

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4, e200z4
Core Size	32-Bit Tri-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	178
Program Memory Size	6MB (6M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	768K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5748gtk1mmj6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Block diagram

Figure 1. MPC5748G block diagram

2 Family comparison

The following table provides a summary of the different members of the MPC5748G family and their proposed features. This information is intended to provide an understanding of the range of functionality offered by this family. For full details of all of the family derivatives please contact your marketing representative.

NOTE

All optional features (Flash memory, RAM, Peripherals) start with lowest peripheral number (for example: STM_0) or memory address and end at the highest available peripheral number or memory address (for example: MPC574xC have 2 STM, ending with STM_1).

Feature	MPC5747C	MPC5748C	MPC5746G	MPC5747G	MPC5748G
CPUs	e200z4	e200z4	e200z4	e200z4	e200z4
	e200z2	e200z2	e200z4	e200z4	e200z4
			e200z2	e200z2	e200z2
FPU	e200z4	e200z4	e200z4	e200z4	e200z4
			e200z4	e200z4	e200z4
Maximum	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)	160MHz (z4)
Operating Frequency ²	80MHz (z2)	80MHz (z2)	160MHz (z4)	160MHz (z4)	160MHz (z4)
riequency			80MHz (z2)	80MHz (z2)	80MHz (z2)
Flash memory	4 MB	6 MB	3 MB	4 MB	6 MB
EEPROM support	32 KB to 128	KB emulated	32	KB to 192 KB emula	ted
RAM	512 KB		768	KB	
ECC			End to End		
SMPU	24 e	entry		32 entry	
DMA			32 channels		
10-bit ADC			48 Standard channels	3	
			32 External channels	i	
12-bit ADC			16 Precision channels	3	
			16 Standard channels	3	
			32 External channels		
AnalogComparator			3		
BCTU			1		
SWT		2		4 ³	
STM	2	2		3	
PIT-RTI			16 channels PIT		
			1 channels RTI		
RTC/API			Yes		
Total Timer I/O ⁴	96 channels				
	16-bits				
LINFlexD	1 M/S	, 15 M		1 M/S, 17 M	
FlexCAN		8 wit	h optional CAN FD su	ipport	
DSPI/SPI			4 x DSPI		
			6 x SPI		

Table 1. MPC5748G Family Comparison1

Table continues on the next page...

3.2 Ordering Information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{matrix} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}^2 \end{matrix}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
V _{DD_HV_FLA} ^{3, 4}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁵	Decoupling pin for low power regulators ⁶	—	-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁷	3.3 V / 5.0 V ADC1 high reference voltage		-0.3	6	V
V _{DD_HV_ADC0}	3.3 V to 5.5V ADC supply voltage		-0.3	6.0	V
V _{DD_HV_ADC1}					
V _{SS_HV_ADC0}	3.3V to 5.5V ADC supply ground		-0.1	0.1	V
V _{SS_HV_ADC1}					
V _{DD_LV}	Core logic supply voltage	—	-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V $_{\rm SS_HV}$)	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition Always -5 5		5	mA	
I _{INJSUM}	Absolute sum of all injected input currents during overload condition		-50	50	mA
T _{ramp}	Supply ramp rate	—	0.5 V / min	100V/ms	—
T _A ⁸	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature		-55	165	°C

Table 5. Absolute maximum ratings

1. All voltages are referred to VSS_HV unless otherwise specified

- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 5. This pin should be decoupled with low ESR 1 μF capacitor.
- 6. Not available for input voltage, only for decoupling internal regulators
- 7. 10-bit ADC does not have dedicated reference and its reference is double bonded to 10-bit ADC supply(VDD_HV_ADC0).
- 8. T_J=150°C. Assumes T_A=125°C
 - Assumes maximum θJA. SeeThermal attributes

4.2 **Recommended operating conditions**

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded in order to guarantee proper operation and reliability. The ranges in this table are design targets and actual data may vary in the given range.

NOTE

- For normal device operations, all supplies must be within operating range corresponding to the range mentioned in following tables. This is required even if some of the features are not used.
- If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be externally supplied using a 3.3V source. If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be shorted to VDD_HV_A.
- VDD_HV_A, VDD_HV_B and VDD_HV_C are all independent supplies and can each be set to 3.3V or 5V. The following tables: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' and table 'Recommended operating conditions (VDD_HV_x = 5 V)' specify their ranges when configured in 3.3V or 5V respectively.

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	_	3.15	3.6	V
V _{DD_HV_B}					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage		3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage		3.0	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	3.6	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	-	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage	—	1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage		3.15	3.6	V
I _{INJPAD}	Injected input current on any pin during overload condition	—	-3.0	3.0	mA

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$)

Table continues on the next page...

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_FULL}	RUN Full Mode	LV supply + HV supply + HV Flash supply +	—	219	292	mA
2, 3	Operating current	2 x HV ADC supplies				
		$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	230	328	mA
		T _a = 125 °C	—	249	400	mA
I _{DD_GWY}	RUN Gateway Mode Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	-	183	260	mA
0,0	current	$T_a = 85^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		$T_a = 105^{\circ}C$	—	196	294	mA
		$T_a = 125^{\circ}C^4$	—	215	348	mA
I _{DD_BODY_1}	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	-	149	223	mA
	current	$T_a = 85 \ ^{\circ}C$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	158	270	mA
		$T_{a} = 125^{\circ}C^{4}$	—	175	310	mA
IDD_BODY_2 ^{9, 10}	RUN Body Mode Profile Operating	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies	—	105	174	mA
	current	T _a = 85 °C				
		$V_{DD_LV} = 1.25 V$				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				

Table 10. Current consumption characteristics

Table continues on the next page ...

I/O parameters

Table 17.	DC electrical s	pecifications	@ 5 V	Range	(continued)	
-----------	-----------------	---------------	-------	-------	-------------	--

Symbol	Parameter	Value		Unit
		Min	Мах	1
loh_f	Full drive loh ⁹ (SIUL2_MSCRn[SRC 1:0]= 11)	38	132	mA
lol_f	Full drive lol ⁹ (SIUL2_MSCRn[SRC 1:0]= 11)	48	220	mA
loh_h	Half drive loh ⁹ (SIUL2_MSCRn[SRC 1:0]= 10)	19	66	mA
lol_h	Half drive Iol ⁹ (SIUL2_MSCRn[SRC 1:0]= 10)	24	110	mA

- 1. Max power supply ramp rate is 500 V / ms
- 2. Measured when pad=0.69*VDD_HV_x
- 3. Measured when pad=0.49*VDD_HV_x
- 4. Measured when pad = 0 V
- 5. Measured when pad = VDD_HV_x
- 6. Measured when pad is sourcing 2 mA
- 7. Measured when pad is sinking 2 mA
- 8. Measured when pad is sinking 1.5 mA
- 9. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

5.5 Reset pad electrical characteristics

The device implements a dedicated bidirectional RESET pin.

Figure 3. Start-up reset requirements

5.6 PORST electrical specifications

Table 19. PORST electrical specifications

Symbol	Parameter		Value		
		Min	Тур	Мах	
W _{FPORST}	PORST input filtered pulse	—	—	200	ns
W _{NFPORST}	PORST input not filtered pulse	1000		_	ns
V _{IH}	Input high level	—	0.65 x V _{DD_HV_A}	_	V
V _{IL}	Input low level		0.35 x V _{DD_HV_A}	_	V

6 Peripheral operating requirements and behaviours

6.1 Analog

6.1.1 ADC electrical specifications

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

Spec	Characteristics	Pad Drive/Load	Value	
			Min	Мах
tSCK	SCK cycle timing	strong/50 pF	100 ns	-
-	PCS valid after SCK	strong/50 pF	-	15 ns
-	PCS valid after SCK	strong/50 pF	-4 ns	-

 Table 36.
 Continuous SCK timing

Table 37. DSPI high speed mode I/Os

DSPI	High speed SCK	High speed SIN	High speed SOUT
DSPI2	GPIO[78]	GPIO[76]	GPIO[77]
DSPI3	GPIO[100]	GPIO[101]	GPIO[98]
SPI1	GPIO[173]	GPIO[175]	GPIO[176]
SPI2	GPIO[79]	GPIO[110]	GPIO[111]

Figure 8. DSPI classic SPI timing — master, CPHA = 0

Communication interfaces

Figure 11. DSPI classic SPI timing — slave, CPHA = 1

Figure 12. DSPI modified transfer format timing — master, CPHA = 0

FlexRay electrical specifications

Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

Figure 16. DSPI PCS strobe (PCSS) timing

6.4.2 FlexRay electrical specifications

6.4.2.1 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals. It should be noted that these are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

6.4.2.2 TxEN

Figure 17. TxEN signal

Table 38. TxEN output characteristics¹

Name	Description	Min	Max	Unit
dCCTxEN _{RISE25}	Rise time of TxEN signal at CC	—	9	ns
dCCTxEN _{FALL25}	Fall time of TxEN signal at CC	—	9	ns
dCCTxEN ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	—	25	ns
dCCTxEN ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge		25	ns

1. All parameters specified for $V_{DD_HV_IOx} = 3.3 \text{ V} - 5\%$, +±10%, TJ = -40 °C / 150 °C, TxEN pin load maximum 25 pF

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	_	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge		25	ns

Table 39. TxD output characteristics (continued)

1. All parameters specified for $V_{DD_HV_IOx} = 3.3 \text{ V} - 5\%$, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF. 2. For 3.3 V ± 10% operation, this specification is 10 ns.

*FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays

6.4.2.4 **RxD**

Table 40.	RxD	input	characteristic
-----------	-----	-------	----------------

Name	Description ¹	Min	Мах	Unit
C_CCRxD	Input capacitance on RxD pin	—	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge	_	10	ns

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

MediaLB (MLB) electrical specifications

Ground = 0.0 V; Load Capacitance = 60 pF, input transition= 1 ns ; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK operating frequency	f _{mck}	11.264	25.6	MHz	256xFs at 44.0 kHz, 512xFs at 50.0 kHz
MLBCLK rise time	t _{mck} r		3	ns	V _{IL to VIH}
MLBCLK fall time	t _{mck} f		3	ns	V _{IH to V_{IL}}
MLBCLK low time ¹	t _{mck} l	30	—	ns	256xFs
		14			512xFs
MLBCLK high time	t _{mck} h	30	—	ns	256xFs
		14			512xFs
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	_	ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mck} l	ns	2
Bus output hold from MLBCLK low	t _{mdzh}	4	_	ns	2

Table 45. MLB 3-Pin 256/512 Fs Timing Parameters

1. MLBCLK low/high time includes the pluse width variation.

 The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLBCLK Operating Frequency ¹	f _{mck}	45.056	-	MHz	1024 x fs at 44.0 kHz
		-	51.2	MHz	1024 x fs at 50.0 kHz
MLBCLK rise time	f _{mckr}		1	ns	V _{IL to} V _{IH}
MLBCLK fall time	f _{mckf}		1	ns	V _{IH to} V _{IL}
MLBCLK low time	t _{mckl}	6.1		ns	2
MLBCLK high time	t _{mckh}	9.3	—	ns	2
MLBSIG/MLBDAT receiver input setup to MLBCLK falling	t _{dsmcf}	1	—	ns	
MLBSIG/MLBDAT receiver input hold from MLBCLK low	t _{dhmcf}	t _{mcfdz}	_	ns	
MLBSIG/MLBDAT output valid from MLBCLK low	t _{mcfdz}	0	t _{mckl}	ns	3
Bus Hold from MLBCLK low	t _{mdzh}	2	_	ns	3

Table 46. MLB 3-Pin 1024 Fs Timing Parameters

Figure 25. ULPI timing diagram

6.4.7 SAI electrical specifications

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device

Table 48. Master mode SAI Timing

no	Parameter	Va	Unit	
		Min	Max	
	Operating Voltage	2.7	3.6	V
S1	SAI_MCLK cycle time	40	-	ns
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	-	BCLK period
S4	SAI_BCLK pulse width high/low	45%	55%	ns
S5	SAI_BCLK to SAI_FS output valid	-	15	ns
S6	SAI_BCLK to SAI_FS output invalid	0	-	ns
S7	SAI_BCLK to SAI_TXD valid	-	15	ns
S8	SAI_BCLK to SAI_TXD invalid	0	-	ns
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	28	-	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	0	-	ns

Debug specifications

6.5 Debug specifications

6.5.1 JTAG interface timing

Table 50. JTAG pin AC electrical characteristics ¹

#	Symbol	Characteristic	Min	Max	Unit
1	t _{JCYC}	TCK Cycle Time ²	62.5	—	ns
2	t _{JDC}	TCK Clock Pulse Width	40	60	%
3	t _{TCKRISE}	TCK Rise and Fall Times (40% - 70%)	_	3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI Data Setup Time	5		ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI Data Hold Time	5		ns
6	t _{TDOV}	TCK Low to TDO Data Valid	_	20 ³	ns
7	t _{TDOI}	TCK Low to TDO Data Invalid	0		ns
8	t _{TDOHZ}	TCK Low to TDO High Impedance	—	15	ns
11	t _{BSDV}	TCK Falling Edge to Output Valid	_	600 ⁴	ns
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	—	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	—	600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15	_	ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

1. These specifications apply to JTAG boundary scan only.

- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

MPC5748G Microcontroller Data Sheet, Rev. 5, 07/2017

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

10.1 Reset sequence duration

Table 54 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	I Parameter T _{Reset}				Unit
			Min	Typ ¹	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled	5.730	7.796		ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled	0.111	0.182		ms
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot	5.729	7.793		ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot	0.110	0.179		ms
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	0.007	0.009		ms

Table 54. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

Reset sequence

Figure 38. Functional reset sequence long

Rev. No.	Date	Substantial Changes
		 Updated VIH min and VIL max values in Main oscillator electrical characteristics Replaced ipp_sre[1:0] by SIUL2_MSCRn[SRC 1:0] in AC specifications @ 3.3 V Range, DC electrical specifications @ 3.3V Range Functional reset sequence short, unsecure boot corrected Reset sequence duration Added NVM memory map and RAM memory map Family comparison Added BAF execution duration section BAF execution duration Supply names (VDD_LV, VSS_LV replace dvss, avss, dvdd, avdd) corrected in Jitter calculation table PLL electrical specifications Updated Ordering information: Fab and Mask version indicator Updated tpsus typical and max values Flash memory AC timing specifications Added Notes on IBIS models use in AC specifications @ 3.3 V Range AC specifications @ 3.3 V Range Updated Vol value in DC electrical specifications @ 3.3V Range DC electrical specifications @ 3.3V Range Added Notes on IBIS models in Functional Pad AC Specifications @ 5 V Range AC specifications @ 5 V Range Updated Vol values in DC electrical specifications @5V Range DC electrical specifications @ 5 V Range Updated IDD Current values Supply current characteristics Updated STANDBY current consumption with FIRC ON Supply current characteristics Thermal numbers update for 256MAPBGA Thermal attributes POR_HV Trim values removed Voltage monitor electrical specifications ADC analog pad leakage for 105 C added ADC electrical specifications
Rev5	July 31 2017	 Updated Standby2 value to 125 C in Standby current consumption characteristics Corrected typo in Note from "case" to "cause" Voltage regulator electrical characteristics Updated propagation delay from 14 to 21 in ACMP electrical specifications

Table 56. Revision History (continued)