E·XFL_Toshiba Semiconductor and Storage - <u>TMPM333FDFG(C,J) Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I²C, SIO, UART/USART
Peripherals	POR, WDT
Number of I/O	78
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/toshiba-semiconductor-and-storage/tmpm333fdfg-c-j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.2.2.2 Port B Register 8.2.2.3 PBDATA (Port B data register) 8.2.2.4 PBCR (Port B output control register) 8.2.2.5 PBFR1 (Port B function register 1) 8.2.2.6 PBPUP (Port B pull-up control register) 8.2.2.7 PBIE (Port B input control register) Port C Circuit Type 8231 Port C Register 8232 PCDATA (Port C data register) 8.2.3.3 PCPUP (Port C pull-up control register) 8.2.3.4 PCIE (Port C input control register) 8.2.3.5 8.2.4 Port D (PD0 to PD7).. 8241 Port D Circuit Type 8.2.4.2 Port D Register 8.2.4.3 PDDATA (Port D data register) 8.2.4.4 PDFR1 (Port D function register 1) 8245 PDPUP (Port D pull-up control register) 8.2.4.6 PDIE (Port D input control register) 8.2.5.1 Port E Circuit Type 8.2.5.2 Port E Register PEDATA (Port E data register) 8.2.5.3 8.2.5.4 PECR (Port E output control register) PEFR1(Port E function register 1) 8.2.5.5 8.2.5.6 PEFR2(Port E function register 2) PEOD (Port E open drain control register) 8.2.5.7 8258 PEPUP (Port E pull-up control register) 8.2.5.9 PEIE (Port E input control register) 8.2.6 Port F (PF0 to PF7)......126 8.2.6.1 Port F Circuit Type 8262 Port F Register PFDATA (Port F data register) 8.2.6.3 8.2.6.4 PFCR (Port F output control register) PFFR1(Port F function register 1) 8.2.6.5 PFFR2(Port F function register 2) 8.2.6.6 PFOD (Port F open drain control register) 8267 PFPUP (Port F pull-up control register) 8.2.6.8 PFIE (Port F input control register) 8.2.6.9 8.2.7.1 Port G Circuit Type 8.2.7.2 Port G Register 8.2.7.3 PGDATA (Port G data register) 8.2.7.4 PGCR (Port G output control register) 8.2.7.5 PGFR1(Port G function register 1) 8.2.7.6 PGOD (Port G open drain control register) 8.2.7.7 PGPUP (Port G pull-up control register) 8.2.7.8 PGIE (Port G input control register) Port H Circuit Type 8.2.8.1 8.2.8.2 Port H Register PHDATA (Port H data register) 8.2.8.3 8.2.8.4 PHCR (Port H output control register) 8.2.8.5 PHFR1(Port H function register 1) 8.2.8.6 PHPUP (Port H pull-up control register) 8.2.8.7 PHIE (Port H input control register) Port I Circuit Type 8291 8292 Port I Register 8293 PIDATA(Port I data register) 8.2.9.4 PICR (Port I output control register) 8295 PIFR1(Port I function register 1) 8.2.9.6 PIPUP (Port I pull-up control register) 8.2.9.7 PIIE (Port I input control register) 8.2.10 Port J (PJ0 to PJ7).... 144 8.2.10.1 Port J Circuit Type 8.2.10.2 Port J Register 8.2.10.3 PJDATA (Port J data register) 8.2.10.4 PJCR (Port J output control register) 8.2.10.5 PJFR1(Port J function register 1) 8.2.10.6 PJPUP (Port J pull-up control register) 8.2.10.7 PJIE (Port J input control register) 8.2.11 Port K (PK0 to PK2)....

8.2.11.1 Port K Circuit Type 8.2.11.2 Port K Register

8.2.11.3 PKDATA(Port K data register)

1.4 Pin names and Functions

Table 1-1 and Table 1-2 sort the input and output pins of the TMPM333FDFG/FYFG/FWFG by pin or port. Each table includes alternate pin names and functions for multi-function pins.

1.4.1 Sorted by Pin

Table 1-1 Pin Names and Functions Sorted by Pin (1/6)

Туре	Pin No.	Pin Name	Input/ Output	Function
Function	1	PD6 AIN10	1	Input port Analog input
Function	2	PD7 AIN11	1	Input port Analog input
PS	3	AVSS	1	AD converter: GND pin (0V) (note) AVSS must be connected to GND even if the A/D converter is not used.
PS	4	VREFH	1	Supplying the AD converter with a reference power supply. (note) VREFH must be connected to power supply even if A/D converter is not used.
PS	5	AVDD3	1	Supplying the AD converter with a power supply. (note) AVDD must be connected to power supply even if A/D converter is not used.
Function	6	PG3 INT4	1/O 1	I/O port External interrupt pin
Function	7	PK2 TB9OUT	1/O O	I/O port Timer B output
Function	8	PJ5 TB7OUT	1/O O	I/O port Timer B output
Function	9	PH4 TB2IN0	I/O I	I/O port Inputting the timer B capture trigger
Function	10	PH5 TB2IN1	I/O I	I/O port Inputting the timer B capture trigger
Function	11	PG7 TB8OUT	1/O O	I/O port Timer B output
Test	12	TEST2	-	TEST pin: (note) TEST pin must be left OPEN.
PS	13	DVSS	-	GND pin
PS	14	DVDD3	-	Power supply pin
Function	15	PG4 SDA2/SO2	I/O I/O	I/O port If the serial bus interface operates -in the I2C mode: data pin -in the SIO mode: data pin
Function	16	PG5 SCL2/SI2	1/O 1/O	I/O port If the serial bus interface operates -in the I2C mode: clock pin -in the SIO mode: data pin
Function	17	PG6 SCK2	I/O I/O	I/O port Inputting and outputting a clock if the serial bus interface operates in the SIO mode.
Test	18	TEST1	-	TEST pin: (note) TEST pin must be left OPEN.

Туре	Pin No.	Pin Name	Input/ Output	Function
Function	19	PF7 INT5	1/O 1	I/O port External interrupt pin
Function	20	PE0 TXD0	1/O O	I/O port Sending serial data
Function	21	PE1 RXD0	1/O 1	I/O port Receiving serial data
Function	22	PE2 SCLK0 CTS0	I/O I/O I	I/O port Serial clock input/ output Handshake input pin
Function	23	PE4 TXD1	1/O O	I/O port Sending serial data
Function	24	PE5 RXD1	I/O I	I/O port Receiving serial data
Function	25	PE6 SCLK1 CTS1	1/O 1/O 1	I/O port Serial clock input/ output Handshake input pin
Function	26	PG0 SDA0/SO0	1/O 1/O	I/O port -in the I2C mode: data pin -in the SIO mode: data pin
Function	27	PG1 SCL0/SI0	1/0 1/0	I/O port -in the I2C mode: clock pin -in the SIO mode: data pin
Function	28	PG2 SCK0	1/O 1/O	I/O port Inputting and outputting a clock if the serial bus interface operates in the SIO mode.
Function	29	PB3	I/O	I/O port
Function/ Control	30	PH0 TB0IN0 BOOT	I/O I I	I/O port Inputting the timer B capture trigger Setting a single boot mode: (note) This pin goes into single boot mode by sampling "Low" at the rise of a RESET signal.
Function	31	PH1 TB0IN1	1/O 1	I/O port Inputting the timer B capture trigger
Function	32	PH2 TB1IN0	I/O I	I/O port Inputting the timer B capture trigger
Function	33	PF0 TXD2	1/O O	I/O port Sending serial data
Function	34	PF1 RXD2	I/O I	I/O port Receiving serial data
Function	35	PF2 SCLK2 CTS2	I/O I/O I	I/O port Serial clock input/ output Handshake input pin

Table 1-1 Pin Names and Functions Sorted by Pin (2/6)

6.6.5 Operational Status in Each Mode

Table 6-7 show the operational status in each mode.

For I/O port, "o" and "×" indicate that input/output is enabled and disabled respectively.

For other functions, "o" and "×" indicate that clock is supplied and is not supplied respectively.

Table 6-7 Operational Status in Each Mode

Block	NORMAL	SLOW	IDLE	SLEEP	STOP
Processor core	0	0	×	×	×
I/O port	0	0	0	0	* (Note 3)
ADC	о	× (Note 1)		×	×
SIO	о	× (Note 1)	ON/OEE salact	×	×
SBI	0	× (Note 1)	able for each	×	×
TMRB	о	× (Note 1)	module	×	×
WDT	0	× (Note 1)		×	×
RTC	0	0	0	0	×
CG	0	0	0	0	×
PLL	0	×	0	×	×
High-speed oscilla- tor (fc)	0	* (Note 2)	o	×	×
Low-speed oscillator (fs)	o	o	o	o	×

Note 1: In the SLOW mode, the ADC, SIO, SBI, TMRB and WDT cannot be used and must be stopped.

Note 2: The high-speed oscillator does not stop automatically and must be stopped by setting the CGOSCCR<XEN> bit.

Note 3: The status depends on the CGSTBYCR<DRVE> bit.

Bit	Bit Symbol	Туре	Function
14-12	EMCG1[2:0]	R/W	active level setting of INT1 standby clear request. (101~111: setting prohibited) 000: "Low" level 001: "High" level 010: Falling edge
			011: Rising edge 100: Both edges
11-10	EMST1[1:0]	R	active level of INT1 standby clear request 00: - 01: Rising edge 10: Falling edge 11: Both edges
9	-	R	Reads as undefined.
8	INT1EN	R/W	INT1 clear input 0:Disable 1: Enable
7	-	R	Read as 0.
6-4	EMCG0[2:0]	R/W	active level setting of INT0 standby clear request. (101~111: setting prohibited) 000: "Low" level 001: "High" level 010: Falling edge 011: Rising edge 100: Both edges
3-2	EMST0[1:0]	R	active level of INT0 standby clear request 00: - 01: Rising edge 10: Falling edge 11: Both edges
1	-	R	Reads as undefined.
0	INTOEN	R/W	INT0 clear input 0:Disable 1: Enable

Note 1: <EMSTx> is effective only when <EMCGx[2:0]> is set to "100" for both rising and falling edge. The active level used for the reset of standby can be checked by referring <EMSTx>. If interrupts are cleared with the CGICRCG register, <EMSTx> is also cleared.

Note 2: Please specify the bit for the edge first and then specify the bit for the <INTxEN>. Setting them simultaneously is prohibited.

8.2.6 Port F (PF0 to PF7)

The port F is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Besides the general-purpose port function, the port F performs the functions of the serial interface, the serial bus interface and the external interrupt input.

Reset initializes all bits of the port F as general-purpose ports with input, output and pull-up disabled.

The port F has two types of function register. If you use the port F as a general-purpose port, set "0" to the corresponding bit of the two registers. If you use the port F as other than a general-purpose port, set "1" to the corresponding bit of the function register. Do not set "1" to the both function registers at the same time.

To use the external interrupt input for releasing STOP mode, select this function in the PFFR1 and enable input in the PFIE register.

These settings enable the interrupt input even if the CGSTBYCR<DRVE> bit in the clock/mode control block is set to stop driving of pins during STOP mode.

Note: In modes other than STOP mode, interrupt input is enabled regardless of the PFFR register setting if input is enabled in PxIE. Make sure to disable unused interrupts when programming the device.

8.2.6.1 Port F Circuit Type

	7	6	5	4	3	2	1	0
Туре	Т8	T13	T13	T13	T4	T16	T4	T10

8.2.6.2 Port F Register

		Base Address = 0x4000_0140
Register name	Address (Base+)	
Port F data register	PFDATA	0x0000
Port F output control register	PFCR	0x0004
Port F function register 1	PFFR1	0x0008
Port F function register 2	PFFR2	0x000C
Port F open drain control register	PFOD	0x0028
Port F pull-up control register	PFPUP	0x002C
Port F input control register	PFIE	0x0038

8.2.9 Port I (PI0 to PI7)

The port I is a general-purpose, 8-bit input/output port. For this port, inputs and outputs can be specified in units of bits. Besides the general-purpose port function, the port I performs the 16-bit timer input/output function.

Reset initializes all bits of the port I as general-purpose ports with input, output and pull-up disabled.

8.2.9.1 Port I Circuit Type

	7	6	5	4	3	2	1	0
Туре	Т3	Т3	Т9	Т9	Т9	Т9	Т9	Т9

8.2.9.2 Port I Register

		Base Address = 0x4000_0200
Register name	Address (Base+)	
Port I data register	PIDATA	0x0000
Port I output control register	PICR	0x0004
Port I function register 1	PIFR1	0x0008
Reserve	-	0x0010
Port I pull-up control register	PIPUP	0x002C
Port I input control register	PIIE	0x0038

Note: Access to the "reserved" areas is prohibited.

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol	-	-	-	-	-	PK2	PK1	PK0
After reset	0	0	0	0	0	0	0	0

8.2.11.3 PKDATA(Port K data register)

Bit	Bit Symbol	Туре	Function
31-3	-	R	Read as 0.
2-0	PK2-PK0	R/W	Port K data register.

8.2.11.4 PKCR (Port K output control register)

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol	-	-	-	-	-	PK2C	PK1C	PK0C
After reset	0	0	0	0	0	0	0	0

Bit	Bit Symbol	Туре	Function
31-3	-	R	Read as 0.
2-0	PK2C-PK0C	R/W	Output 0: Disable 1: Enable

9.5 Description of Operations for Each Circuit

The channels operate in the same way, except for the differences in their specifications as shown in Table 9-1.

9.5.1 Prescaler

There is a 4-bit prescaler to generate the source clock for up-counter UC.

The prescaler input clock ϕ T0 is fperiph/1, fperiph/2, fperiph/4, fperiph/8, fperiph/16 or fperiph/32 selected by CGSYSCR<PRCK[2:0]> in the CG.The peripheral clock, fperiph, is either fgear, a clock selected by CGSYSCR<FPSEL> in the CG, or fc, which is a clock before it is divided by the clock gear.

The operation or the stoppage of a prescaler is set with TBxRUN<TBPRUN> where writing "1" starts counting and writing "0" clears and stops counting. Table 9-2 and Table 9-3 show prescaler output clock resolutions.

Table 9-2 Prescale	Output Clock Resolutions	(fc = 40MHz)
--------------------	--------------------------	--------------

Select	Clock dear value	Select	Pres	scaler output clock fund	ction
peripheral clock CGSYSCR <fpsel></fpsel>	CGSYSCR <gear[2:0]></gear[2:0]>	prescaler clock CGSYSCR <prck[2:0]></prck[2:0]>	φΤ1	φT4	φT16
		000 (fperiph/1)	fc/2¹ (0.05 μs)	fc/2³ (0.2 µs)	fc/2⁵ (0.8 µs)
		001 (fperiph/2)	fc/2² (0.1 μs)	fc/2 ⁴ (0.4 µs)	fc/2 ⁶ (1.6 µs)
	000 (6)	010 (fperiph/4)	fc/2 ³ (0.2 µs)	fc/2 ⁵ (0.8 μs)	fc/2 ⁷ (3.2 µs)
	000 (fC)	011 (fperiph/8)	fc/2 ⁴ (0.4 µs)	fc/2 ⁶ (1.6 µs)	fc/2 ⁸ (6.4 µs)
		100 (fperiph/16)	fc/2⁵ (0.8 µs)	fc/2 ⁷ (3.2 µs)	fc/2 ⁹ (12.8 µs)
		101 (fperiph/32)	fc/2 ⁶ (1.6 µs)	fc/2 ⁸ (6.4 µs)	fc/2 ¹⁰ (25.6 µs)
		000 (fperiph/1)	fc/2² (0.1 µs)	fc/24 (0.4 µs)	fc/2 ⁶ (1.6 μs)
		001 (fperiph/2)	fc/2 ³ (0.2 µs)	fc/2 ⁵ (0.8 μs)	fc/2 ⁷ (3.2 µs)
		010 (fperiph/4)	fc/2 ⁴ (0.4 µs)	fc/2º (1.6 µs)	fc/2 ⁸ (6.4 µs)
	100 (fc/2)	011 (fperiph/8)	fc/2⁵ (0.8 µs)	fc/2 ⁷ (3.2 µs)	fc/2º (12.8 µs)
		100 (fperiph/16)	fc/2 ⁶ (1.6 µs)	fc/2 ⁸ (6.4 µs)	fc/2 ¹⁰ (25.6 µs)
		101 (fperiph/32)	fc/2 ⁷ (3.2 µs)	fc/2º (12.8 µs)	fc/2 ¹¹ (51.2 μs)
0 (fgear)		000 (fperiph/1)	fc/2³ (0.2 μs)	fc/2⁵ (0.8 µs)	fc/2 ⁷ (3.2 µs)
		001 (fperiph/2)	fc/2 ⁴ (0.4 µs)	fc/2 ⁶ (1.6 µs)	fc/2 ⁸ (6.4 µs)
		010 (fperiph/4)	fc/2⁵ (0.8 µs)	fc/2 ⁷ (3.2 µs)	fc/2º (12.8 µs)
	101 (fc/4)	011 (fperiph/8)	fc/2 ⁶ (1.6 µs)	fc/2 ⁸ (6.4 µs)	fc/2 ¹⁰ (25.6 µs)
		100 (fperiph/16)	fc/2 ⁷ (3.2 µs)	fc/2 ⁹ (12.8 μs)	fc/2 ¹¹ (51.2 µs)
		101 (fperiph/32)	fc/2 ⁸ (6.4 µs)	fc/2 ¹⁰ (25.6 µs)	fc/2 ¹² (102.4 µs)
		000 (fperiph/1)	fc/2 ⁴ (0.4 µs)	fc/2 ⁶ (1.6 µs)	fc/2 ⁸ (6.4 µs)
		001 (fperiph/2)	fc/2⁵ (0.8 µs)	fc/2 ⁷ (3.2 µs)	fc/2º (12.8 µs)
		010 (fperiph/4)	fc/2 ⁶ (1.6 µs)	fc/2 ⁸ (6.4 µs)	fc/2 ¹⁰ (25.6 µs)
	110 (tc/8)	011 (fperiph/8)	fc/2 ⁷ (3.2 μs)	fc/2 ⁹ (12.8 μs)	fc/2 ¹¹ (51.2 µs)
		100 (fperiph/16)	fc/2 ⁸ (6.4 µs)	fc/2 ¹⁰ (25.6 µs)	fc/2 ¹² (102.4 µs)
		101 (fperiph/32)	fc/2º (12.8 µs)	fc/2 ¹¹ (51.2 μs)	fc/2 ¹³ (204.8 µs)

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol	TBEMP	RBFLL	TXRUN	SBLEN	DRCHG	WBUF	SW	RST
After reset	1	0	0	0	0	0	0	0

10.4.7 SCxMOD2 (Mode Control Register 2)

Bit	Bit Symbol	Туре			Function	
31-8	-	R	Read as 0.			
7	ТВЕМР	R	Transmit buffer emp 0: Full 1: Empty If double buffering is	ty flag. disabled, this flag	is insignificant.	
			This flag shows that to the transmit shift r Writing data again to	the transmit double egister and the dou the double buffers	buffers are empty. When data in the transmit doubluble buffers are empty, this bit is set to "1". s sets this bit to "0".	le buffers is moved
6	RBFLL	R	Receive buffer full fla 0: Empty 1: Full This is a flag to show When a receive oper double buffers, this b If double buffering is	ig. / that the receive do ation is completed it changes to "1" w disabled, this flag	ouble buffers are full. and received data is moved from the receive shift rec /hile reading this bit changes it to "0". is insignificant.	jister to the receive
5	TXRUN	R	In transmission flag 0: Stop 1: Operate This is a status flag t <txrun> and <tbe <txrun> 1</txrun></tbe </txrun>	o show that data tr EMP> bits indicate - -	ansmission is in progress. the following status. Status Transmission in progress	
			0	0	Wait state with data in Transmitt buffer	
4	SBLEN	R/W	STOP bit (for UART) 0 : 1-bit 1 : 2-bit This specifies the ler On the receive side,	ngth of transmission the decision is mar	n stop bit in the UART mode. de using only a single bit regardless of the <sblen< td=""><td>> setting.</td></sblen<>	> setting.
3	DRCHG	R/W	Setting transfer direc 0: LSB first 1: MSB first Specifies the direction In the UART mode, s	ition	n the I/O interface mode. rst.	

TOSHIBA

10.14 Interrupt/Error Generation Timing

10.14.1 RX Interrupts

Figure 10-10 shows the data flow of receive operation and the route of read.

Figure 10-10 Receive Buffer/FIFO Configuration Diagram

10.14.1.1 Single Buffer / Double Buffer

RX interrupts are generated at the time depends on the transfer mode and the buffer configurations, which are given as follows.

Buffer Configurations	UART modes	IO interface modes
Single Buffer	-	 Immediately after the raising / falling edge of the last SCLK (Rising or falling is determined according to SCxCR<sclks> setting.)</sclks>
Double Buffer	Around the center of the first stop bit	 Immediately after the raising / falling edge of the last SCLK (Rising or falling is determined according to SCxCR<sclks> setting.)</sclks> On data transfer from the shift register to the buffer by reading buffer.

Note: Interrupts are not generated when an overrun error is occurred.

10.14.1.2 FIFO

In use of FIFO, receive interrupt is generated on the condition that the following either operation and SCxRFC<RFIS > setting are established.

- Reception completion of all bits of one frame.
- Reading FIFO

Interrupt conditions are decided by the SCxRFC<RFIS> settings as described in Table 10-12.

Table 10-12 Receive Interrupt conditions in use of FIFO

SCxRFC <rfis></rfis>	Interrupt conditions
"0"	"The fill level of FIFO" is equal to "the fill level of FIFO interruption generation."
"1"	"The fill level of FIFO" is greater than or equal to "the fill level of FIFO intrruption generation."

10.16.1.2 Receive

(1) SCLK Output Mode

The SCLK output can be started by setting the receive enable bit SCxMOD0<RXE> to "1".

• If double buffer is disabled (SCxMOD2<WBUF> = "0")

A clock pulse is outputted from the SCLK pin and the next data is stored into the shift register each time the CPU reads received data. When all the 8 bits are received, the INTRXx interrupt is generated.

• If double buffer is enabled (SCxMOD2<WBUF> = "1")

Data stored in the shift register is moved to the receive buffer and the receive buffer can receive the next frame. A data is moved from the shift register to the receive buffer, the receive buffer full flag SCxMOD2<RBFLL> is set to "1" and the INTRXx is generated.

While data is in the receive buffer, if the data cannot be read from the receive buffer before completing reception of the next 8 bits, the INTRXx interrupt is not generated and the SCLK output stops. In this state, reading data from the receive buffer allows data in the shift register to move to the receive buffer and thus the INTRXx interrupt is generated and data reception resumes.

11.4 Control Registers in the I2C Bus Mode

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol		BC		ACK	-	SCK2	SCK1	SCK0 / SWRMON
After reset	0	0	0	0	1	0	0	1(Note3)

11.4.2 SBIxCR1(Control register 1)

Bit	Bit Symbol	Туре		Function								
31-8	-	R	Read as	Read as 0.								
7-5	BC[2:0]	R/W	Select t	Select the number of bits per transfer (Note 1)								
					When <a< td=""><td>.CK> = 0</td><td>When <a< td=""><td>CK> = 1</td><td colspan="4"></td></a<></td></a<>	.CK> = 0	When <a< td=""><td>CK> = 1</td><td colspan="4"></td></a<>	CK> = 1				
				<bc></bc>	Number of	Data	Number of	Data				
					CIUCK CYCIES	length	CIUCK CYCIES	length				
				000	8	8	9	8				
				001	1	1	2	1				
				010	2	2	3	2				
				011	3	3	4	3				
				100	4	4	5	4				
				101	5	5	6	5				
				110	6	6	7	6				
				111	7	7	8	7				
4	ACK	R/W	Master	Aaster mode								
			1: Ackn	owledgement	clock pulse is (penerated.						
			Slave m	lode								
			0: Ackn	owledgement	clock pulse is r	not counted.						
			1: Ackno	owledgement	clock pulse is a	counted.						
3	-	R	Read as	s 1.								
2-1	SCK[2:1]	R/W	Select in	nternal SCL o	utput clock frec	uency (Note	2).					
0	SCK[0]	w		000	n = 5	385 kHz						
				001	n = 6	294 kHz						
				010	n = 7	200 kHz)					
				011	n = 8	122 kHz	System	n Clock: fsys				
				100	n = 9	68 kHz		(= 40 MHz)			
				101	n = 10	36 kHz		jear : rc/1				
				110	n = 11	19 kHz	Freque	$\operatorname{ency} = \frac{18ys}{2^{n} + 7}$	72 [Hz]			
				111		reserved	J					
	SWRMON	R	On read	ling <swrmc< td=""><td>DN>: Software</td><td>eset status m</td><td>ionitor</td><td></td><td></td></swrmc<>	DN>: Software	eset status m	ionitor					
			0:Softwa	are reset oper	ration is in prog	ress.						
			1:Softw;	are reset oper	ration is not in p	progress.						

	31	30	29	28	27	26	25	24
Bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
Bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
Bit symbol				ADC	OM0			
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
Bit symbol	ADC	OM0	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0

12.3.19 ADCMP0 (AD Conversion Result Comparison Register 0)

Bit	Bit Symbol	Туре	Function
31-16	-	R	Read as 0.
15-6	ADCOM0[9:0]	R/W	When AD monitor function 0 is enabled, it sets a value to be compared with the value of the conversion result register specified by ADMOD3 <adregs0>.</adregs0>
5-0	-	R	Read as 0.

Note: To write values into this register, the AD monitor function 0 must be disabled (AD-MOD3<ADBSV0> ="0").

12.3.20 ADCMP1 (AD Conversion Result Comparison Register 1)

	31	30	29	28	27	26	25	24
Bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
Bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
Bit symbol				ADC	OM1			
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
Bit symbol	ADC	OM1	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0

Bit	Bit Symbol	Туре	Function
31-16	-	R	Read as 0.
15-6	ADCOM1[9:0]	R/W	When AD monitor function 1 is enabled, it sets a value to be compared with the value of the conversion result register specified by ADMODt <adregs1>.</adregs1>
5-0	-	R	Read as 0.

Note: To write values into this register, the AD monitor function 1 must be disabled (AD-MOD5<ADBSV1>="0").

13. Watchdog Timer(WDT)

The watchdog timer (WDT) is for detecting malfunctions (runaways) of the CPU caused by noises or other disturbances and remedying them to return the CPU to normal operation.

If the watchdog timer detects a runaway, it generates a INTWDT interrupt or reset.

Note: INTWDT interrupt is a factor of the non-maskable interrupts (NMI).

Also, the watchdog timer notifies of the detecting malfunction to the external peripheral devices from the watchdog timer pin ($\overline{\text{WDTOUT}}$) by outputting "Low".

Note: This product does not have the watchdog timer out pin (WDTOUT).

13.1 Configuration

Figure 13-1shows the block diagram of the watchdog timer.

Figure 13-1 Block Diagram of the Watchdog Timer

device, it is easy to implement the functions into this device. Furthermore, the user is not required to build his/her own programs to realize complicated write and erase functions because such functions are automatically performed using the circuits already built-in the flash memory chip.

JEDEC compliant functions	Modified, added, or deleted functions
 Automatic programming Automatic chip erase 	Modified> Block protect (only software protection is supported)
Automatic block erase	<deleted> Erase resume - suspend function</deleted>
Data polling/toggle bit	

5. Protect/ Security Function

This device is also implemented with a read-protect function to inhibit reading flash memory data from any external writer device. On the other hand, rewrite protection is available only through command-based software programming; any hardware setting method to apply +12VDC is not supported. See the chapter "ROM protection" for details of ROM protection and security function.

Note: If a password is set to 0xFF (erased data), it is difficult to protect data securely due to an easy-to-guess password. Even if Single Boot mode is not used, it is recommended to set a unique value as a password.

15.2.11 General Boot Program Flowchart

Figure 15-8 shows an overall flowchart of the boot program.

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol	-	-	-	-	-	-	-	SECBIT
After reset	0	0	0	0	0	0	0	1

(2) FCSECBIT (Security bit register)

Bit	Bit Symbol	Туре	Function
31-1	-	R	Read as 0.
0	SECBIT	R/W	Security bits
			0:disabled
			1:enabled

Note: This register is initialized by cold reset.

Plack	Drotaction hit	The seventh bus write	e cycle address [18:17]	
BIOCK	Protection bit	Address[18]	Address[17]	
Block0 to 3	<blpro[0:3]></blpro[0:3]>	0	0	
Block4 to 5	<blpro[4:5]></blpro[4:5]>	0	1	

Table 15-19 Protection Bit Erase Address Table

Note: The protection bit erase command cannot erase by individual block.

Table 15-20 The ID-Read command's fourth bus write cycle ID address (IA) and the data to be read by the following 32-bit data transfer command (ID)

IA[15:14] ID[7:0]		Code
00b	0x98	Manufacturer code
01b	0x5A	Device code
10b	-	
11b	0x12 (TMPM333FDFG) 0x12 (TMPM333FYFG) 0x11 (TMPM333FWFG)	Macro code

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
bit symbol	-	-	-	-	-	-	-	SECBIT
After reset	0	0	0	0	0	0	0	1

16.3.2 FCSECBIT(Security bit register)

Bit	Bit Symbol	Туре	ã@î\
31-1	-	R	Read as 0.
0	SECBIT	R/W	Security bit
			1: Enabled

Note: This register is initialized only by power-on reset.