	Unit			
		Card input clock						
SD1	fpp	Clock frequency (Identification mode)	0	400	kHz			
	fpp	Clock frequency (SD\SDIO full speed)	0	25	MHz			
	fpp	Clock frequency (SD\SDIO high speed)	0	40	MHz			
	fpp	Clock frequency (MMC full speed)	0	20	MHz			
	f _{OD}	Clock frequency (MMC full speed)	0	40	MHz			
SD2	t _{WL}	Clock low time	7	—	ns			
SD3	t _{WH}	Clock high time	7	—	ns			
SD4	t _{TLH}	Clock rise time	_	3	ns			
SD5	t _{THL}	Clock fall time	—	3	ns			
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)				
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns			
		SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to	SDHC_CLK)				
SD7	t _{ISU}	SDHC input setup time	5	—	ns			
SD8	t _{IH}	SDHC input hold time	0	—	ns			

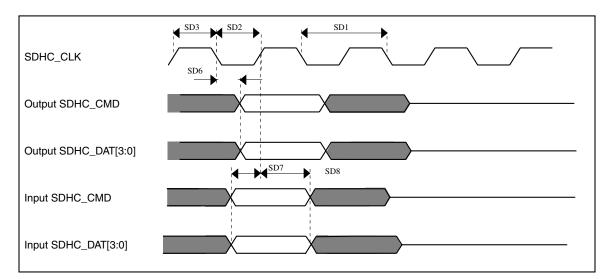


Figure 21. uSDHC timing

6.4.4 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

6.4.4.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

NOTE

ENET0 supports the following xMII interfaces: MII, MII_Lite and RMII. ENET1 supports the following xMII interfaces: MII_Lite.

NOTE

It is only possible to use ENET0 and ENET1 simultaneously when both are configured for MII_Lite.

NOTE

In certain pinout configurations ENET1 MII-Lite signals can be across multiple VDD_HV_A/B/C domains. If these configuration are used, VDD_HV IO domains need to be at the same voltage (for example: 3.3V)

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
_	TXCLK frequency	—	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2		ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	—	25	ns

Table 42. MII signal switching specifications

Debug specifications

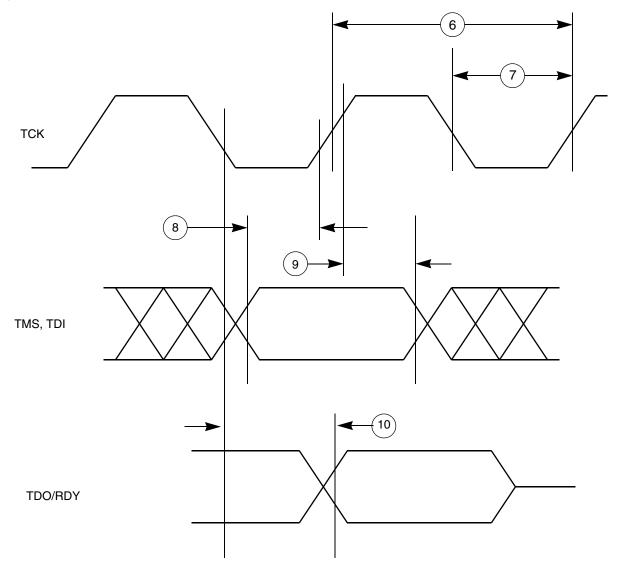


Figure 33. Nexus TDI, TMS, TDO timing

6.5.3 WKPU/NMI timing

Table 52. WKPU/NMI glitch filter

No.	Symbol	Parameter	Min	Тур	Max	Unit
1	W _{FNMI}	NMI pulse width that is rejected	_	—	20	ns
2	W _{NFNMI} D	NMI pulse width that is passed	400			ns

Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
—	Ψ_{JT}	Thermal characterization parameter, junction to package top	0.2	°C/W	7

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single- layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	25.5	°C/W	1, 2
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	19.0	°C/W	1,23
Single- layer (1s)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	18.1	°C/W	1, 3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	14.8	°C/W	1,3
—	R _{θJB}	Thermal resistance, junction to board	10.4	°C/W	4
—	R _{θJC}	Thermal resistance, junction to case	8.4	°C/W	5
_	Ψ _{JT}	Thermal characterization parameter, junction to package top natural convection)	0.45	°C/W	6
_	Ψ _{JB}	Thermal characterization parameter, junction to package top natural convection)	2.65	°C/W	7

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.,
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

10.1 Reset sequence duration

Table 54 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter	T _{Reset}		Unit	
			Min	Typ ¹	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled	5.730	7.796		ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled	0.111	0.182		ms
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot	5.729	7.793		ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot	0.110	0.179		ms
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	0.007	0.009		ms

Table 54. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

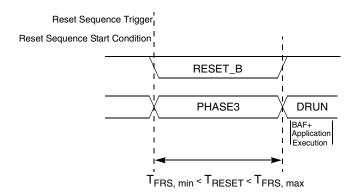


Figure 39. Functional reset sequence short

The reset sequences shown in Figure 38 and Figure 39 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	14 March 2013	Initial Release
1.1	16 May 2013	Updated Pinouts section
2	22 May 2014	 Removed Category (SR, CC, P, T, D, B) column from all the table of the Datasheet Revised the feature list. Revised Introduction section to remove classification information. Updated optional information in the ordering information figure. Revised Absolute maximum rating section: Removed category column from table Added footnote at Ta Revised Recommended operating conditions section Added notes Updated table: Recommended operating conditions (VDD_HV_x = 3.3 V) Updated table: Recommended operating conditions (VDD_HV_x = 5 V) Revised Voltage regulator electrical characteristics Updated figure: Voltage regulator capacitance connection Updated table: Voltage regulator electrical specifications Removed Brownout information
		 Revised Supply current characteristics section Updated table: Current consumption characteristics Updated table: Low Power Unit (LPU) Current consumption characteristics STANDBY Current consumption characteristics

 Table 56.
 Revision History

Table continues on the next page ...

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2013–2017 NXP B.V.

Document Number MPC5748G Revision 5, 07/2017

