

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, EBI/EMI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	127
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	·
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1185agj-gae-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.3 Register Controlling Watchdog Timer	
9.4 Operation of Watchdog Timer	
9.4.1 Controlling operation of watchdog timer	
9.4.2 Setting overflow time of watchdog timer	
9.4.3 Setting window open period of watchdog timer	
9.4.4 Setting watchdog timer interval interrupt	
CHAPTER 10 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER	
10.1 Functions of Clock Output/Buzzer Output Controller	
10.2 Configuration of Clock Output/Buzzer Output Controller	
10.3 Registers Controlling Clock Output/Buzzer Output Controller	
10.4 Operations of Clock Output/Buzzer Output Controller	
10.4.1 Operation as output pin	
CHAPTER 11 A/D CONVERTER	
11.1 Function of A/D Converter	
11.2 Configuration of A/D Converter	
11.3 Registers Used in A/D Converter	
11.4 A/D Converter Operations	
11.4.1 Basic operations of A/D converter	
11.4.2 Input voltage and conversion results	
11.4.3 A/D converter operation mode	
11.5 Temperature Sensor Function	
11.5.1 Configuration of temperature sensor	
11.5.2 Registers used by temperature sensors	
11.5.3 Temperature sensor operation	
11.5.4 Procedures for using temperature sensors	
11.6 How to Read A/D Converter Characteristics Table	
CHAPTER 12 D/A CONVERTER	400
12.1 Function of D/A Converter	400
12.2 Configuration of D/A Converter	400
12.3 Registers Used in D/A Converter	402
12.4 Operation of D/A Converter	405
12.4.1 Operation in normal mode	405
12.4.2 Operation in real-time output mode	
12.4.3 Cautions	407
CHAPTER 13 SERIAL ARRAY UNIT	408
13.1 Functions of Serial Array Unit	
13.1.1 3-wire serial I/O (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21)	
13.1.2 UART (UART0, UART1, UART2, UART3)	
13.1.3 Simplified I ² C (IIC10, IIC11, IIC20, IIC21)	
13.2 Configuration of Serial Array Unit	
13.3 Registers Controlling Serial Array Unit	
13.4 Operation stop mode	

3.4.8 Based indexed addressing

[Function]

Based indexed addressing uses the contents of a register pair specified with the instruction word as the base address, and the content of the B register or C register similarly specified with the instruction word as offset address. The sum of these values is used to specify the target address.

[Operand format]

Identifier	ntifier Description								
 [HL+B], [HL+C] (only the space from F0000H to FFFFFH is specifiable) 									
-	ES:[HL+B], ES:[HL+C] (higher 4-bit addresses are specified by the ES register)								

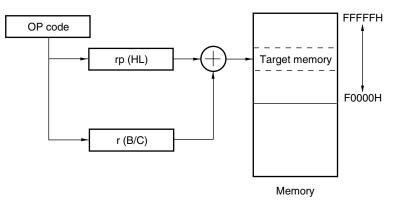
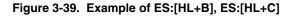
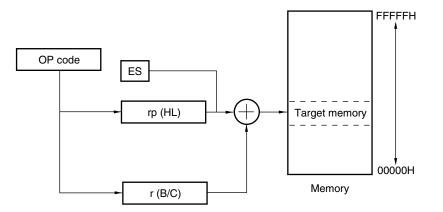




Figure 3-38. Example of [HL+B], [HL+C]

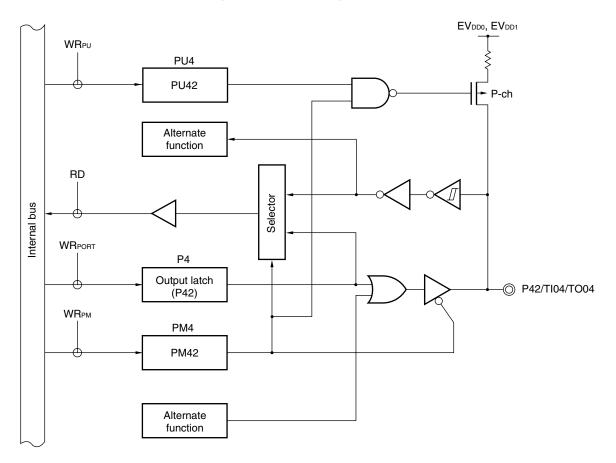


Figure 4-19. Block Diagram of P42

- P4: Port register 4
- PU4: Pull-up resistor option register 4
- PM4: Port mode register 4
- RD: Read signal
- WR××: Write signal

(4) Port input mode registers (PIM0, PIM4, PIM9, PIM12, PIM14)

These registers set the input buffer of P03, P04, P43, P44, P95, P96, P125, P126, P142, and P143 in 1-bit units. TTL input buffer can be selected during serial communication with an external device of the different potential. These registers can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears these registers to 00H.

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W	
PIM0	0	0	0	PIM04	PIM03	0	0	0	F0040H	00H	R/W	
	-											
PIM4	0	0	0	PIM44	PIM43	0	0	0	F0044H	00H	R/W	
	-											
PIM9	0	PIM96	PIM95	0	0	0	0	0	F0049H	00H	R/W	
PIM12	0	PIM126	PIM125	0	0	0	0	0	F004CH	00H	R/W	
	-											
PIM14	0	0	0	0	PIM143	PIM142	0	0	F004EH	00H	R/W	
	PIMmn				F	mn pin inp	ut buffer s	election				
					(r	n = 0, 4, 9,	12, 14; n	= 2 to 6)				
	0	Normal in	nput buffer									
	1	TTL inpu	t buffer									

Figure 4-56. Format of Port Input Mode Register

4.4.4 Connecting to external device with different power potential (2.5 V, 3 V)

When parts of ports 0, 4, 9, 12 and 14 operate with $V_{DD} = 4.0$ V to 5.5 V, I/O connections with an external device that operates on 2.5 V or 3 V power supply voltage are possible.

Regarding inputs, CMOS/TTL switching is possible on a bit-by-bit basis by port input mode registers (PIM0, PIM4, PIM9, PIM12, PIM14).

Moreover, regarding outputs, different power potentials can be supported by switching the output buffer to the N-ch open drain (V_{DD} withstand voltage) by the port output mode registers (POM0, POM4, POM9, POM12, POM14).

(1) Setting procedure when using I/O pins of UART1, UART2, CSI01, CSI10, CSI11, CSI20 and CSI21 functions

(a) Use as 2.5 V or 3 V input port

- <1> After reset release, the port mode is the input mode (Hi-Z).
- <2> If pull-up is needed, externally pull up the pin to be used (on-chip pull-up resistor cannot be used).

In case of UART1:	P03
In case of UART2:	P143
In case of CSI01:	P43, P44
In case of CSI10:	P03, P04
In case of CSI11:	P95, P96
In case of CSI20:	P142, P143
In case of CSI21:	P125, P126

- <3> Set the corresponding bit of the PIMn register to 1 to switch to the TTL input buffer.
- <4> V_{IH}/V_{IL} operates on 2.5 V or 3 V operating voltage.

(b) Use as 2.5 V or 3 V output port

- <1> After reset release, the port mode changes to the input mode (Hi-Z).
- <2> Pull up externally the pin to be used (on-chip pull-up resistor cannot be used).

In case of UART1:	P02
In case of UART2:	P144
In case of CSI01:	P43, P45
In case of CSI10:	P02, P04
In case of CSI11:	P95, P97
In case of CSI20:	P142, P144
In case of CSI21:	P125, P127

- <3> Set the output latch of the corresponding port to 1.
- <4> Set the corresponding bit of the POMn register to 1 to set the N-ch open drain output (VDD withstand voltage) mode.
- <5> Set the output mode by manipulating the PMn register.
 - At this time, the output data is high level, so the pin is in the Hi-Z state.
- <6> Operation is done only in the low level according to the operating status of the serial array unit.

Remark n = 0, 4, 9, 12, 14

(1) Peripheral enable register 0 (PER0)

PER0 is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise. When the timer array unit 0 is used, be sure to set bit 0 (TAU0EN) of this register to 1. When the timer array unit 1 is used, be sure to set bit 1 (TAU1EN) of this register to 1. PER0 can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

Figure 7-5. Format of Peripheral Enable Register 0 (PER0)

Address: F00	F0H After rea	set: 00H R/V	V					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PER0	RTCEN	DACEN	ADCEN	IIC0EN	SAU1EN	SAU0EN	TAU1EN	TAU0EN

TAUmEN	Control of timer array unit m input clock
0	Stops supply of input clock.SFR used by the timer array unit m cannot be written.The timer array unit m is in the reset status.
1	Supplies input clock. SFR used by the timer array unit m can be read/written.

Caution When setting the timer array unit, be sure to set TAUMEN to 1 first. If TAUMEN = 0, writing to a control register of the timer array unit is ignored, and all read values are default values (except for timer input select register m (TISm), input switch control register (ISC), noise filter enable registers 1, 2 (NFEN1, 2), port mode registers 0, 1, 3, 4, 13, 14, 16 (PM0, PM1, PM3, PM4, PM13, PM14, PM16), and port registers 0, 1, 3, 4, 13, 14, 16 (P0, P1, P3, P4, P13, P14, P16)).

Remark m = 0, 1

(2) Timer clock select register m (TPSm)

TPSm is a 16-bit register that is used to select two types of operation clocks (CKm0, CKm1) that are commonly supplied to each channel. CKm1 is selected by bits 7 to 4 of TPSm, and CKm0 is selected by bits 3 to 0. Rewriting of TPSm during timer operation is possible only in the following cases.

Rewriting of PRSm00 to PRSm03 bits:	Possible only when all the channels set to $CKSmn = 0$ are in the
	operation stopped state (TEmn = 0)
Rewriting of PRSm10 to PRSm13 bits:	Possible only when all the channels set to CKSmn = 1 are in the operation stopped state (TEmn = 0)

TPSm can be set by a 16-bit memory manipulation instruction. The lower 8 bits of TPSm can be set with an 8-bit memory manipulation instruction with TPSmL. Reset signal generation clears this register to 0000H.

(9) Timer output enable register m (TOEm)

TOEm is used to enable or disable timer output of each channel.

Channel n for which timer output has been enabled becomes unable to rewrite the value of the TOmn bit of the timer output register (TOm) described later by software, and the value reflecting the setting of the timer output function through the count operation is output from the timer output pin (TOmn).

TOEm can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of TOEm can be set with a 1-bit or 8-bit memory manipulation instruction with TOEmL. Reset signal generation clears this register to 0000H.

Figure 7-18. Format of Timer Output Enable Register m (TOEm)

Address: F01	BAH, F	01BBH	After	reset: (0000H	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOE0	0	0	0	0	0	0	0	0	TOE 07	TOE 06	TOE 05	TOE 04	TOE 03	TOE 02	TOE 01	TOE 00

Address: F01E2H, F01E3H After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOE1	0	0	0	0	0	0	0	0	0	0	0	0	TOE	TOE	TOE	TOE
													13	12	11	10

TOE mn	Timer output enable/disable of channel n
0	The TOmn operation stopped by count operation (timer channel output bit). Writing to the TOmn bit is enabled. The TOmn pin functions as data output, and it outputs the level set to the TOmn bit. The output level of the TOmn pin can be manipulated by software.
1	The TOmn operation enabled by count operation (timer channel output bit). Writing to the TOmn bit is disabled (writing is ignored). The TOmn pin functions as timer output, and the TOEmn is set or reset depending on the timer operation. The TOmn pin outputs the square-wave or PWM depending on the timer operation.

Caution Be sure to clear bits 15 to 8 of TOE0 and bits 15 to 4 of TOE1 to "0".

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7), mn = 00 to 07, 10 to 13

7.7.4 Operation as input pulse interval measurement

The count value can be captured at the TImn valid edge and the interval of the pulse input to TImn can be measured.

The pulse interval can be calculated by the following expression.

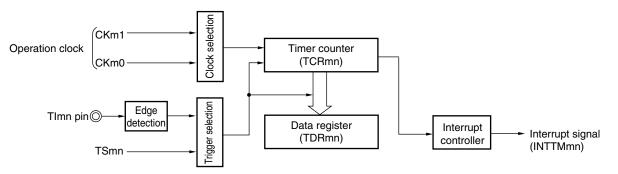
TImn input pulse interval = Period of count clock \times ((10000H \times TSRmn: OVF) + (Capture value of TDRmn + 1))

Caution The TImn pin input is sampled using the operating clock selected with the CKSmn bit of the TMRmn register, so an error equal to the number of operating clocks occurs.

TCRmn operates as an up counter in the capture mode.

When the channel start trigger (TSmn) is set to 1, TCRmn counts up from 0000H in synchronization with the count clock.

When the TImn pin input valid edge is detected, the count value is transferred (captured) to TDRmn and, at the same time, the counter (TCRmn) is cleared to 0000H, and the INTTMmn is output. If the counter overflows at this time, the OVF bit of the TSRmn register is set to 1. If the counter does not overflow, the OVF bit is cleared. After that, the above operation is repeated.

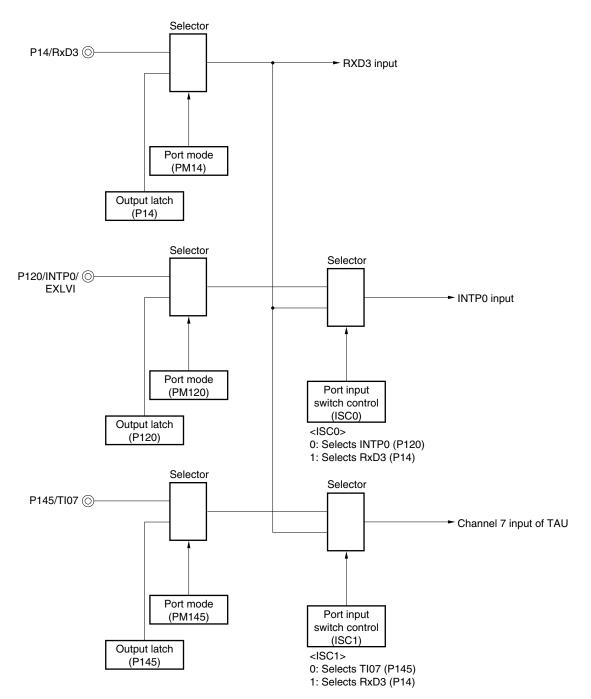

As soon as the count value has been captured to the TDRmn register, the OVF bit of the TSRmn register is updated depending on whether the counter overflows during the measurement period. Therefore, the overflow status of the captured value can be checked.

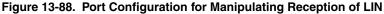
If the counter reaches a full count for two or more periods, it is judged to be an overflow occurrence, and the OVF bit of the TSRmn register is set to 1. However, the OVF bit is configured as a cumulative flag, the correct interval value cannot be measured if an overflow occurs more than once.

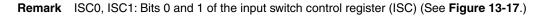
Set STSmn2 to STSmn0 of the TMRmn register to 001B to use the valid edges of TImn as a start trigger and a capture trigger.

When TEmn = 1, instead of the TImn pin input, a software operation (TSmn = 1) can be used as a capture trigger.

Figure 7-49. Block Diagram of Operation as Input Pulse Interval Measurement




Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7), mn = 00 to 07, 10 to 13


Figure 13-88 shows the configuration of a port that manipulates reception of LIN.

The wakeup signal transmitted from the master of LIN is received by detecting an edge of an external interrupt (INTP0). The length of the sync field transmitted from the master can be measured by using the external event capture operation of the timer array unit (TAU) to calculate a baud-rate error.

By controlling switch of port input (ISC0/ISC1), the input source of port input (RxD3) for reception can be input to the external interrupt pin (INTP0) and timer array unit (TAU).

16.4 Operation of DMA Controller

16.4.1 Operation procedure

- <1> The DMA controller is enabled to operate when DENn = 1. Before writing the other registers, be sure to set DENn to 1. Use 80H to write with an 8-bit manipulation instruction.
- <2> Set an SFR address, a RAM address, the number of times of transfer, and a transfer mode of DMA transfer to the DSAn, DRAn, CBCn, and DMCn registers.
- <3> The DMA controller waits for a DMA trigger when DSTn = 1. Use 81H to write with an 8-bit manipulation instruction.
- <4> When a software trigger (STGn) or a start source trigger specified by IFCn3 to IFCn0 is input, a DMA transfer is started.
- <5> Transfer is completed when the number of times of transfer set by the DBCn register reaches 0, and transfer is automatically terminated by occurrence of an interrupt (INTDMAn).
- <6> Stop the operation of the DMA controller by clearing DENn to 0 when the DMA controller is not used.

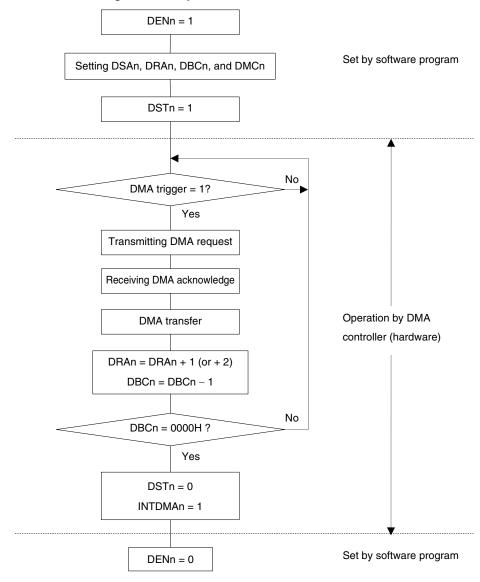
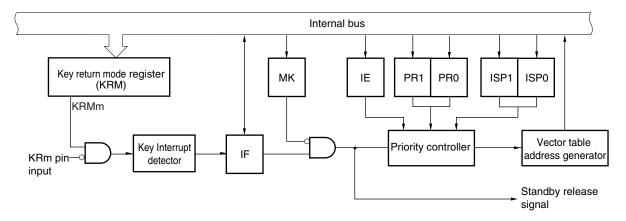



Figure 16-6. Operation Procedure

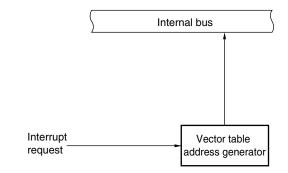
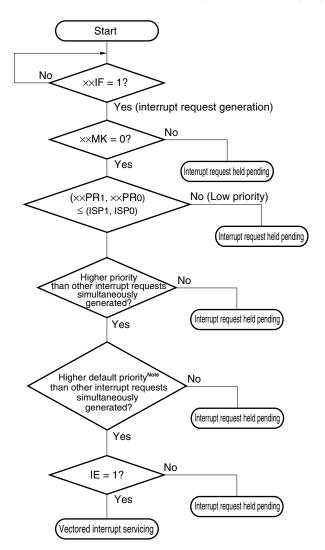

Remark n: DMA channel number (n = 0, 1)

Figure 17-1. Basic Configuration of Interrupt Function (2/2)

<R> (C) External maskable interrupt (INTKR)


(D) Software interrupt

Remarks 1. IF: Interrupt request flag

- IE: Interrupt enable flag
 - ISP0: In-service priority flag 0
 - ISP1: In-service priority flag 1
 - MK: Interrupt mask flag
 - PR0: Priority specification flag 0
 - PR1: Priority specification flag 1

2. m = 0 to 7

- ××IF: Interrupt request flag
- ××MK: Interrupt mask flag
- ××PR0: Priority specification flag 0
- ××PR1: Priority specification flag 1
- IE: Flag that controls acknowledgment of maskable interrupt request (1 = Enable, 0 = Disable)

ISP0, ISP1: Flag that indicates the priority level of the interrupt currently being serviced (see Figure 17-6)

Note For the default priority, refer to Table 17-1 Interrupt Source List.

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Operation		Flag
Group				Note 1	Note 2		Z	AC CY
8-bit data	ХСН	A, ES:!addr16	5	3	-	$A \leftarrow \rightarrow (ES, addr16)$		
transfer		A, ES:[DE]	3	3	_	$A \leftarrow \rightarrow (ES, DE)$		
		A, ES:[DE + byte]	4	3	-	$A \leftarrow \rightarrow ((ES, DE) + byte)$		
		A, ES:[HL]	3	3	-	$A \longleftrightarrow (ES, HL)$		
		A, ES:[HL + byte]	4	3	-	$A \leftarrow \rightarrow ((ES, HL) + byte)$		
		A, ES:[HL + B]	3	3	-	$A \longleftrightarrow ((ES, HL) + B)$		
		A, ES:[HL + C]	3	3	-	$A \longleftrightarrow ((ES, HL) + C)$		
	ONEB	A	1	1	-	A ← 01H		
		Х	1	1	-	X ← 01H		
		В	1	1	-	B ← 01H		
		С	1	1	-	C ← 01H		
		saddr	2	1	-	$(saddr) \leftarrow 01H$		
		!addr16	3	1	-	(addr16) ← 01H		
		ES:!addr16	4	2	-	(ES, addr16) ← 01H		
	CLRB	А	1	1	-	A ← 00H		
		Х	1	1	-	X ← 00H		
		В	1	1	-	B ← 00H		
		С	1	1	-	C ← 00H		
		saddr	2	1	-	(saddr) ← 00H		
		!addr16	3	1	-	(addr16) ← 00H		
		ES:!addr16	4	2	-	(ES,addr16) ← 00H		
	MOVS	[HL + byte], X	3	1	-	(HL + byte) ← X	×	×
		ES:[HL + byte], X	4	2	-	(ES, HL + byte) ← X	×	×
16-bit	MOVW	rp, #word	3	1	-	$rp \leftarrow word$		
data		saddrp, #word	4	1	-	$(saddrp) \leftarrow word$		
transfer		sfrp, #word	4	1	-	$sfrp \leftarrow word$		
		AX, saddrp	2	1	-	$AX \leftarrow (saddrp)$		
		saddrp, AX	2	1	-	$(saddrp) \leftarrow AX$		
		AX, sfrp	2	1	_	$AX \leftarrow sfrp$		
		sfrp, AX	2	1	-	sfrp ← AX		
		AX, rp Note 3	1	1	_	AX ← rp		
		rp, AX Note 3	1	1	_	$rp \leftarrow AX$		

Table 28-5.
 Operation List (4/17)

Notes 1. When the internal RAM area, SFR area, or extended SFR area is accessed, or for an instruction with no data access.

2. When the program memory area is accessed.

3. Except rp = AX

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).

2. This number of clocks is for when the program is in the internal ROM (flash memory) area. When fetching an instruction from the internal RAM area, the number of clocks is twice the number of clocks plus 3, maximum (except when branching to the external memory area).

3. In products where the external memory area is adjacent to the internal flash area, the number of waits is added to the number of instruction execution clocks placed in the last address (16-byte max.) in the flash memory, in order to use the external bus interface function. This should be done because, during prereading of the instruction code, an external memory wait being inserted due to an external memory area exceeding the flash space is accessed. For the number of waits, refer to 5.4 Number of Instruction Wait Clocks for Data Access.

Standard Products

Manufacturer	Part Number	SMD/	Frequency	Recommended	Circuit Constants	Oscillation V	oltage Range
		Lead	(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Murata	CSTCE12M0G55-R0	SMD	12.0	Internal (33)	Internal (33)	1.8	5.5
Manufacturing	CSTCE16M0V53-R0	SMD	16.0	Internal (15)	Internal (15)	1.8	
Co., Ltd.	CSTLS16M0X51-B0	Lead		Internal (5)	Internal (5)	1.8	
	CSTCE20M0V53-R0	SMD	20.0	Internal (15)	Internal (15)	1.9	
	CSTCG20M0V53-R0	Small SMD		Internal (15)	Internal (15)	2.0	
	CSTLS20M0X51-B0	Lead		Internal (5)	Internal (5)	1.9	
TOKO, Inc.	DCRHYC(P)12.00A	Lead	12.0	Internal (22)	Internal (22)	1.8	5.5
	DCRHZ(P)16.00A-15	Lead	16.0	Internal (15)	Internal (15)		
	DCRHZ(P)20.00A-15	Lead	20.0	Internal (15)	Internal (15)	2.0]
	DECRHZ20.00	SMD		Internal (10)	Internal (10)	1.8	

(3) X1 oscillation: Ceramic resonator (AMPH = 1, RMC = 00H, $T_A = -40$ to +85°C)

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit.

<R>

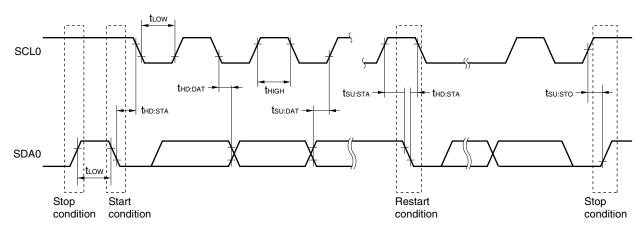
When doing so, check the conditions for using the AMPH bit, RMC register, and whether to enter or exit the STOP mode.

The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0R/KJ3 so that the internal operation conditions are within the specifications of the DC and AC characteristics.

Standard Products

(4) Serial interface: IIC0

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{V}_{\text{DD}} = \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$


Parameter	Symbol	Conditions	Standar	d Mode	Fast	Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock frequency	fsc∟	$6.7 \text{ MHz} \leq f_{CLK}$	0	100	0	400	kHz
		$4.0 \text{ MHz} \le f_{CLK} < 6.7 \text{ MHz}$	0	100	0	340	kHz
		$3.2 \text{ MHz} \le f_{\text{CLK}} < 4.0 \text{ MHz}$	0	100	-	_	kHz
		$2.0 \text{ MHz} \leq f_{\text{CLK}} < 3.2 \text{ MHz}$	0	85	-	-	kHz
Setup time of restart condition ^{Note 1}	tsu:sta		4.7		0.6		μs
Hold time	thd:sta		4.0		0.6		μs
Hold time when SCL0 = "L"	tLOW		4.7		1.3		μs
Hold time when SCL0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat	CL00 = 1 and CL01 = 1	0	3.45 ^{Note 3}	0	0.9 ^{Note 4}	μs
				5.50 ^{Note 5}		1.5 Note 6	μs
		CL00 = 0 and CL01 = 0, or	0	3.45	0	0.9 ^{Note 7}	μs
		CL00 = 1 and CL01 = 0				0.95 ^{Note 8}	μs
		CL00 = 0 and CL01 = 1	0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 3. When 3.2 MHz $\leq f_{CLK} \leq 4.19$ MHz.
- 4. When 6.7 MHz \leq fclk \leq 8.38 MHz.
- 5. When 2.0 MHz \leq fclk < 3.2 MHz. At this time, use the SCL0 clock within 85 kHz.
- 6. When 4.0 MHz \leq f_{CLK} < 6.7 MHz. At this time, use the SCL0 clock within 340 kHz.
- 7. When 8.0 MHz \leq folk \leq 16.76 MHz.
- 8. When 7.6 MHz \leq fclk < 8.0 MHz.

Remark CL00, CL01, DFC0: Bits 0, 1, and 2 of the IIC clock select register 0 (IICCL0)

IIC0 serial transfer timing

DC Characteristics (6/12) (TA = -40 to +85°C, 1.8 V \leq VDD = EVDD0 = EVDD1 \leq 5.5 V, 1.8 V \leq AVREF0 \leq VDD, 1.8 V \leq AVREF1 \leq VDD, VSS = EVSS0 = EVSS1 = AVSS = 0 V)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Цінт	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P107, P112 to P117, P120, P125 to P127, P131 to P137, P140 to P147, P160 to P163, FLMD0, RESET	Vi = Vdd				1	μA
	Ilih2	P20 to P27, P150 to P157	$2.7 V \le AV$ VI = AVREF	VREF0≤VDD			1 μμ 1 μμ	μA
	Ішнз	P110, P111	2.7 V ≤ A\	$V_{REF1} \leq V_{DD}$				μA
	Ilih4	P121 to P124 (X1, X2, XT1, XT2)	Vi = Vdd	In Input port In resonator connection				μΑ μΑ
Input leakage current, low	11	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P107, P112 to P117, P120, P125 to P127, P131 to P137, P140 to P147, P160 to P163,					-1	μA
	$ \begin{array}{ c c c c c } \hline & \begin{array}{ c c c } \hline & 2.7 \ V \leq AV_{REF0} \leq V_{DD} \\ \hline & \hline & V_1 = AV_{REF0}, \\ \hline & AV_{REF0} = V_{DD} < 2.7 \ V \\ \hline \\ \hline \\ \hline \\ I_{LH3} \\ \hline \\ \hline \\ I_{LH4} \\ \end{array} \begin{array}{ c c } \hline & P110, P111 \\ \hline \\ & P121 \ to \ P124 \\ (X1, X2, XT1, XT2) \\ \hline \\ \hline \\ \hline \\ I_{LH4} \\ \hline \\ \hline \\ \hline \\ P121 \ to \ P124 \\ (X1, X2, XT1, XT2) \\ \hline \\ \hline \\ \hline \\ I_{I} \\ \\ I_{I} \\ I_{I} \\ I_{I} \\ \\ I_{I} \\ I_{I} \\ \\ I_{I} \\ I_{I} \\ \\ \\ I_{I} \\ \\ $			-1	μA			
				-1	μA			
			X2, XT1, XT2) In resonator connection 10 In resonator connection 10 to P07, P10 to P17, P30 to P57, to P67, P70 to P77, P80 to P97, P100 to P107, 2 to P117, P120, P125 to 7, P131 to P137, P140 to 7, P160 to P163, D0, RESET -1 to P27, P150 to P157 V1 = Vss, 2.7 V ≤ AV_{REF0} ≤ V_{DD} -1 to P27, P150 to P157 V1 = Vss, 2.7 V ≤ AV_{REF0} ≤ V_{DD} -1 0, P111 V1 = Vss, 2.7 V ≤ AV_{REF1} ≤ V_{DD} -1 10 V1 = Vss, 2.7 V ≤ AV_{REF1} ≤ V_{DD} -1 10 V1 = Vss, 2.7 V ≤ AV_{REF1} ≤ V_{DD} -1 10 V1 = Vss, 2.7 V ≤ AV_{REF1} ≤ V_{DD} -1 110 V1 = Vss, 2.7 V -1 110 V1 = Vss -1 110 V1 = Vss -1 110 V1 = Vss -1					
	Ilil4		$V_{I} = V_{SS}$	In Input port			-1	μA
		(X1, X2, XT1, XT2)		In resonator connection			-10	μA

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (11/12)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{Vdd} = \text{EV}\text{dd} = \text{EV}\text{dd} \le 5.5 \text{ V}, 1.8 \text{ V} \le \text{AV}\text{REF0} \le \text{Vdd}, 1.8 \text{ V} \le \text{AV}\text{REF1} \le \text{Vdd}, \text{Vss} = \text{EV}\text{sso} = \text{EV}\text{sso} = \text{EV}\text{sso} = \text{EV}\text{sso} = \text{EV}\text{sso} = 0 \text{ V})$

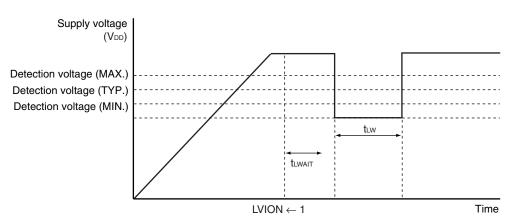
Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 1	HALT	fs∪в = 32.768 kHz ^{Note 2} ,	V _{DD} = 5.0 V		2.2	26.0	μA
current		mode	T _A = -40 to +70 °C	V _{DD} = 3.0 V		2.2	26.0	μA
				V _{DD} = 2.0 V		2.1	25.8	μA
			fsub = 32.768 kHz ^{Note 2} ,	V _{DD} = 5.0 V		2.2	41.0	μA
			T _A = -40 to +85 °C	$V_{DD} = 3.0 V$		2.2	41.0	μA
			V _{DD} = 2.0 V		2.1	40.8	μA	
IDD3 ^{Note 3} STOP			$T_A = -40 \text{ to } +70 ^{\circ}\text{C}$			1.1	21.0	μA
		mode	T _A = −40 to +85 °C			1.1	36.0	μA

- Notes 1. Total current flowing into VDD, EVDD0, EVDD1, AVREF0, and AVREF1, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The maximum value include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, LVI circuit, I/O port, and on-chip pull-up/pull-down resistors. During HALT instruction execution by flash memory.
 - 2. When internal high-speed oscillator and high-speed system clock are stopped. When watchdog timer is stopped.
 - **3.** Total current flowing into VDD, EVDDO, EVDDO, EVDDO, AVREFO, and AVREFO, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. When subsystem clock is stopped. When watchdog timer is stopped.

Remarks 1. fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

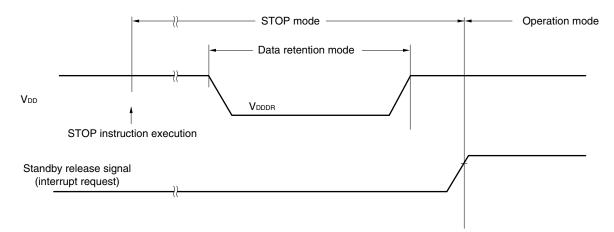
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVIO		4.12	4.22	4.32	V
voltage		VLVI1		3.97	4.07	4.17	V
		VLVI2		3.82	3.92	4.02	V
		V LVI3		3.66	3.76	3.86	V
		VLVI4		3.51	3.61	3.71	V
		VLVI5		3.35	3.45	3.55	V
		VLVI6		3.20	3.30	3.40	V
		VLVI7		3.05	3.15	3.25	V
		VLVI8		2.89	2.99	3.09 2.94	V
		VLV19		2.74	2.84	2.94	V
		VLVI10		2.58	2.68	2.78	V
		VLVI11		2.43	2.53	2.63	V
		VLVI12		2.28	2.38	2.48	V
		VLVI13		2.12	2.22	3.86 V 3.71 V 3.55 V 3.40 V 3.25 V 3.09 V 2.94 V 2.78 V 2.63 V	
		VLVI14		1.97	2.07		
		VLVI15		1.81	1.91	2.01	3.71 V 3.55 V 3.40 V 3.25 V 3.09 V 2.94 V 2.78 V 2.63 V 2.48 V 2.32 V 2.17 V 2.01 V 1.31 V
	External input pin ^{Note 1}	VEXLVI	$\text{EXLVI} < \text{V}_{\text{DD}}\text{, } 1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.11	1.21	1.31	
	Supply voltage when power supply voltage is turned on	Vpuplvi	When LVI default start function enabled is set	1.87	2.07	2.27	V
Minimum pu	ulse width	t∟w		2.00			μs
Detection d	elay time					200	μs
Operation s	tabilization wait time ^{Note 2}	t lwait				10	μS


LVI Circuit Characteristics (TA = -40 to +85°C, VPOC \leq VDD = EVDD1 \leq 5.5 V, Vss = EVss0 = EVss1 =0 V)

Notes 1. The EXLVI/P120/INTP0 pin is used.

2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $V_{LVI(n-1)} > V_{LVIn}$: n = 1 to 15


LVI Circuit Timing

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.5 ^{Note}		5.5	V

Note The value depends on the POC detection voltage. When the voltage drops, the data is retained until a POC reset is effected, but data is not retained when a POC reset is effected.

Flash Memory Programming Characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{Vdd} = \text{EVdd} = \text{EVdd} \le 5.5 \text{ V}, \text{Vss} = \text{EVss} = \text{EVss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
VDD supply current	IDD	TYP. = 10 MHz, MAX. = 20 MHz			4.5	15	mA
CPU/peripheral hardware clock frequency	fс∟к			2		20	MHz
Number of rewrites (number of deletes per block)	CWRT	Used for updating programs When using flash memory programmer and NEC Electronics self programming library		100			Times
		Used for updating data When using NEC Electronics EEPROM emulation library (usable ROM size: 6 KB of 3 consecutive blocks)	Retained for 5 years	10,000			Times

Remark When updating data multiple times, use the flash memory as one for updating data.

1					(3	/35)
Chapter	Classification	Function	Details of Function	Cautions	Ρας	je
Chapter 4	Soft	Port functions	P16/TI01/TO01/ INTP5/EX30, P17/TI02/TO02/ EX31	To use P16/TI01/TO01/INTP5/EX30 or P17/TI02/TO02/EX31 as a general-purpose port, set bits 1 and 2 (TO01, TO02) of timer output register 0 (TO0) and bits 1 and 2 (TOE01, TOE02) of timer output enable register 0 (TOE0) to "0", which is the same as their default status setting.	p.115	
			P15/RTCDIV/ RTCCL/EX29	To use P15/RTCDIV/RTCCL/EX29 as a general-purpose port, set bit 4 (RCLOE0) of real-time counter control register 0 (RTCC0) and bit 6 (RCLOE2) of real-time counter control register 2 (RTCC2) to "0", which is the same as their default status settings.	p.115	
			Port 1	Do not enable outputting other alternate functions when the external expansion output (address bus) function is used.	p.115	
	Hard		Port 2	See 2.2.18 AV REFO for the voltage to be applied to the AV REFO pin when using port 2 as a digital I/O.	p.121	
	Soft		P31/TI03/TO03/ INTP4	To use P31/TI03/TO03/INTP4 as a general-purpose port, set bit 3 (TO03) of timer output register 0 (TO0) and bit 3 (TOE03) of timer output enable register 0 (TOE0) to "0", which is the same as their default status setting.	p.123	
			P30/RTC1HZ/ INTP3	To use P30/RTC1HZ/INTP3 as a general-purpose port, set bit 5 (RCLOE1) of real- time counter control register 0 (RTCC0) to "0", which is the same as its default status setting.	p.123	
			P40/TOOL0, P41/TOOL1	 When a tool is connected, the P40 pin cannot be used as a port pin. When the on-chip debug function is used, P41 pin can be used as follows by the mode setting on the debugger. 1-line mode: can be used as a port (P41). 2-line mode: used as a TOOL1 pin and cannot be used as a port (P41). 	p.125	
			P43/SCK01, P44/SI01, P45/SO01	To use P43/SCK01, P44/SI01, or P45/SO01 as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 13-6 Relationship Between Register Settings and Pins (Channel 1 of Unit 0: CSI01, UART0 reception).	p.125	
			P42/TI04/TO04, P46/INTP1/TI05/ TO05	To use P42/TI04/TO04 or P46/INTP1/TI05/TO05 as a general-purpose port, set bits 4 and 5 (TO04, TO05) of timer output register 0 (TO0) and bits 4 and 5 (TOE04, TOE05) of timer output enable register 0 (TOE0) to "0", which is the same as their default status setting.	p.125	
			P60/SCL0, P61/SDA0	When using P60/SCL0 or P61/SDA0 as a general-purpose port, stop the operation of serial interface IIC0.	p.136	
				To use P95/SCK11/SCL11, P96/SI11/SDA11, or P97/SO11 as a general-purpose port, note the serial array unit setting. For details, refer to Table 13-8 Relationship Between Register Settings and Pins (Channel 3 of Unit 0: CSI11, UART1 Reception, IIC11).	p.141	
	Hard		Port 11	See 2.2.19 AVREF1 for the voltage to be applied to the AVREF1 pin when using Port 11 as digital I/O.	p.146	
	Soft		P121 to P124	The function setting on P121 to P124 is available only once after the reset release. The port once set for connection to an oscillator cannot be used as an input port unless the reset is performed.	-	
			P125/SCK21/SC L21, P126/SI21/SDA2 1, or P127/SO21	To use P125/SCK21/SCL21, P126/SI21/SDA21, or P127/SO21 as a general-purpose port, note the serial array unit 1 setting. For details, refer to Table 13-10 Relationship Between Register Settings and Pins (Channel 1 of Unit 1: CSI21, UART2 reception,	p.148	
			P131/TI06/TO06	To use P131/TI06/TO06 as a general-purpose port, set bit 6 (TO06) of timer output register 0 (TO0) and bit 6 (TOE06) of timer output enable register 0 (TOE0) to "0", which is the same as their default status setting.	p.153	