

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Data Converters Oscillator Type	A/D 13x12b; D/A 2x12b Internal
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
RAM Size	16K x 8
EEPROM Size	-
Program Memory Type	FLASH
Program Memory Size	128KB (128K x 8)
Number of I/O	36
Peripherals	DMA, I ² S, POR, PWM, WDT
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Speed	48MHz
Core Size	32-Bit Single-Core
Core Processor	ARM® Cortex®-M0
Product Status	Active

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, RTC, I2C1, USART1, USART2, USB, COMPx, V_{DDIO2} supply comparator or the CEC.

The CEC, USART1, USART2 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop mode.

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.

Figure 2. Clock tree

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

DocID026006 Rev 4

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 7-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 86 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature

DocID026006 Rev 4

	Number of capacitive sensing channels								
Analog I/O group	STM32F078Vx	STM32F078Rx	STM32F078Cx						
G5	3	3	3						
G6	3	3	3						
G7	3	0	0						
G8	3	0	0						
Number of capacitive sensing channels	23	17	16						

Table 5. Number of capacitive sensing channels available on STM32F078CB/RB/VB devices (continued)

3.14 Timers and watchdogs

The STM32F078CB/RB/VB devices include up to six general-purpose timers, two basic timers and an advanced control timer.

Table 6 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2 32-bit Up, down, up/down integer from 1 to 65536 Yes	4	-				
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6 TIM7	16-bit	Up	integer from 1 to 65536	Yes	-	-

 Table 6. Timer feature comparison

3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It

Table 13. Alternate functions selected through GPIOA_AFR registers for port A Pin name AF1 AF2 AF4 AF0 AF3 AF5 AF7 AF6 USART2 CTS TIM2 CH1 ETR TSC G1 IO1 USART4 TX COMP1 OUT PA0 -EVENTOUT USART2_RTS TIM2 CH2 TSC_G1_IO2 USART4 RX TIM15 CH1N PA1 _ TIM15_CH1 PA2 USART2_TX TIM2_CH3 TSC_G1_IO3 COMP2_OUT ---TIM15 CH2 USART2 RX TIM2_CH4 TSC G1 IO4 PA3 ----SPI1_NSS, I2S1_WS USART2_CK TSC_G2_IO1 PA4 _ TIM14_CH1 --_ SPI1_SCK, I2S1_CK CEC TIM2_CH1_ETR TSC_G2_IO2 PA5 _ _ USART3 CTS PA6 SPI1 MISO, I2S1 MCK TIM3 CH1 TIM1 BKIN TSC G2 103 TIM16 CH1 EVENTOUT COMP1 OUT SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N TSC_G2_IO4 TIM14_CH1 TIM17 CH1 COMP2_OUT **EVENTOUT** PA7 PA8 МСО USART1 CK TIM1_CH1 **EVENTOUT** CRS_SYNC _ _ TIM15 BKIN USART1 TX TIM1 CH2 TSC G4 IO1 PA9 ----TIM17_BKIN USART1 RX TIM1 CH3 TSC_G4_IO2 PA10 ----EVENTOUT PA11 USART1_CTS TIM1 CH4 TSC_G4_IO3 COMP1 OUT -_ _ EVENTOUT USART1_RTS TIM1_ETR TSC_G4_IO4 COMP2 OUT PA12 ---SWDIO IR_OUT USB NOE PA13 _ --_ SWCLK USART2_TX PA14 -_ -SPI1 NSS, I2S1 WS USART2 RX TIM2 CH1 ETR **EVENTOUT** USART4 RTS

_

-

-

DocID026006 Rev 4

PA15

39/120

STM32F078CB, STM32F078RB, STM32F078VB

Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1 KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1 KB	GPIOE
	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD
AHB2	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	Flash memory interface
	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved
	0x4001 5C00 - 0x4001 7FFF	9 KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1 KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3 KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1/I2S1
APB	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	Reserved
	0x4001 2400 - 0x4001 27FF	1 KB	ADC
	0x4001 0800 - 0x4001 23FF	7 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0000 - 0x4001 03FF	1 KB	SYSCFG + COMP
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved

Table 19. STM32F078CB/RB/VB peripheral register boundary addresses

DocID026006 Rev 4

Bus	Boundary address	Size	Peripheral
	0x4000 7C00 - 0x4000 7FFF	1 KB	Reserved
	0x4000 7800 - 0x4000 7BFF	1 KB	CEC
-	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 6C00 - 0x4000 6FFF	1 KB	CRS
-	0x4000 6400 - 0x4000 6BFF	2 KB	Reserved
-	0x4000 6000 - 0x4000 63FF	1 KB	USB RAM
	0x4000 5C00 - 0x4000 5FFF	1 KB	USB
-	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
-	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
-	0x4000 5000 - 0x4000 53FF	1 KB	Reserved
-	0x4000 4C00 - 0x4000 4FFF	1 KB	USART4
-	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
-	0x4000 4400 - 0x4000 47FF	1 KB	USART2
-	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
-	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
-	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
APB	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
-	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
-	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
-	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
-	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
-	0x4000 1800 - 0x4000 1FFF	2 KB	Reserved
ľ	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
ľ	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
ľ	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 19. STM32F078CB/RB/VB	peripheral register bounda	ry addresses (continued)

Symbol	Parameter	Conditions	Min	Мах	Unit					
t _{VDD}	V _{DD} rise time rate		0	8						
	V _{DD} fall time rate	-	20	8						
+	V _{DDA} rise time rate		0	8	µs/V					
t _{VDDA}	V _{DDA} fall time rate	-	20	8						

 Table 24. Operating conditions at power-up / power-down

6.3.3 Embedded reference voltage

The parameters given in *Table 25* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.2	1.23	1.25	V
t _{START}	ADC_IN17 buffer startup time	-	-	-	10 ⁽¹⁾	μs
t _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	4 ⁽¹⁾	-	-	μs
ΔV _{REFINT}	Internal reference voltage spread over the temperature range	V _{DDA} = 3 V	-	-	10 ⁽¹⁾	mV
T _{Coeff}	Temperature coefficient	-	- 100 ⁽¹⁾	-	100 ⁽¹⁾	ppm/°C
T _{VREFINT_RDY}	Internal reference voltage temporization	-	1.5	2.5	4.5	ms

Table 25. Embedded internal reference voltage

1. Guaranteed by design, not tested in production.

 Guaranteed by design, not tested in production. This parameter is the latency between the time when pin NPOR is set to 1 by the application and the time when the VREFINTRDYF status bit is set to 1 by the hardware.

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 13: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Symbol	ेष्ट्र					$V_{DDA} = 3.6 V$										
	Para-meter	Conditions	f _{HCLK}		М	ax @ T _A			Max @ T _A ⁽²⁾			Unit				
	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C					
		HSI48	48 MHz	309	325	328	332	320	335	339	348					
		HSE	48 MHz	151	169 ⁽³⁾	177	180 ⁽³⁾	163	181 ⁽³⁾	192	196 ⁽³⁾					
	Supply current in	bypass, PLL on	32 MHz	103	119	124	126	112	127	133	135					
	Run or		24 MHz	81	95	98	100	87	100	105	107					
	Sleep mode,	HSE	8 MHz	1.6	2.8	3.0	3.3	2.1	3.2	3.4	3.9					
I _{DDA}	code executing	bypass, PLL off	1 MHz	1.6	2.8	3.0	3.3	2.0	3.2	3.4	3.9	μA				
	from	from	from	from	from		48 MHz	217	238	249	253	238	259	272	278	
	Flash memory	,	32 MHz	170	189	197	200	187	205	214	218					
	or RAM		24 MHz	146	164	170	173	162	178	186	189					
		HSI clock, PLL off	8 MHz	67	76	79	80	77	86	89	90					

Table 27. Typical and maximum current consumption from the V_{DDA} supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA).

Symbol		Conditions	Тур @ V _{BAT}									
	Parameter		1.65 V	1.8 V	2.4 V	2.7 V	3.3 V	3.6 V	T _A = 25 ℃	T _A = 85 ℃	T _A = 105 °C	Unit
I _{DD_VBAT}	RTC domain	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.5	0.6	0.7	0.8	1.1	1.2	1.3	1.7	2.3	
	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.8	0.9	1.1	1.2	1.4	1.6	1.7	2.1	2.8	μA

Table 28. Typical and maximum current consumption from the V_{BAT} supply

1. Data based on characterization results, not tested in production.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit				
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle				
	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30					
t _{RET}		1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year				
		10 kcycle ⁽²⁾ at T _A = 55 °C	20					

 Table 44. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 45*. They are based on the EMS levels and classes defined in application note AN1709.

Syml	bol	Parameter	Conditions	Level/ Class
V _{FE} s	SD	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 1.8 V, LQFP100, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EF}	ТВ	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 1.8 V, LQFP100, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Input leakage current ⁽²⁾	TC, FT and FTf I/O TTa in digital mode V _{SS} ≤ V _{IN} ≤ V _{DDIOx}	-	-	± 0.1	μA
l _{lkg}		TTa in digital mode V _{DDIOx} ≤ V _{IN} ≤ V _{DDA}	-	-	1	
5		TTa in analog mode V _{SS} ≤ V _{IN} ≤ V _{DDA}	-	-	± 0.2	
		FT and FTf I/O V _{DDIOx} ≤ V _{IN} ≤ 5 V	-	-	10	
R _{PU}	Weak pull-up equivalent resistor (3)	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 50. I/O static characteristics (continued)

1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to *Table 49: I/O current injection susceptibility*.

3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 21* for standard I/Os, and in *Figure 22* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-	
W _{LATENCY} ⁽²⁾⁽⁴⁾	ADC_DR register ready latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle	
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle	
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$	0.196			μs	
	Trigger conversion latency	$f_{ADC} = f_{PCLK}/2$	5.5			1/f _{PCLK}	
t _{latr} (2)		f _{ADC} = f _{PCLK} /4 = 12 MHz 0.219			μs		
		$f_{ADC} = f_{PCLK}/4$	10.5		1/f _{PCLK}		
		f _{ADC} = f _{HSI14} = 14 MHz	0.179	-	0.250	μs	
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI14}	-	1	-	1/f _{HSI14}	
ts ⁽²⁾	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs	
ι _S /	Sampling time	-	1.5	-	239.5	1/f _{ADC}	
t _{STAB} ⁽²⁾	Stabilization time	-		14	•	1/f _{ADC}	
+ (2)	Total conversion time	f _{ADC} = 14 MHz, 12-bit resolution	1	-	18	μs	
t _{CONV} ⁽²⁾	(including sampling time)	12-bit resolution	14 to 252 (t _S for sampling +12.5 for successive approximation)		1/f _{ADC}		

 Table 55. ADC characteristics (continued)

1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μ A on I_{DD} and 60 μ A on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

3. Specified value includes only ADC timing. It does not include the latency of the register access.

4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.

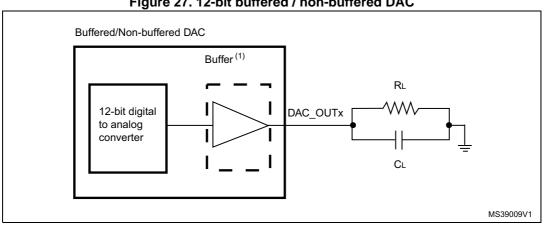
Equation 1: R_{AIN} max formula

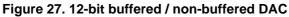
$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4

Table 56. R_{AIN} max for f_{ADC} = 14 MHz

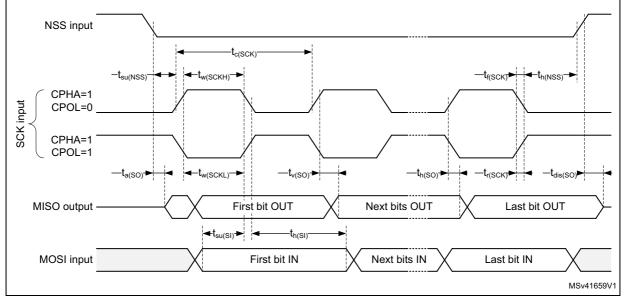

Symbol	Parameter	Min	Тур	Max	Unit	Comments	
Gain error ⁽³⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration	
t _{SETTLING} ⁽³⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ	
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ	
t _{WAKEUP} ⁽³⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.	
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF	

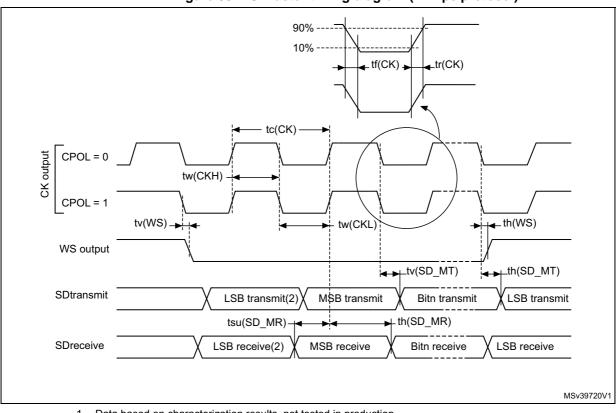

Table 58. DAC characteristics (continued)

1. Guaranteed by design, not tested in production.

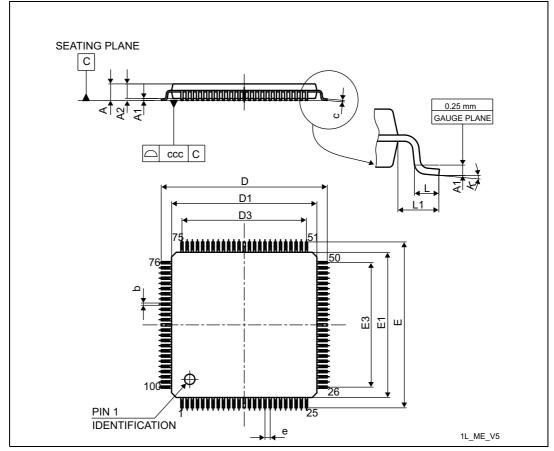
2. The DAC is in "quiescent mode" when it keeps the value steady on the output so no dynamic consumption is involved.

3. Data based on characterization results, not tested in production.


The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 1.


Figure 29. SPI timing diagram - slave mode and CPHA = 0

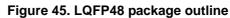
1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

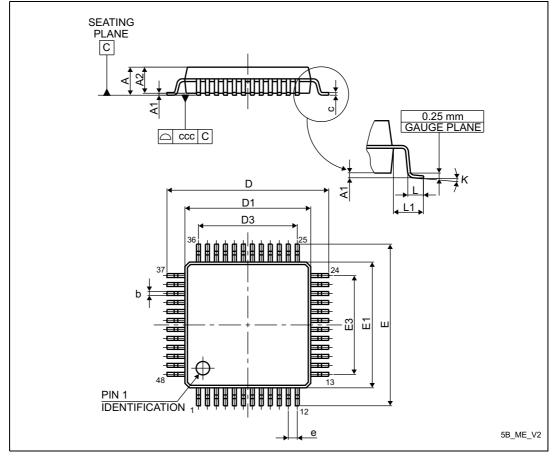

Figure 33. I²S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

7.2 LQFP100 package information

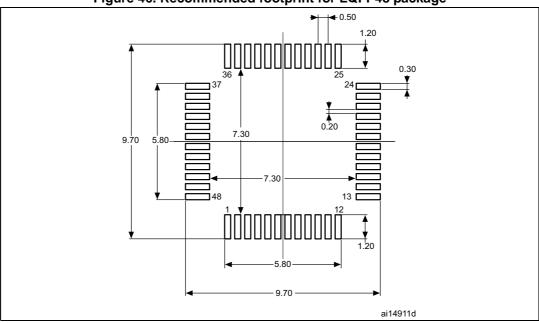
LQFP100 is a100-pin, 14 x 14 mm low-profile quad flat package.


1. Drawing is not to scale.


Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	

7.5 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.

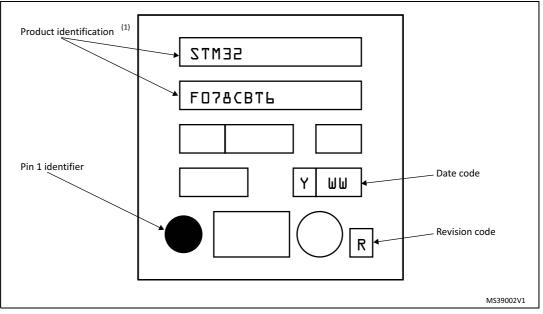

1. Drawing is not to scale.

Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ССС	-	-	0.080	-	-	0.0031	

Table 74.	LQFP48	package	mechanical	data
		pachage	meenamear	uata

1. Values in inches are converted from mm and rounded to 4 decimal digits.

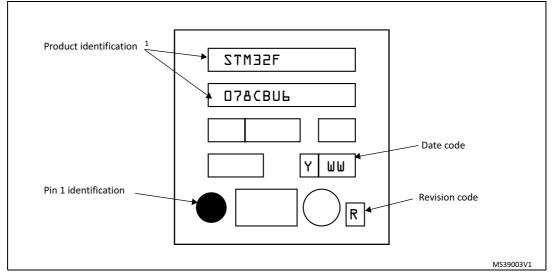
Figure 46. Recommended footprint for LQFP48 package


1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.


1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 50. UFQFPN48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

