

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	36
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	49-UFBGA, WLCSP
Supplier Device Package	49-WLCSP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f078cby6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 47.	ESD absolute maximum ratings	72
Table 48.	Electrical sensitivities	72
Table 49.	I/O current injection susceptibility	73
Table 50.	I/O static characteristics	73
Table 51.	Output voltage characteristics	76
Table 52.	I/O AC characteristics	77
Table 53.	NRST pin characteristics	79
Table 54.	NPOR pin characteristics	80
Table 55.	ADC characteristics	
Table 56.	R _{AIN} max for f _{ADC} = 14 MHz.	81
Table 57.	ADC accuracy	
Table 58.	DAC characteristics	84
Table 59.	Comparator characteristics	86
Table 60.	TS characteristics	88
Table 61.	V _{BAT} monitoring characteristics	88
Table 62.	TIMx characteristics	88
Table 63.	IWDG min/max timeout period at 40 kHz (LSI)	89
Table 64.	WWDG min/max timeout value at 48 MHz (PCLK).	89
Table 65.	I ² C analog filter characteristics	90
Table 66.	SPI characteristics	90
Table 67.	I ² S characteristics	92
Table 68.	USB electrical characteristics	95
Table 69.	UFBGA100 package mechanical data	96
Table 70.	UFBGA100 recommended PCB design rules.	97
Table 71.	LQPF100 package mechanical data	99
Table 72.	LQFP64 package mechanical data	. 102
Table 73.	WLCSP49 package mechanical data	. 106
Table 74.	LQFP48 package mechanical data	. 109
Table 75.	UFQFPN48 package mechanical data	. 112
Table 76.	Package thermal characteristics	. 114
Table 77.	Ordering information scheme	
Table 78.	Document revision history	. 118

Perip	oheral	STM32F078CB	STM32F078RB	STM32F078VB				
Flash memory (Kbyte)		128						
SRAM	(Kbyte)		16					
	Advanced control		1 (16-bit)					
Timers	General purpose		5 (16-bit) 1 (32-bit)					
	Basic		2 (16-bit)					
	SPI [I ² S] ⁽¹⁾		2 [2]					
	l ² C		2					
Comm.	USART		4					
interfaces	USB	1						
	CEC	1						
	t ADC f channels)	1 (10 ext. + 3 int.)						
	t DAC f channels)	1 (2)						
Analog c	omparator	2						
GP	PIOs	36	50	86				
	re sensing nnels	16	17	23				
Max. CPU	frequency		48 MHz					
Operatin	ig voltage	V _{DD} :	= 1.8 V ± 8%, V _{DDA} = from V _{DD}	_o to 3.6 V				
Operating t	temperature		Ambient operating temperature: -40°C to 85°C / -40°C to 105°C Junction temperature: -40°C to 105°C / -40°C to 125°C					
Packages		LQFP48 UFQFPN48 WLCSP49	LQFP64	LQFP100 UFBGA100				

Table 1. STM32F078CB/RB/VB family device features and peripheral counts

1. The SPI interface can be used either in SPI mode or in I^2S audio mode.

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 Power supply schemes

- $V_{DD} = V_{DDIO1} = 1.8 \text{ V} \pm 8\%$: external power supply for I/Os (V_{DDIO1}) and digital logic. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, DAC, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{DDIO2} = 1.65 to 3.6 V: external power supply for marked I/Os. V_{DDIO2} is provided externally through the VDDIO2 pin. The V_{DDIO2} voltage level is completely independent from V_{DD} or V_{DDA}, but it must not be provided without a valid supply on V_{DD}. The V_{DDIO2} supply is monitored and compared with the internal reference voltage (V_{REFINT}). When the V_{DDIO2} is below this threshold, all the I/Os supplied from this rail are disabled by hardware. The output of this comparator is connected to EXTI line 31 and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for concerned I/Os list.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 12: Power supply scheme*.

3.5.2 Power-on reset

To guarantee a proper power-on reset, the NPOR pin must be held low until V_{DD} is stable. When V_{DD} is stable, the reset state can be exited either by:

- putting the NPOR pin in high impedance (NPOR pin has an internal pull-up), or by
- forcing the pin to high level by connecting it to V_{DDA}

3.5.3 Low-power modes

The STM32F078CB/RB/VB microcontrollers support two low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Figure 2. Clock tree

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

DocID026006 Rev 4

Analog I/O group	Number of capacitive sensing channels						
	STM32F078Vx	STM32F078Rx	STM32F078Cx				
G5	3	3	3				
G6	3	3	3				
G7	3	0	0				
G8	3	0	0				
Number of capacitive sensing channels	23	17	16				

Table 5. Number of capacitive sensing channels available on STM32F078CB/RB/VB devices (continued)

3.14 Timers and watchdogs

The STM32F078CB/RB/VB devices include up to six general-purpose timers, two basic timers and an advanced control timer.

Table 6 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6 TIM7	16-bit	Up	integer from 1 to 65536	Yes	-	-

 Table 6. Timer feature comparison

3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It

	Pin	numb	oers		e 12. STM32F078				Pin functions			
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
C1	7	2	2	D5	PC13	I/O	тс	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT		
D1	8	3	3	C7	PC14-OSC32_IN (PC14)	I/O	тс	(1) (2)	-	OSC32_IN		
E1	9	4	4	C6	PC15- OSC32_OUT (PC15)	I/O	тс	(1) (2)	-	OSC32_OUT		
F2	10	-	-	-	PF9	I/O	FT	-	TIM15_CH1	-		
G2	11	-	-	-	PF10	I/O	FT	-	TIM15_CH2	-		
F1	12	5	5	D7	PF0-OSC_IN (PF0)	I/O	FT	-	CRS_SYNC	OSC_IN		
G1	13	6	6	D6	PF1-OSC_OUT (PF1)	I/O	FT	-	-	OSC_OUT		
H2	14	7	7	E7	NRST	I/O	RST	-	Device reset input / internal reset output (active low)			
H1	15	8	-	-	PC0	I/O	TTa	-	EVENTOUT	ADC_IN10		
J2	16	9	-	-	PC1	I/O	TTa	-	EVENTOUT	ADC_IN11		
J3	17	10	-	-	PC2	I/O	ТТа	-	SPI2_MISO, I2S2_MCK, EVENTOUT	ADC_IN12		
K2	18	11	-	-	PC3	I/O	ТТа	-	SPI2_MOSI, I2S2_SD, EVENTOUT	ADC_IN13		
J1	19	-	-	-	PF2	I/O	FT	-	EVENTOUT	WKUP8		
K1	20	12	8	E6	VSSA	S	-	I	Analog groui	nd		
M1	21	13	9	F7	VDDA	S	-	-	Analog power s	upply		
L1	22	-	-	-	PF3	I/O	FT	-	EVENTOUT			
L2	23	14	10	F6	PA0	I/O	ТТа	-	USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, USART4_TX	RTC_TAMP2, WKUP1, COMP1_OUT, ADC_IN0, COMP1_INM6		

Table 12. STM32F078CB/RB/VB pin definitions (continued)

	Pin	numt	oers				_		Pin functions		
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
M6	36	27	19	G4	PB1	I/O	ТТа	-	TIM3_CH4, USART3_RTS, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3	ADC_IN9	
L6	37	28	20	G3	NPOR	I	POR	(3)	Device power-on reset in	out (active low)	
M7	38	-	-	-	PE7	I/O	FT	-	TIM1_ETR	-	
L7	39	-	-	-	PE8	I/O	FT	-	TIM1_CH1N	-	
M8	40	-	-	-	PE9	I/O	FT	-	TIM1_CH1	-	
L8	41	-	-	-	PE10	I/O	FT	-	TIM1_CH2N	-	
M9	42	-	-	-	PE11	I/O	FT	-	TIM1_CH2	-	
L9	43	-	-	-	PE12	I/O	FT	-	SPI1_NSS, I2S1_WS, TIM1_CH3N	-	
M10	44	-	-	-	PE13	I/O	FT	-	SPI1_SCK, I2S1_CK, TIM1_CH3	-	
M11	45	-	-	-	PE14	I/O	FT	-	SPI1_MISO, I2S1_MCK, TIM1_CH4	-	
M12	46	-	-	-	PE15	I/O	FT	-	SPI1_MOSI, I2S1_SD, TIM1_BKIN	-	
L10	47	29	21	E3	PB10	I/O	FT	-	SPI2_SCK, I2C2_SCL, USART3_TX, CEC, TSC_SYNC, TIM2_CH3	-	
L11	48	30	22	G2	PB11	I/O	FT	-	USART3_RX, TIM2_CH4, EVENTOUT, TSC_G6_IO1, I2C2_SDA	-	
F12	49	31	23	D3	VSS	S	-	-	Ground		
G12	50	32	24	F2	VDD	S	-	I	Digital power su	ipply	
L12	51	33	25	E2	PB12	I/O	FT	-	TIM1_BKIN, TIM15_BKIN, SPI2_NSS, I2S2_WS, USART3_CK, TSC_G6_IO2, EVENTOUT	-	
K12	52	34	26	G1	PB13	I/O	FTf	-	SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_CTS, TIM1_CH1N, TSC_G6_IO3	-	

Table 12. STM32F078CB/RB/VB pin definitions (continued)

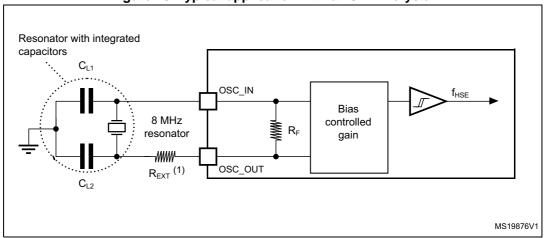


Figure 16. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 37*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
		low drive capability	-	0.5	0.9		
	LSE current consumption	medium-low drive capability	-	-	1		
I _{DD}	LSE current consumption	medium-high drive capability	-	-	1.3	μA	
		high drive capability	-	-	1.6		
		low drive capability	5	-	-		
~	Oscillator transconductance	medium-low drive capability	8	-	-		
9 _m		medium-high drive capability	15	-	-	µA/V	
		high drive capability	25	-	-		
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S	

Table 37. LSE oscillator characteristics	(f _{LSE} = 32.768 kHz)
--	---------------------------------

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit		
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T_A = +25 °C, conforming to JESD22-A114	All	2	2000	V		
V	Electrostatic discharge voltage	T _A = +25 °C, conforming	WLCSP49	C3	250	V		
V _{ESD(CDM)}	(charge device model)	to ANSI/ESD STM5.3.1	All others	C4	500	v		

Table 47. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 48.	Electrical	sensitivities
	LICOLIU	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in *Table 49*.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 20: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 20: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	V
V _{OL}	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	TTL port ⁽²⁾ $ I_{IO} = 8 \text{ mA}$ $V_{DDIOX} \ge 2.7 \text{ V}$ $ I_{IO} = 20 \text{ mA}$ $V_{DDIOX} \ge 2.7 \text{ V}$ $ I_{IO} = 6 \text{ mA}$	2.4	-	V
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	v
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 6 mA	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2 V	V _{DDIOx} -0.4	-	v
V _{OL} ⁽⁴⁾	Output low level voltage for an I/O pin	II I = 4 m A	-	0.4	V
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	I _{IO} = 4 mA	V _{DDIOx} -0.4	-	V
V _{OLFm+} ⁽³⁾	Output low level voltage for an FTf I/O pin in Fm+ mode	I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	V
		I _{IO} = 10 mA	-	0.4	V

Table 51. Output voltage characteristics⁽¹⁾

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 20: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Data based on characterization results. Not tested in production.

4. Data based on characterization results. Not tested in production.

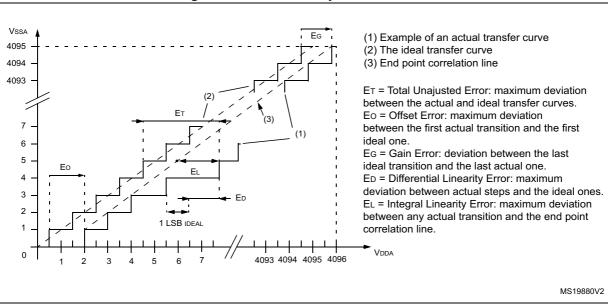
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NPOR)}	NPOR Input low level voltage	-	-	-	0.475 V _{DDA} - 0.2 ⁽¹⁾	
V _{IH(NPOR)}	NPOR Input high level voltage	-	0.5 V _{DDA} + 0.2 ⁽¹⁾	-	-	V
V _{hys(NPOR)}	NPOR Schmitt trigger voltage hysteresis	-	-	100 ⁽¹⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ

Table 54. NPOR pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (\sim 10% order).

6.3.15 12-bit ADC characteristics


Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under the conditions summarized in *Table 23: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage for ADC ON	-	2.4	-	3.6	V
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	V _{DDA} = 3.3 V	-	0.9	-	mA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	12-bit resolution	0.043	-	1	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 14 MHz, 12-bit resolution	-	-	823	kHz
		12-bit resolution	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 56</i> for details	-	-	50	kΩ
$R_{ADC}^{(2)}$	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
t _{CAL} ⁽²⁾⁽³⁾	Calibration time	f _{ADC} = 14 MHz		5.9		μs
^L CAL		-	83			1/f _{ADC}

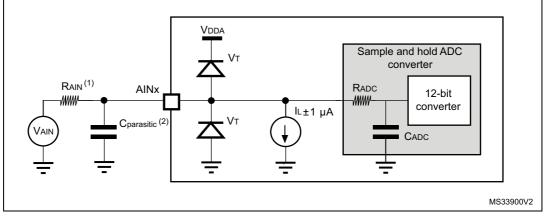

Table 55. ADC characteristics

Figure 25. ADC accuracy characteristics

Refer to Table 55: ADC characteristics for the values of RAIN, RADC and CADC. 1.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 12: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

Symbol	Parameter Min		Мах	Unit
t _{AF}	Maximum width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 65. I²C analog filter characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 66* for SPI or in *Table 67* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 23: General operating conditions*.

Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SDI clock froguency	Master mode	-	18	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	18	IVITZ
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-	
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1	
t _{su(MI)}	Data input setup time	Master mode	4	-	
t _{su(SI)}		Slave mode	5	-	
t _{h(MI)}	Data input hold time	Master mode	4	-	
t _{h(SI)}	Data input hold time	Slave mode	5	-	ns
t _{a(SO)} ⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk	
t _{dis(SO)} ⁽³⁾	Data output disable time	Slave mode	0	18	
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	22.5	
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6	
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	11.5	-	
t _{h(MO)}		Master mode (after enable edge)	2	-	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	25	75	%

Table 66. SPI characteristics⁽¹⁾

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

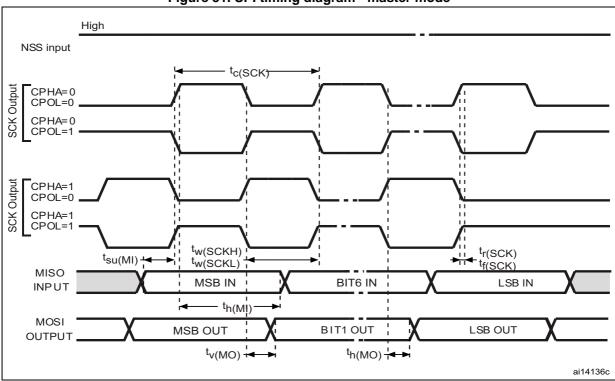
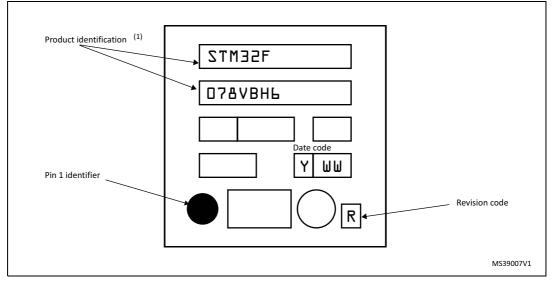


Figure 31. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

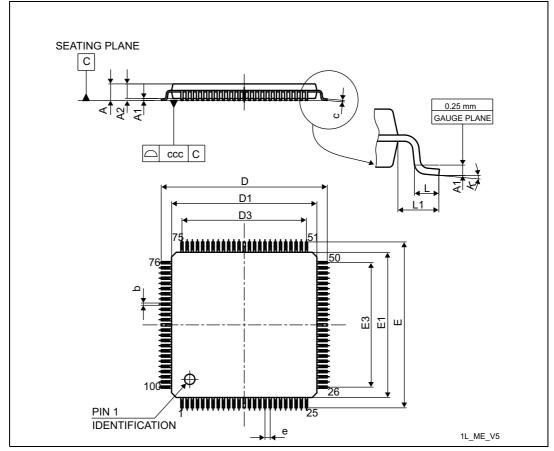
Table 67. I²S characteristics⁽¹⁾


Symbol	Parameter	Conditions	Min	Мах	Unit
f _{CK} 1/t _{c(CK)}	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)	1.597	1.601	MHz
		Slave mode	0	6.5	
t _{r(CK)}	I ² S clock rise time	Consolitive load C = 15 pE	-	10	
t _{f(CK)}	I ² S clock fall time	Capacitive load C _L = 15 pF	-	12	
t _{w(CKH)}	I ² S clock high time	Master f _{PCLK} = 16 MHz, audio	306	-	
t _{w(CKL)}	I ² S clock low time	frequency = 48 kHz	312	-	
t _{v(WS)}	WS valid time	Master mode	2	-	ns
t _{h(WS)}	WS hold time	Master mode	2	-	
t _{su(WS)}	WS setup time	Slave mode	7	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
DuCy(SCK)	I ² S slave input clock duty cycle	Slave mode	25	75	%

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

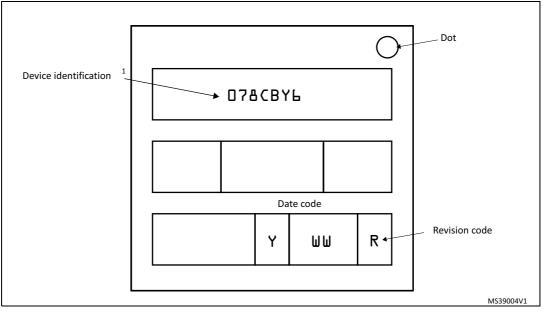

Figure 36. UFBGA100 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.2 LQFP100 package information

LQFP100 is a100-pin, 14 x 14 mm low-profile quad flat package.

1. Drawing is not to scale.

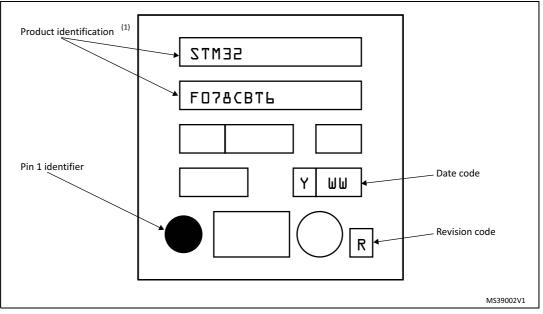

Symbol		millimeters			inches ⁽¹⁾	
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

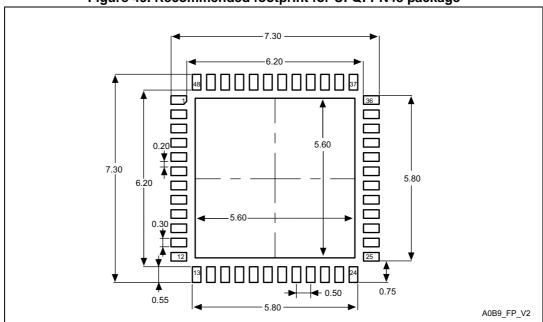
Figure 44. WLCSP49 package marking example


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.


1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Symbol		millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 75. UFQFPN48 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. Recommended footprint for UFQFPN48 package

1. Dimensions are expressed in millimeters.

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Example:	STM32	F	078	R	В	Т	6	x
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
F = General-purpose								
Sub-family								
078 = STM32F078xx								
Pin count								
C = 48/49 pins								
R = 64 pins								
V = 100 pins								
User code memory size								
B = 128 Kbyte								
Package								
H = UFBGA								
T = LQFP								
U = UFQFPN								
Y = WLCSP								
Temperature range								
6 = -40 to 85 °C							_	
7 = -40 to 105 °C								
Options								

xxx = code ID of programmed parts (includes packing type) TR = tape and reel packing blank = tray packing

