

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Bluetooth, Brown-out Detect/Reset, Cap Sense, DMA LCD, LVD, POR, PWM, SmartCard, SmartSense, WDT
Number of I/O	36
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	76-UFBGA, WLCSP
Supplier Device Package	76-WLCSP (4.04×3.87)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4248fni-bl583t

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Functional Definition	5
CPU and Memory Subsystem	5
System Resources	5
BLE Radio and Subsystem	6
Analog Blocks	7
Programmable Digital	8
Fixed-Function Digital	9
GPIO	9
Special-Function Peripherals	
Pinouts	11
Power	
Development Support	
Documentation	
Online	
Tools	
Electrical Specifications	
Absolute Maximum Ratings	
Device-Level Specifications	

Analog Peripherals	23
Digital Peripherals	27
Memory	
System Resources	
Ordering Information	
Ordering Code Definitions	
Packaging	
WLCSP Compatibility	41
Acronyms	
Document Conventions	45
Units of Measure	45
Revision History	
Sales, Solutions, and Legal Information	47
Worldwide Sales and Design Support	47
Products	47
PSoC® Solutions	47
Cypress Developer Community	
Technical Support	47

Figure 2. Block Diagram

The PSoC 4XX8 BLE 4.2 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM SWD interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debugging.

The PSoC Creator IDE provides fully integrated programming and debugging support for the PSoC 4XX8 BLE 4.2 devices. The SWD interface is fully compatible with industry-standard third-party tools. With the ability to disable debug features, very robust flash protection, and allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, the PSoC 4XX8 BLE 4.2 family provides a level of security not possible with multi-chip application solutions or with microcontrollers. Debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with the new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4XX8 BLE 4.2 with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4XX8 BLE 4.2 allows the customer to make.

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in PSoC 4XX8 BLE 4.2 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher-performance processors such as Cortex-M3 and M4. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and a wakeup interrupt controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to the main processor to be switched off when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a nonmaskable interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes an SWD interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4XX8 BLE 4.2 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4XX8 BLE 4.2 device has a flash module with either 128 KB or 256 KB of flash memory, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 2 wait-state (WS) access time at 48 MHz and with 1-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required. Maximum erase and program time is 20 ms per row (256 bytes). This also applies to the emulated EEPROM.

SRAM

SRAM memory is retained during Hibernate.

SROM

The 8-KB supervisory ROM contains a library of executable functions for flash programming. These functions are accessed through supervisory calls (SVC) and enable in-system programming of the flash memory.

DMA

A DMA engine, with eight channels, is provided that can do 32-bit transfers and has chainable ping-pong descriptors.

System Resources

Power System

The power system is described in detail in the section Power on page 16. It provides an assurance that the voltage levels are as required for the respective modes, and can either delay the mode entry (on power-on reset (POR), for example) until voltage levels are as required or generate resets (brownout detect (BOD)) or interrupts when the power supply reaches a particular programmable level between 1.8 and 4.5 V (low voltage detect (LVD)).

PSoC 4XX8 BLE 4.2 operates with a single external supply (1.71 to 5.5 V without radio, and 1.9 V to 5.5 V with radio). The device has five different power modes; transitions between these modes are managed by the power system. PSoC 4XX8 BLE 4.2 provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes. Refer to the *Technical Reference Manual* for more details.

Clock System

The PSoC 4XX8 BLE 4.2 clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no metastable conditions occur.

The clock system for PSoC 4XX8 BLE 4.2 consists of the internal main oscillator (IMO), the internal low-speed oscillator (ILO), the 24-MHz external crystal oscillator (ECO) and the 32-kHz watch crystal oscillator (WCO). In addition, an external clock may be supplied from a pin.

IMO Clock Source

The IMO is the primary source of internal clocking in PSoC 4XX8 BLE 4.2. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 to 48 MHz in steps of 1 MHz. The IMO tolerance with Cypress-provided calibration settings is $\pm 2\%$.

ILO Clock Source

The ILO is a very low-power oscillator, which is primarily used to generate clocks for the peripheral operation in the Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

External Crystal Oscillator (ECO)

The ECO is used as the active clock for the BLE subsystem to meet the \pm 50-ppm clock accuracy of the Bluetooth 4.2 Specification. PSoC 4XX8 BLE 4.2 includes a tunable load capacitor to tune the crystal clock frequency by measuring the actual clock frequency. The high-accuracy ECO clock can also be used as a system clock.

Watch Crystal Oscillator (WCO)

The WCO is used as the sleep clock for the BLE subsystem to meet the \pm 500-ppm clock accuracy for the Bluetooth 4.2 Specification. The sleep clock provides an accurate sleep timing and enables wakeup at the specified advertisement and connection intervals. The WCO output can be used to realize the real-time clock (RTC) function in firmware.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO or from the WCO; this allows the watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register. With the WCO and firmware, an accurate real-time clock (within the bounds of the 32-kHz crystal accuracy) can be realized.

FCO HFCLK Divide 2^{n} (n=0..3) Prescaler SYSCLK Divider 0 IMO (/16) PER0_CLK EXTCLK . Divider 9 (/16) Fractional Divider 0 (/16.5) PER15 CLK Fractional WCO Divider 1 (/16.5) LFCLK

Figure 3. PSoC 4XX8 BLE 4.2 MCU Clocking Architecture

The HFCLK signal can be divided down (see Figure 3) to generate synchronous clocks for the UDBs, and the analog and digital peripherals. There are a total of 12 clock dividers for PSoC 4XX8 BLE 4.2: ten with 16-bit divide capability and two with 16.5-bit divide capability. This allows the generation of 16 divided clock signals, which can be used by peripheral blocks. The analog clock leads the digital clocks to allow analog events to occur before the digital clock-related noise is generated. The 16-bit and 16.5-bit dividers allow a lot of flexibility in generating fine-grained frequency values and are fully supported in PSoC Creator.

Reset

PSoC 4XX8 BLE 4.2 device can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through resets and allows the software to determine the cause of the reset. An XRES pin is reserved for an external reset to avoid complications with the configuration and multiple pin functions during power-on or reconfiguration. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4XX8 BLE 4.2 reference system generates all internally required references. A one-percent voltage reference spec is provided for the 12-bit ADC. To allow better signal-to-noise ratios (SNR) and better absolute accuracy, it is possible to bypass the internal reference using a GPIO pin or use an external reference for the SAR. Refer to Table 19, "SAR ADC AC Specifications," on page 26 for details.

BLE Radio and Subsystem

PSoC 4XX8 BLE 4.2 incorporates a Bluetooth Smart subsystem that contains the Physical Layer (PHY) and Link Layer (LL) engines with an embedded AES-128 security engine. The physical layer consists of the digital PHY and the RF transceiver that transmits and receives GFSK packets at 1 Mbps over a 2.4-GHz ISM band, which is compliant with Bluetooth Smart Bluetooth Specification 4.2. The baseband controller is a composite hardware and firmware implementation that supports both master and slave modes. Key protocol elements, such as HCI and link control, are implemented in firmware. Time-critical functional blocks, such as encryption, CRC, data whitening, and access code correlation, are implemented in hardware (in the LL engine).

The RF transceiver contains an integrated balun, which provides a single-ended RF port pin to drive a 50- Ω antenna via a matching/filtering network. In the receive direction, this block converts the RF signal from the antenna to a digital bit stream after performing GFSK demodulation. In the transmit direction, this block performs GFSK modulation and then converts a digital baseband signal to a radio frequency before transmitting it to air through the antenna.

The Bluetooth Smart Radio and Subsystem (BLESS) requires a 1.9-V minimum supply (the range varies from 1.9 V to 5.5 V).

Key features of BLESS are as follows:

- Master and slave single-mode protocol stack with logical link control and adaptation protocol (L2CAP), attribute (ATT), and security manager (SM) protocols
- API access to generic attribute profile (GATT), generic access profile (GAP), and L2CAP
- L2CAP connection-oriented channel
- GAP features
 - Broadcaster, Observer, Peripheral, and Central roles
 - □ Security mode 1: Level 1, 2, 3, and 4
 - □ Security mode 2: Level 1 and 2
 - □ User-defined advertising data
 - Multiple bond support
- GATT features
 - □ GATT client and server
 - Supports GATT sub-procedures
 - □ 32-bit universally unique identifier (UUID)
- Security Manager (SM)
 - Pairing methods: Just works, Passkey Entry, Out of Band and Numeric Comparison
 - Authenticated man-in-the-middle (MITM) protection and data signing
 - □ LE Secure Connections (Bluetooth 4.2 feature)
- Link Layer (LL)
 - Master and Slave roles
 - □ 128-bit AES engine
 - Encryption
 - Low-duty cycle advertising
 - D LE Ping
 - D LE Data Packet Length Extension (Bluetooth 4.2 feature)
 - Link Layer Privacy (with extended scanning filter policy, Bluetooth 4.2 feature)
- Supports all SIG-adopted BLE profiles

Analog Blocks

12-bit SAR ADC

The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion (up to 806 Ksps for the PSoC 41X8 BLE derivatives).

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to $\pm 1\%$) and by providing the choice of three internal voltage references, V_{DD} , $V_{DD}/2$, and V_{REF} (nominally 1.024 V), as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable; it allows the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. System performance will be 65 dB for true 12-bit precision provided appropriate references are used and system noise levels permit it. To improve the performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through the selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is the buffering of each channel to reduce CPU interrupt-service requirements. To accommodate signals with varying source impedances and frequencies, it is possible to have different sample times programmable for each channel. Also, the signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-chip temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 to 5.5 V.

Opamps (CTBm Block)

PSoC 42X8_BLE has four opamps with Comparator modes, which allow most common analog functions to be performed on-chip, eliminating external components. PGAs, voltage buffers, filters, transimpedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the sample-and-hold circuit of the ADC without requiring external buffering.

Temperature Sensor

PSoC 4XX8 BLE 4.2 has an on-chip temperature sensor. This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected

to the ADC, which digitizes the reading and produces a temperature value by using a Cypress-supplied software that includes calibration and linearization.

Low-Power Comparators

PSoC 4XX8 BLE 4.2 has a pair of low-power comparators, which can also operate in Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator-switch event.

Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

The PSoC 4XX8 BLE 4.2 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control.

Figure 5. UDB Array

UDBs can be clocked from a clock-divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows a faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 6).

Figure 6. Port Interface

UDBs can generate interrupts (one UDB at a time) to the interrupt controller. UDBs retain the ability to connect to any pin on the chip through the DSI.

Special-Function Peripherals

LCD Segment Drive

PSoC 4XX8 BLE 4.2 has an LCD controller, which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

The digital correlation method modulates the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

The PWM method drives the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep mode, refreshing a small display buffer (four bits; one 32-bit register per port).

CapSense

CapSense is supported on all pins in PSoC 4XX8 BLE 4.2 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A Component is provided for the CapSense block to make it easy for the user.

The shield voltage can be driven on another mux bus to provide liquid-tolerance capability. Liquid tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without liquid tolerance (one IDAC is available).

Pinouts

Table 1 shows the pin list for the PSoC 4XX8 BLE 4.2 device. Port 3 consists of the high-speed analog inputs for the SAR mux. All pins support CSD CapSense and analog mux bus connections.

PRELIMINARY

Table 1. PSoC 4XX8 BLE 4.2 Pin List (QFN Package)

Pin	Name	Туре	Description		
1	VDDD	POWER	1.71-V to 5.5-V digital supply		
2	XTAL320/P6.0	CLOCK	32.768-kHz crystal		
3	XTAL32I/P6.1	CLOCK	32.768-kHz crystal or external clock input		
4	XRES	RESET	Reset, active LOW		
5	P4.0	GPIO	Port 4 Pin 0, lcd, csd		
6	P4.1	GPIO	Port 4 Pin 1, lcd, csd		
7	P5.0	GPIO	Port 5 Pin 0, lcd, csd		
8	P5.1	GPIO	Port 5 Pin 1, lcd, csd		
9	VSSD	GROUND	Digital ground		
10	VDDR	POWER	1.9-V to 5.5-V radio supply		
11	GANT1	GROUND	Antenna shielding ground		
12	ANT	ANTENNA	Antenna pin		
13	GANT2	GROUND	Antenna shielding ground		
14	VDDR	POWER	1.9-V to 5.5-V radio supply		
15	VDDR	POWER	1.9-V to 5.5-V radio supply		
16	XTAL24I	CLOCK	24-MHz crystal or external clock input		
17	XTAL24O	CLOCK	24-MHz crystal		
18	VDDR	POWER	1.9-V to 5.5-V radio supply		
19	P0.0	GPIO	Port 0 Pin 0, Icd, csd		
20	P0.1	GPIO	Port 0 Pin 1, lcd, csd		
21	P0.2	GPIO	Port 0 Pin 2, lcd, csd		
22	P0.3	GPIO	Port 0 Pin 3, Icd, csd		
23	VDDD	POWER	1.71-V to 5.5-V digital supply		
24	P0.4	GPIO	Port 0 Pin 4, Icd, csd		
25	P0.5	GPIO	Port 0 Pin 5, Icd, csd		
26	P0.6	GPIO	Port 0 Pin 6, Icd, csd		
27	P0.7	GPIO	Port 0 Pin 7, Icd, csd		
28	P1.0	GPIO	Port 1 Pin 0, Icd, csd		
29	P1.1	GPIO	Port 1 Pin 1, lcd, csd		
30	P1.2	GPIO	Port 1 Pin 2, Icd, csd		
31	P1.3	GPIO	Port 1 Pin 3, Icd, csd		
32	P1.4	GPIO	Port 1 Pin 4, Icd, csd		
33	P1.5	GPIO	Port 1 Pin 5, lcd, csd		
34	P1.6	GPIO	Port 1 Pin 6, Icd, csd		
35	P1.7	GPIO	Port 1 Pin 7, lcd, csd		
36	VDDA	POWER	1.71-V to 5.5-V analog supply		
37	P2.0	GPIO	Port 2 Pin 0, Icd, csd		
38	P2.1	GPIO	Port 2 Pin 1, Icd, csd		
39	P2.2	GPIO	Port 2 Pin 2, lcd, csd		

Table 1. PSo			
Pin	Name	Туре	

Pin	Name	Туре	Description			
40	P2.3	GPIO	Port 2 Pin 3, lcd, csd			
41	P2.4	GPIO	Port 2 Pin 4, lcd, csd			
42	P2.5	GPIO	Port 2 Pin 5, lcd, csd			
43	P2.6	GPIO	Port 2 Pin 6, lcd, csd			
44	P2.7	GPIO	Port 2 Pin 7, lcd, csd			
45	VREF	REF	1.024-V reference			
46	VDDA	POWER	1.71-V to 5.5-V analog supply			
47	P3.0	GPIO	Port 3 Pin 0, lcd, csd			
48	P3.1	GPIO	Port 3 Pin 1, lcd, csd			
49	P3.2	GPIO	Port 3 Pin 2, Icd, csd			
50	P3.3	GPIO	Port 3 Pin 3, lcd, csd			
51	P3.4	GPIO	Port 3 Pin 4, lcd, csd			
52	P3.5	GPIO	Port 3 Pin 5, lcd, csd			
53	P3.6	GPIO	Port 3 Pin 6, lcd, csd			
54	P3.7	GPIO	Port 3 Pin 7, lcd, csd			
55	VSSA	GROUND	Analog ground			
56	VCCD	POWER	Regulated 1.8-V supply, connect to 1.3-µF capacitor.			
57	EPAD	GROUND	Ground paddle for the QFN package			

Table 2. PSoC 4XX8 BLE 4.2 Pin List (WLCSP Package)

Pin	Name	Туре	Description			
A1	NC	NC	Do not connect			
A2	VREF	REF	1.024-V reference			
A3	VSSA	GROUND	Analog ground			
A4	P3.3	GPIO	Port 3 Pin 3, analog/digital/lcd/csd			
A5	P3.7	GPIO	Port 3 Pin 7, analog/digital/lcd/csd			
A6	VSSD	GROUND	Digital ground			
A7	VSSA	GROUND	Analog ground			
A8	VCCD	POWER	Regulated 1.8-V supply, connect to 1-µF capacitor			
A9	VDDD	POWER	1.71-V to 5.5-V digital supply			
B1	NB	NO BALL	No Ball			
B2	P2.3	GPIO	Port 2 Pin 3, analog/digital/lcd/csd			
B3	VSSA	GROUND	Analog ground			
B4	P2.7	GPIO	Port 2 Pin 7, analog/digital/lcd/csd			
B5	P3.4	GPIO	Port 3 Pin 4, analog/digital/lcd/csd			
B6	P3.5	GPIO	Port 3 Pin 5, analog/digital/lcd/csd			
B7	P3.6	GPIO	Port 3 Pin 6, analog/digital/lcd/csd			
B8	XTAL32I/P6.1	CLOCK	32.768-kHz crystal or external clock input			
B9	XTAL320/P6.0	CLOCK	32.768-kHz crystal			
C1	NC	NC	Do not connect			

Table 2. PSoC 4XX8 BLE 4.2 Pin List (WLCSP Package) (continued)

Pin	Name	Туре	Type Description		
C2	VSSA	GROUND	Analog ground		
C3	P2.2	GPIO	Port 2 Pin 2, analog/digital/lcd/csd		
C4	P2.6	GPIO	Port 2 Pin 6, analog/digital/lcd/csd		
C5	P3.0	GPIO	Port 3 Pin 0, analog/digital/lcd/csd		
C6	P3.1	GPIO	Port 3 Pin 1, analog/digital/lcd/csd		
C7	P3.2	GPIO	Port 3 Pin 2, analog/digital/lcd/csd		
C8	XRES	RESET	Reset, active LOW		
C9	P4.0	GPIO	Port 4 Pin 0, analog/digital/lcd/csd		
D1	NC	NC	Do not connect		
D2	P1.7	GPIO	Port 1 Pin 7, analog/digital/lcd/csd		
D3	VDDA	POWER	1.71-V to 5.5-V analog supply		
D4	P2.0	GPIO	Port 2 Pin 0, analog/digital/lcd/csd		
D5	P2.1	GPIO	Port 2 Pin 1, analog/digital/lcd/csd		
D6	P2.5	GPIO	Port 2 Pin 5, analog/digital/lcd/csd		
D7	VSSD	GROUND	Digital ground		
D8	P4.1	GPIO	Port 4 Pin 1, analog/digital/lcd/csd		
D9	P5.0	GPIO	Port 5 Pin 0, analog/digital/lcd/csd		
E1	NC	NC	Do not connect		
E2	P1.2	GPIO	Port 1 Pin 2, analog/digital/lcd/csd		
E3	P1.3	GPIO	Port 1 Pin 3, analog/digital/lcd/csd		
E4	P1.4	GPIO	Port 1 Pin 4, analog/digital/lcd/csd		
E5	P1.5	GPIO	Port 1 Pin 5, analog/digital/lcd/csd		
E6	P1.6	GPIO	Port 1 Pin 6, analog/digital/lcd/csd		
E7	P2.4	GPIO	Port 2 Pin 4, analog/digital/lcd/csd		
E8	P5.1	GPIO	Port 5 Pin 1, analog/digital/lcd/csd		
E9	VSSD	GROUND	Digital ground		
F1	NC	NC	Do not connect		
F2	VSSD	GROUND	Digital ground		
F3	P0.7	GPIO	Port 0 Pin 7, analog/digital/lcd/csd		
F4	P0.3	GPIO	Port 0 Pin 3, analog/digital/lcd/csd		
F5	P1.0	GPIO	Port 1 Pin 0, analog/digital/lcd/csd		
F6	P1.1	GPIO	Port 1 Pin 1, analog/digital/lcd/csd		
F7	VSSR	GROUND	Radio ground		
F8	VSSR	GROUND	Radio ground		
F9	VDDR	POWER	1.9-V to 5.5-V radio supply		
G1	NC	NC	Do not connect		
G2	P0.6	GPIO	Port 0 Pin 6, analog/digital/lcd/csd		
G3	VDDD	POWER	1.71-V to 5.5-V digital supply		
G4	P0.2	GPIO	Port 0 Pin 2, analog/digital/lcd/csd		
G5	VSSD	GROUND	Digital ground		

The selection of peripheral function for different GPIO pins is given in Table 4.

Table 4. Port Pin Connections

Nomo	Analog		Digital							
Name	Analog	GPIO	Active #0	Active #1	Active #2	Deep Sleep #0	Deep Sleep #1			
P0.0	COMP0_INP	GPIO	TCPWM0_P[3]	SCB1_UART_RX[1]	-	SCB1_I2C_SDA[1]	SCB1_SPI_MOSI[1]			
P0.1	COMP0_INN	GPIO	TCPWM0_N[3]	SCB1_UART_TX[1]	-	SCB1_I2C_SCL[1]	SCB1_SPI_MISO[1]			
P0.2	-	GPIO	TCPWM1_P[3]	SCB1_UART_RTS[1]	-	COMP0_OUT[0]	SCB1_SPI_SS0[1]			
P0.3	-	GPIO	TCPWM1_N[3]	SCB1_UART_CTS[1]	-	COMP1_OUT[0]	SCB1_SPI_SCLK[1]			
P0.4	COMP1_INP	GPIO	TCPWM1_P[0]	SCB0_UART_RX[1]	EXT_CLK[0]/ ECO_OUT[0]	SCB0_I2C_SDA[1]	SCB0_SPI_MOSI[1]			
P0.5	COMP1_INN	GPIO	TCPWM1_N[0]	SCB0_UART_TX[1]	-	SCB0_I2C_SCL[1]	SCB0_SPI_MISO[1]			
P0.6	-	GPIO	TCPWM2_P[0]	SCB0_UART_RTS[1]	-	SWDIO[0]	SCB0_SPI_SS0[1]			
P0.7	-	GPIO	TCPWM2_N[0]	SCB0_UART_CTS[1]	-	SWDCLK[0]	SCB0_SPI_SCLK[1]			
P1.0	CTBm1_OA0_INP	GPIO	TCPWM0_P[1]	-	-	COMP0_OUT[1]	WCO_OUT[2]			
P1.1	CTBm1_OA0_INN	GPIO	TCPWM0_N[1]	-	-	COMP1_OUT[1]	SCB1_SPI_SS1			
P1.2	CTBm1_OA0_OUT	GPIO	TCPWM1_P[1]	-			SCB1_SPI_SS2			
P1.3	CTBm1_OA1_OUT	GPIO	TCPWM1_N[1]	-	-	-	SCB1_SPI_SS3			
P1.4	CTBm1_OA1_INN	GPIO	TCPWM2_P[1]	SCB0_UART_RX[0]	-	SCB0_I2C_SDA[0]	SCB0_SPI_MOSI[1]			
P1.5	CTBm1_OA1_INP	GPIO	TCPWM2_N[1]	SCB0_UART_TX[0]	-	SCB0_I2C_SCL[0]	SCB0_SPI_MISO[1]			
P1.6	CTBm1_OA0_INP	GPIO	TCPWM3_P[1]	SCB0_UART_RTS[0]	-	-	SCB0_SPI_SS0[1]			
P1.7	CTBm1_OA1_INP	GPIO	TCPWM3_N[1]	SCB0_UART_CTS[0]	-	-	SCB0_SPI_SCLK[1]			
P2.0	CTBm0_OA0_INP	GPIO	-	-	-	-	SCB0_SPI_SS1			
P2.1	CTBm0_OA0_INN	GPIO	-	-	-	-	SCB0_SPI_SS2			
P2.2	CTBm0_OA0_OUT	GPIO	-	-	-	WAKEUP	SCB0_SPI_SS3			
P2.3	CTBm0_OA1_OUT	GPIO	-	-	-	-	WCO_OUT[1]			
P2.4	CTBm0_OA1_INN	GPIO	-	-	-	-	-			
P2.5	CTBm0_OA1_INP	GPIO	-	-	-	-	-			
P2.6	CTBm0_OA0_INP	GPIO	-	-	-	-	-			
P2.7	CTBm0_OA1_INP	GPIO	-	-	EXT_CLK[1]/ECO_OUT[1]	-	-			
P3.0	SARMUX_0	GPIO	TCPWM0_P[2]	SCB0_UART_RX[2]	-	SCB0_I2C_SDA[2]	-			
P3.1	SARMUX_1	GPIO	TCPWM0_N[2]	SCB0_UART_TX[2]	-	SCB0_I2C_SCL[2]	-			
P3.2	SARMUX_2	GPIO	TCPWM1_P[2]	SCB0_UART_RTS[2]	-	-	-			
P3.3	SARMUX_3	GPIO	TCPWM1_N[2]	SCB0_UART_CTS[2]	-	-	-			
P3.4	SARMUX_4	GPIO	TCPWM2_P[2]	SCB1_UART_RX[2]	-	SCB1_I2C_SDA[2]	-			
P3.5	SARMUX_5	GPIO	TCPWM2_N[2]	SCB1_UART_TX[2]	-	SCB1_I2C_SCL[2]	-			
P3.6	SARMUX_6	GPIO	TCPWM3_P[2]	SCB1_UART_RTS[2]	-	-	-			
P3.7	SARMUX_7	GPIO	TCPWM3_N[2]	SCB1_UART_CTS[2]	-	-	WCO_OUT[0]			
P4.0	CMOD	GPIO	TCPWM0_P[0]	SCB1_UART_RTS[0]	-	-	SCB1_SPI_MOSI[0]			
P4.1	CTANK	GPIO	TCPWM0_N[0]	SCB1_UART_CTS[0]	-	-	SCB1_SPI_MISO[0]			
P5.0	-	GPIO	TCPWM3_P[0]	SCB1_UART_RX[0]	EXTPA_EN	SCB1_I2C_SDA[0]	SCB1_SPI_SS0[0]			
P5.1	-	GPIO	TCPWM3_N[0]	SCB1_UART_TX[0]	EXT_CLK[2]/ECO_OUT[2]	SCB1_I2C_SCL[0]	SCB1_SPI_SCLK[0]			
P6.0_XTAL32O	-	GPIO	-	-	-	-	_			
P6.1_XTAL32I	-	GPIO	-	-	-	-	-			

PRELIMINARY

Table 15. Comparator DC Specifications^[3] (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID150	I _{CMP3}	Block current in ultra low-power mode	_	6	_	μA	V _{DDD} ≥ 2.6 V for Temp < 0°C, V _{DDD} ≥ 1.8 V for Temp > 0 °C
SID151	Z _{CMP}	DC input impedance of comparator	35	_	-	MΩ	-

Table 16. Comparator AC Specifications^[4]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID152	T _{RESP1}	Response time, normal mode, 50-mV overdrive	_	38	-	ns	50-mV overdrive
SID153	T _{RESP2}	Response time, low power mode, 50-mV overdrive	_	70	_	ns	50-mV overdrive
SID154	T _{RESP3}	Response time, ultra-low-power mode, 50-mV overdrive	-	2.3	_	μs	200-mV overdrive. $V_{DDD} \ge 2.6 V$ for Temp < 0°C, $V_{DDD} \ge 1.8 V$ for Temp > 0 °C

Temperature Sensor

Table 17. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID155	T _{SENSACC}	Temperature sensor accuracy	-5	±1	5	°C	–40 to +85 °C

SAR ADC

Table 18. SAR ADC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID156	A_RES	Resolution	-	-	12	bits	-
SID157	A_CHNIS_S	Number of channels - single-ended	-	-	8	-	8 full-speed
SID158	A-CHNKS_D	Number of channels - differential	_	_	4	-	Diff inputs use neighboring I/O
SID159	A-MONO	Monotonicity	-	-	-	-	Yes
SID160	A_GAINERR	Gain error	_	_	±0.1	%	With external reference.
SID161	A_OFFSET	Input offset voltage	_	_	2	mV	Measured with 1-V V _{REF}
SID162	A_ISAR	Current consumption	-	-	1	mA	-
SID163	A_VINS	Input voltage range - single-ended	V _{SS}	-	V _{DDA}	V	-
SID164	A_VIND	Input voltage range - differential	V _{SS}	-	V _{DDA}	V	-
SID165	A_INRES	Input resistance	-	-	2.2	kΩ	_
SID166	A_INCAP	Input capacitance	_	-	10	pF	-
SID312	VREFSAR	Trimmed internal reference to SAR	-1	_	1	%	Percentage of Vbg (1.024-V)

Note

ULP LCOMP operating conditions:
 - V_{DDD} 2.6 V-5.5 V for datasheet temp range < 0 °C
 - V_{DDD} 1.8 V-5.5 V for datasheet temp range ≥ 0 °C

Table 38. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID250	T _{ROWWRITE} ^[5]	Row (block) write time (erase and program)	_	_	20	ms	Row (block) = 256 bytes
SID251	T _{ROWERASE} ^[5]	Row erase time	-	_	13	ms	-
SID252	T _{ROWPROGRAM} ^[5]	Row program time after erase	-	-	7	ms	-
SID253	T _{BULKERASE} ^[5]	Bulk erase time (256 KB)	-	-	35	ms	-
SID254	T _{DEVPROG} ^[5]	Total device program time	-	-	50	seconds	For 256 KB
SID255	F _{END}	Flash endurance	100 K	_	-	cycles	_
SID256	F _{RET}	Flash retention. $T_A \le 55 \text{ °C}$, 100 K P/E cycles	20	_	_	years	-
SID257	F _{RET2}	Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	_	years	_

PRELIMINARY

System Resources

Power-on-Reset (POR)

Table 39. POR DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID258	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	_
SID259	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.40	V	_
SID260	VIPORHYST	Hysteresis	15	—	200	mV	_

Table 40. POR AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID264	T _{PPOR_TR}	PPOR response time in Active and Sleep modes	_	-	1	μs	-

Table 41. Brown-Out Detect

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID261	V _{FALLPPOR}	BOD trip voltage in Active and Sleep modes	1.64	_	_	V	-
SID262	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep mode	1.4	-	-	V	-

Table 42. Hibernate Reset

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID263	V _{HBRTRIP}	BOD trip voltage in Hibernate mode	1.1	1	1	V	-

Note

^{5.} It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Voltage Monitors

Table 43. Voltage Monitor DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID265	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	-
SID266	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	-
SID267	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	-
SID268	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	-
SID269	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	-
SID270	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	-
SID271	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	-
SID272	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	-
SID273	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	-
SID274	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	-
SID2705	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	-
SID276	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	-
SID277	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	-
SID278	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	-
SID279	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	-
SID280	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	-
SID281	LVI_IDD	Block current	_	_	100	μA	-

PRELIMINARY

Table 44. Voltage Monitor AC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID282	T _{MONTRIP}	Voltage monitor trip time	-	-	1	μs	_

SWD Interface

Table 45. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID283	F_SWDCLK1	$3.3~V \leq V_{DD} \leq 5.5~V$	_	-	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID284	F_SWDCLK2	$1.71 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}$	_	_	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID285	T_SWDI_SETUP	T = 1/f SWDCLK	0.25 × T	-	-	ns	-
SID286	T_SWDI_HOLD	T = 1/f SWDCLK	0.25 × T	-	_	ns	-
SID287	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5 × T	ns	-
SID288	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	-	ns	-

Internal Main Oscillator

Table 46. IMO DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID289	I _{IMO1}	IMO operating current at 48 MHz	-	-	1000	μA	-
SID290	I _{IMO2}	IMO operating current at 24 MHz	-	-	325	μA	-
SID291	I _{IMO3}	IMO operating current at 12 MHz	-	-	225	μA	-
SID292	I _{IMO4}	IMO operating current at 6 MHz	-	-	180	μA	-
SID293	I _{IMO5}	IMO operating current at 3 MHz	-	-	150	μA	-

Table 47. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID296	F _{IMOTOL3}	Frequency variation from 3 to 48 MHz	-	-	±2	%	With API-called calibration
SID297	F _{IMOTOL3}	IMO startup time	-	-	12	μs	-

PRELIMINARY

Internal Low-Speed Oscillator

Table 48. ILO DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID298	I _{ILO2}	ILO operating current at 32 kHz	_	0.3	1.05	μA	_

Table 49. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID299	T _{STARTILO1}	ILO startup time	-	-	2	ms	-
SID300	F _{ILOTRIM1}	32-kHz trimmed frequency	15	32	50	kHz	-

Table 50. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID301	ExtClkFreq	External clock input frequency	0	-	48	MHz	CMOS input level only
SID302	ExtClkDuty	Duty cycle; Measured at $V_{DD/2}$	45	-	55	%	CMOS input level only

Table 51. UDB AC Specifications

Spec ID	Parameter	Description	Details/Conditions				
Data Path							
SID303	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	_	-	48	MHz	-
SID304	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	Hz –				
SID305	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	_				
PLD Perfor							
SID306	F _{MAX_PLD}	Max frequency of 2-pass PLD function in a UDB pair	-				
Clock to Output Performance							
SID307	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out at 25 °C, Typical	_	15	_	ns	-
SID308	T _{CLK_OUT_UDB2}	Prop. delay for clock in to data out, Worst case	_	25	_	ns	_

Table 52. BLE Subsystem (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions				
SID356	RXSE2	Receiver spurious emission 1.0 GHz to 12.75 GHz	_	_	-47	dBm	1-MHz measurement bandwidth ETSI EN300 328 V1.8.1				
RF Transn	nitter Specificatio	ns									
SID357	TXP, ACC	RF power accuracy	_	±4	-	dB	-				
SID358	TXP, RANGE	RF power control range	_	20	-	dB	-				
SID359	TXP, 0dBm	Output power, 0-dB Gain setting (PA7)	_	0	-	dBm	-				
SID360	TXP, MAX	Output power, maximum power setting (PA10)	-	3	-	dBm	-				
SID361	TXP, MIN	Output power, minimum power setting (PA1)	-	-18	-	dBm	-				
SID362	F2AVG	Average frequency deviation for 10101010 pattern	185	-	-	kHz	RF-PHY Specification (TRM-LE/CA/05/C)				
SID363	F1AVG	Average frequency deviation for 11110000 pattern	225	250	275	kHz	RF-PHY Specification (TRM-LE/CA/05/C)				
SID364	EO	Eye opening = Δ F2AVG/ Δ F1AVG	0.8	_	-		RF-PHY Specification (TRM-LE/CA/05/C)				
SID365	FTX, ACC	Frequency accuracy	-150	-	– 150 kHz		RF-PHY Specification (TRM-LE/CA/06/C)				
SID366	FTX, MAXDR	Maximum frequency drift	-50	-	50	kHz	RF-PHY Specification (TRM-LE/CA/06/C)				
SID367	FTX, INITDR	Initial frequency drift	-20	-	20	kHz	RF-PHY Specification (TRM-LE/CA/06/C)				
SID368	FTX, DR	Maximum drift rate	-20	-	20	kHz/ 50 μs	RF-PHY Specification (TRM-LE/CA/06/C)				
SID369	IBSE1	In-band spurious emission at 2-MHz offset	-	-	-20	dBm	RF-PHY Specification (TRM-LE/CA/03/C)				
SID370	IBSE2	In-band spurious emission at ≥3-MHz offset	-	-	-30	dBm	RF-PHY Specification (TRM-LE/CA/03/C)				
SID371	TXSE1	Transmitter spurious emissions (average), <1.0 GHz	-	-	-55.5	dBm	FCC-15.247				
SID372	TXSE2	Transmitter spurious emissions (average), >1.0 GHz	_	_	-41.5	dBm	FCC-15.247				
RF Curren	t Specifications										
SID373	IRX	Receive current in normal mode	_	18.7	-	mA	-				
SID373A	IRX_RF	Radio receive current in normal mode	-	16.4	-	mA	Measured at V _{DDR}				
SID374	IRX, HIGHGAIN	Receive current in high-gain mode	-	21.5	-	mA	-				
SID375	ITX, 3dBm	TX current at 3-dBm setting (PA10)	-	20	-	mA	-				
SID376	ITX, 0dBm	TX current at 0-dBm setting (PA7)	-	16.5	-	mA	-				
SID376A	ITX_RF, 0dBm	Radio TX current at 0 dBm setting (PA7)	-	15.6	-	mA	Measured at V _{DDR}				
SID376B	ITX_RF, 0dBm	Radio TX current at 0 dBm excluding Balun loss	– 14.2 – mA Guaranteed by des								
SID377	ITX,-3dBm	TX current at –3-dBm setting (PA4)	_	15.5	-	mA	-				

Ordering Information

The PSoC 4XX8 BLE 4.2 part numbers and features are listed in Table 55. Table 55. PSoC 4XXX8_BLE Part Numbers

		Features																
Family	NAW	Max CPU Speed (MHz)	BLE sub-system	Flash (KB)	SRAM (KB)	UDB	Op-amp	CapSense	TMG (Gestures)	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	PWMs (using UDBs)	12S (using UDB)	GPIO	Package
	CY8C4128LQI-BL543	24	\checkmark	256	32	-	2	-	-	-	806 Ksps	-	4	2	NA		36	QFN
	CY8C4128FNI-BL543	24	\checkmark	256	32	-	2	-	-	-	806 Ksps	-	4	2			36	CSP
	CY8C4128LQI-BL573	24	\checkmark	256	32	-	2	-	-	-	806 Ksps	2	4	2			36	QFN
$\dot{\cdot}$	CY8C4128FNI-BL573	24	\checkmark	256	32	-	2	-	-	-	806 Ksps	2	4	2			36	CSP
X20	CY8C4128LQI-BL553	24	\checkmark	256	32	-	2	\checkmark	-	-	806 Ksps	2	4	2			36	QFN
4 L 1 X 1 X	CY8C4128FNI-BL553	24	\checkmark	256	32	-	2	\checkmark	-	-	806 Ksps	2	4	2			36	CSP
4 % 0 0	CY8C4128LQI-BL563	24	\checkmark	256	32	-	2	-	-	\checkmark	806 Ksps	2	4	2			36	QFN
ပွပ်	CY8C4128FNI-BL563	24	\checkmark	256	32	-	2	-	-	\checkmark	806 Ksps	2	4	2			36	CSP
PS	CY8C4128LQI-BL583	24	\checkmark	256	32	-	2	\checkmark	-	\checkmark	806 Ksps	2	4	2			36	QFN
	CY8C4128FNI-BL583	24	\checkmark	256	32	-	2	\checkmark	-	\checkmark	806 Ksps	2	4	2			36	CSP
	CY8C4128LQI-BL593	24	\checkmark	256	32	-	2	\checkmark	\checkmark	\checkmark	806 Ksps	2	4	2			36	QFN
	CY8C4128FNI-BL593	24	\checkmark	256	32	-	2	\checkmark	\checkmark	\checkmark	806 Ksps	2	4	2			36	CSP
	CY8C4248LQI-BL543	48	\checkmark	256	32	-	2	-	-	-	1 Msps	-	4	2	-	-	36	QFN
	CY8C4248FNI-BL543	48	\checkmark	256	32	-	2	-	-	-	1 Msps	-	4	2	-	-	36	CSP
	CY8C4248LQI-BL573	48	\checkmark	256	32	4	4	-	-	-	1 Msps	2	4	2	4	\checkmark	36	QFN
	CY8C4248FNI-BL573	48	\checkmark	256	32	4	4	-	-	-	1 Msps	2	4	2	4	\checkmark	36	CSP
	CY8C4248LQI-BL553	48	\checkmark	256	32	4	4	\checkmark	-	-	1 Msps	2	4	2	4	\checkmark	36	QFN
ž	CY8C4248FNI-BL553	48	\checkmark	256	32	4	4	\checkmark	-	-	1 Msps	2	4	2	4	\checkmark	36	CSP
256 XX	CY8C4248LQI-BL563	48	\checkmark	256	32	4	4	-	-	\checkmark	1 Msps	2	4	2	4	\checkmark	36	QFN
C42 C42	CY8C4248FNI-BL563	48	\checkmark	256	32	4	4	-	-	\checkmark	1 Msps	2	4	2	4	\checkmark	36	CSP
14 I Y8	CY8C4248LQI-BL583	48	\checkmark	256	32	4	4	\checkmark	-	\checkmark	1 Msps	2	4	2	4	\checkmark	36	QFN
Soc	CY8C4248FNI-BL583	48	\checkmark	256	32	4	4	\checkmark	-		1 Msps	2	4	2	4	\checkmark	36	CSP
ĕ	CY8C4248FLI-BL583	48	V	256	32	4	4	V	-	V	1 Msps	2	4	2	4	V	36	Thin CSP
	CY8C4248LQQ-BL583	48	\checkmark	256	32	4	4	\checkmark	-		1 Msps	2	4	2	4	\checkmark	36	QFN
	CY8C4248FNQ-BL583	48	\checkmark	256	32	4	4	\checkmark	-	\checkmark	1 Msps	2	4	2	4	\checkmark	36	CSP
	CY8C4248LQI-BL593	48	\checkmark	256	32	4	4	\checkmark	\checkmark	\checkmark	1 Msps	2	4	2	4	\checkmark	36	QFN
	CY8C4248FNI-BL593	48		256	32	4	4		\checkmark		1 Msps	2	4	2	4	\checkmark	36	CSP

PRELIMINARY

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

WLCSP Compatibility

The PSoC 4XXX_BLE family has products with 128 KB (16KB SRAM) and 256 KB (32KB SRAM) Flash. Package pin-outs and sizes are identical for the 56-pin QFN package but are different in one dimension for the 68-ball WLCSP.

PRELIMINARY

The 256KB Flash product has an extra column of balls which are required for mechanical integrity purposes in the Chip-Scale package. With consideration for this difference, the land pattern on the PCB may be designed such that either product may be used with no change to the PCB design.

Figure 9 shows the 128KB and 256 KB Flash CSP packages.

The rightmost column of (all NC, No Connect) balls in the 256K BLE WLCSP is for mechanical integrity purposes. The package is thus wider (3.2 mm versus 2.8 mm). All other dimensions are identical. Cypress will provide layout symbols for PCB layout.

The scheme in Figure 9 is implemented to design the PCB for the 256K BLE package with the appropriate space requirements thus allowing use of either package at a later time without redesigning the Printed Circuit Board.

PRELIMINARY

Document Conventions

Units of Measure

Table 61. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2015-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware provided units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system sonal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-09848 Rev. *B