

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Bluetooth, Brown-out Detect/Reset, Cap Sense, DMA LCD, LVD, POR, PWM, SmartCard, SmartSense, WDT
Number of I/O	36
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	56-UFQFN Exposed Pad
Supplier Device Package	56-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4248lqi-bl583t

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at http://www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the introduction page for Bluetooth® Low Energy (BLE) Products. Following is an abbreviated list for PRoC BLE:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PRoC BLE, PSoC 4 BLE, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application Notes: Cypress offers a large number of PSoC application notes coverting a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PRoC BLE are:
- □ AN94020: Getting Started with PRoC BLE
- □ AN97060: PSoC 4 BLE and PRoC BLE Over-The-Air (OTA) Device Firmware Upgrade (DFU) Guide
- □ AN91184: PSoC 4 BLE Designing BLE Applications
- □ AN91162: Creating a BLE Custom Profile
- □ AN91445: Antenna Design and RF Layout Guidelines
- □ AN96841: Getting Started With EZ-BLE Module
- □ AN85951: PSoC 4 CapSense Design Guide

- AN95089: PSoC 4/PRoC BLE Crystal Oscillator Selection and Tuning Techniques
- AN92584: Designing for Low Power and Estimating Battery Life for BLE Applications
- Technical Reference Manual (TRM) is in two documents:

Architecture TRM details each PRoC BLE functional block

Registers TRM describes each of the PRoC BLE registers

- Development Kits:
 - CY8CKIT-042-BLE Pioneer Kit, is a flexible, Arduino-compatible, Bluetooth LE development kit for PSoC 4 BLE and PRoC BLE.
 - CY5676, PRoC BLE 256KB Module, features a PRoC BLE 256KB device, two crystals for the antenna matching network, a PCB antenna and other passives, while providing access to all GPIOs of the device.
 - CY8CKIT-142, PSoC 4 BLE Module, features a PSoC 4 BLE device, two crystals for the antenna matching network, a PCB antenna and other passives, while providing access to all GPIOs of the device.
 - CY8CKIT-143, PSoC 4 BLE 256KB Module, features a PSoC 4 BLE 256KB device, two crystals for the antenna matching network, a PCB antenna and other passives, while providing access to all GPIOs of the device.
 - The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator Contents n e 🔒 . · . 西·古乡13 琴美,M Closed-Loop Temperature Sensors and Fans Analog Temperature Sensing ۰ (External to PSoC) Vhigh_0_4 C1.00 En Features PWM output of 54 Number of banks: 0 tandi tanki tanki tanki tanti 25 kHz • 5000 5000 General Description Datasheet Apply Cancel ach2 ach3

Document Number: 002-09848 Rev. *B

Contents

Functional Definition	5
CPU and Memory Subsystem	5
System Resources	
BLE Radio and Subsystem	
Analog Blocks	7
Programmable Digital	8
Fixed-Function Digital	9
GPIO	9
Special-Function Peripherals	
Pinouts	11
Power	
Development Support	
Documentation	17
Online	
Tools	
Electrical Specifications	
Absolute Maximum Ratings	
Device-Level Specifications	

Analog Peripherals	23
Digital Peripherals	
Memory	
System Resources	
Ordering Information	
Ordering Code Definitions	
Packaging	
WLCSP Compatibility	41
Acronyms	
Document Conventions	45
Units of Measure	45
Revision History	
Sales, Solutions, and Legal Information	47
Worldwide Sales and Design Support	47
Products	47
PSoC® Solutions	47
Cypress Developer Community	
Technical Support	

FCO HFCLK Divide 2^{n} (n=0..3) Prescaler SYSCLK Divider 0 IMO (/16) PER0_CLK EXTCLK . Divider 9 (/16) Fractional Divider 0 (/16.5) PER15 CLK Fractional WCO Divider 1 (/16.5) LFCLK

Figure 3. PSoC 4XX8 BLE 4.2 MCU Clocking Architecture

The HFCLK signal can be divided down (see Figure 3) to generate synchronous clocks for the UDBs, and the analog and digital peripherals. There are a total of 12 clock dividers for PSoC 4XX8 BLE 4.2: ten with 16-bit divide capability and two with 16.5-bit divide capability. This allows the generation of 16 divided clock signals, which can be used by peripheral blocks. The analog clock leads the digital clocks to allow analog events to occur before the digital clock-related noise is generated. The 16-bit and 16.5-bit dividers allow a lot of flexibility in generating fine-grained frequency values and are fully supported in PSoC Creator.

Reset

PSoC 4XX8 BLE 4.2 device can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through resets and allows the software to determine the cause of the reset. An XRES pin is reserved for an external reset to avoid complications with the configuration and multiple pin functions during power-on or reconfiguration. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4XX8 BLE 4.2 reference system generates all internally required references. A one-percent voltage reference spec is provided for the 12-bit ADC. To allow better signal-to-noise ratios (SNR) and better absolute accuracy, it is possible to bypass the internal reference using a GPIO pin or use an external reference for the SAR. Refer to Table 19, "SAR ADC AC Specifications," on page 26 for details.

BLE Radio and Subsystem

PSoC 4XX8 BLE 4.2 incorporates a Bluetooth Smart subsystem that contains the Physical Layer (PHY) and Link Layer (LL) engines with an embedded AES-128 security engine. The physical layer consists of the digital PHY and the RF transceiver that transmits and receives GFSK packets at 1 Mbps over a 2.4-GHz ISM band, which is compliant with Bluetooth Smart Bluetooth Specification 4.2. The baseband controller is a composite hardware and firmware implementation that supports both master and slave modes. Key protocol elements, such as HCI and link control, are implemented in firmware. Time-critical functional blocks, such as encryption, CRC, data whitening, and access code correlation, are implemented in hardware (in the LL engine).

The RF transceiver contains an integrated balun, which provides a single-ended RF port pin to drive a 50- Ω antenna via a matching/filtering network. In the receive direction, this block converts the RF signal from the antenna to a digital bit stream after performing GFSK demodulation. In the transmit direction, this block performs GFSK modulation and then converts a digital baseband signal to a radio frequency before transmitting it to air through the antenna.

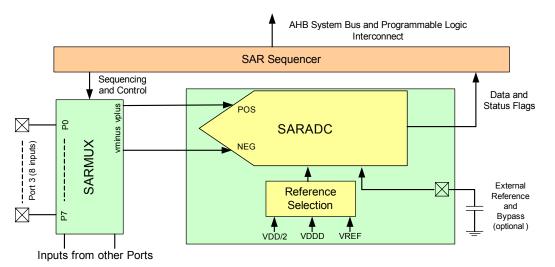
The Bluetooth Smart Radio and Subsystem (BLESS) requires a 1.9-V minimum supply (the range varies from 1.9 V to 5.5 V).

Key features of BLESS are as follows:

- Master and slave single-mode protocol stack with logical link control and adaptation protocol (L2CAP), attribute (ATT), and security manager (SM) protocols
- API access to generic attribute profile (GATT), generic access profile (GAP), and L2CAP
- L2CAP connection-oriented channel
- GAP features
 - Broadcaster, Observer, Peripheral, and Central roles
 - □ Security mode 1: Level 1, 2, 3, and 4
 - □ Security mode 2: Level 1 and 2
 - □ User-defined advertising data
 - Multiple bond support
- GATT features
 - □ GATT client and server
 - Supports GATT sub-procedures
 - □ 32-bit universally unique identifier (UUID)
- Security Manager (SM)
 - Pairing methods: Just works, Passkey Entry, Out of Band and Numeric Comparison
 - Authenticated man-in-the-middle (MITM) protection and data signing
 - □ LE Secure Connections (Bluetooth 4.2 feature)
- Link Layer (LL)
 - Master and Slave roles
 - □ 128-bit AES engine
 - Encryption
 - Low-duty cycle advertising
 - D LE Ping
 - D LE Data Packet Length Extension (Bluetooth 4.2 feature)
 - Link Layer Privacy (with extended scanning filter policy, Bluetooth 4.2 feature)
- Supports all SIG-adopted BLE profiles

Analog Blocks

12-bit SAR ADC


The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion (up to 806 Ksps for the PSoC 41X8 BLE derivatives).

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to $\pm 1\%$) and by providing the choice of three internal voltage references, V_{DD} , $V_{DD}/2$, and V_{REF} (nominally 1.024 V), as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable; it allows the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. System performance will be 65 dB for true 12-bit precision provided appropriate references are used and system noise levels permit it. To improve the performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through the selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is the buffering of each channel to reduce CPU interrupt-service requirements. To accommodate signals with varying source impedances and frequencies, it is possible to have different sample times programmable for each channel. Also, the signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-chip temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 to 5.5 V.

Opamps (CTBm Block)

PSoC 42X8_BLE has four opamps with Comparator modes, which allow most common analog functions to be performed on-chip, eliminating external components. PGAs, voltage buffers, filters, transimpedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the sample-and-hold circuit of the ADC without requiring external buffering.

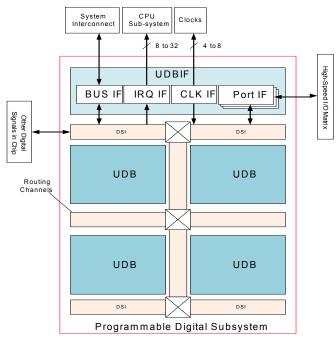
Temperature Sensor

PSoC 4XX8 BLE 4.2 has an on-chip temperature sensor. This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected

to the ADC, which digitizes the reading and produces a temperature value by using a Cypress-supplied software that includes calibration and linearization.

Low-Power Comparators

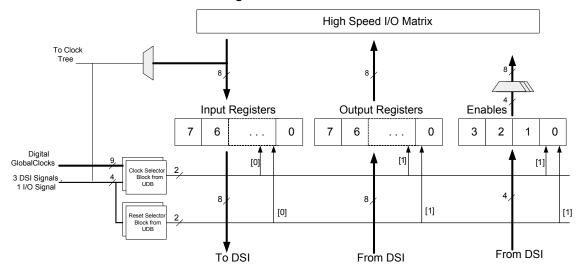
PSoC 4XX8 BLE 4.2 has a pair of low-power comparators, which can also operate in Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator-switch event.



Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

The PSoC 4XX8 BLE 4.2 has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control.


Figure 5. UDB Array

UDBs can be clocked from a clock-divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows a faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs (see Figure 6).

Figure 6. Port Interface

UDBs can generate interrupts (one UDB at a time) to the interrupt controller. UDBs retain the ability to connect to any pin on the chip through the DSI.

Fixed-Function Digital

Timer/Counter/PWM Block

The timer/counter/PWM block consists of four 16-bit counters with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow the use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor-drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention.

Serial Communication Blocks (SCB)

PSoC 4XX8 BLE 4.2 has two SCBs, each of which can implement an $\mathsf{I}^2\mathsf{C},$ UART, or SPI interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce the interrupt overhead and latency for the CPU. It also supports EzI²C that creates a mailbox address range in the memory of PSoC 4XX8 BLE 4.2 and effectively reduces the I²C communication to reading from and writing to an array in the memory. In addition, the block supports an 8-deep FIFO for receive and transmit, which, by increasing the time given for the CPU to read the data, greatly reduces the need for clock stretching caused by the CPU not having read the data on time. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with I²C Standard-mode, Fast-mode, and Fast-Mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

SCB1 is fully compliant with Standard mode (100 kHz), Fast mode (400 kHz), and Fast-Mode Plus (1 MHz) I²C signaling specifications when routed to GPIO pins P5[0] and P5[1], except for hot-swap capability during I²C active communication. The remaining GPIOs do not meet the hot-swap specification (V_{DD} off; draw < 10- μ A current) for Fast mode and Fast-Mode Plus, I_{OL} Spec (20 mA) for Fast-Mode Plus, hysteresis spec (0.05 V_{DD}) for Fast mode and Fast-Mode Plus, and minimum fall time spec for Fast mode and Fast-Mode Plus.

- GPIO cells, including P5.0 and P5.1, cannot be hot-swapped or powered up independent of the rest of the I²C system.
- The GPIO pins P5.0 and P5.1 are over-voltage tolerant but cannot be hot-swapped or powered up independent of the rest of the I²C system
- Fast-Mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8 mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-Mode Plus specify minimum Fall times, which are not met with the GPIO cell; the Slow-Strong mode can help meet this spec depending on the bus load.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated. Note that hardware handshaking is not supported. This is not commonly used and can be implemented with a UDB-based UART in the system, if required.

SPI Mode: The SPI mode supports full Motorola SPI, TI Secure Simple Pairing (SSP) (essentially adds a start pulse that is used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and supports an EzSPI mode in which the data interchange is reduced to reading and writing an array in memory.

GPIO

PSoC 4XX8 BLE 4.2 has 36 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - Analog input mode (input and output buffers disabled)
 - □ Input only
 - □ Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up with strong pull-down
- Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Pins 0 and 1 of Port 5 are overvoltage-tolerant pins
- Individual control of input and output buffer enabling/disabling in addition to drive-strength modes
- Hold mode for latching previous state (used for retaining the I/O state in Deep Sleep and Hibernate modes)
- Selectable slew rates for dV/dt-related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix (HSIOM) is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity (these signals do not go through the DSI network). DSI signals are not affected by this and any pin may be routed to any UDB through the DSI network.

Data output and pin-state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4XX8 BLE 4.2).

Table 1. PSoC 4XX8 BLE 4.2 Pin List (QFN Package) (continued)						
	Pin	Name	Туре			
	10	D 0.0	0010			

Pin	Name	Туре	Description
40	P2.3	GPIO	Port 2 Pin 3, lcd, csd
41	P2.4	GPIO	Port 2 Pin 4, lcd, csd
42	P2.5	GPIO	Port 2 Pin 5, lcd, csd
43	P2.6	GPIO	Port 2 Pin 6, lcd, csd
44	P2.7	GPIO	Port 2 Pin 7, lcd, csd
45	VREF	REF	1.024-V reference
46	VDDA	POWER	1.71-V to 5.5-V analog supply
47	P3.0	GPIO	Port 3 Pin 0, lcd, csd
48	P3.1	GPIO	Port 3 Pin 1, lcd, csd
49	P3.2	GPIO	Port 3 Pin 2, lcd, csd
50	P3.3	GPIO	Port 3 Pin 3, lcd, csd
51	P3.4	GPIO	Port 3 Pin 4, lcd, csd
52	P3.5	GPIO	Port 3 Pin 5, lcd, csd
53	P3.6	GPIO	Port 3 Pin 6, lcd, csd
54	P3.7	GPIO	Port 3 Pin 7, lcd, csd
55	VSSA	GROUND	Analog ground
56	VCCD	POWER	Regulated 1.8-V supply, connect to 1.3-µF capacitor.
57	EPAD	GROUND	Ground paddle for the QFN package

Table 2. PSoC 4XX8 BLE 4.2 Pin List (WLCSP Package)

Pin	Name	Туре	Description			
A1	NC	NC	Do not connect			
A2	VREF	REF	1.024-V reference			
A3	VSSA	GROUND	Analog ground			
A4	P3.3	GPIO	Port 3 Pin 3, analog/digital/lcd/csd			
A5	P3.7	GPIO	Port 3 Pin 7, analog/digital/lcd/csd			
A6	VSSD	GROUND	Digital ground			
A7	VSSA	GROUND	Analog ground			
A8	VCCD	POWER	Regulated 1.8-V supply, connect to 1-µF capacitor			
A9	VDDD	POWER	1.71-V to 5.5-V digital supply			
B1	NB	NO BALL	No Ball			
B2	P2.3	GPIO	Port 2 Pin 3, analog/digital/lcd/csd			
B3	VSSA	GROUND	Analog ground			
B4	P2.7	GPIO	Port 2 Pin 7, analog/digital/lcd/csd			
B5	P3.4	GPIO	Port 3 Pin 4, analog/digital/lcd/csd			
B6	P3.5	GPIO	Port 3 Pin 5, analog/digital/lcd/csd			
B7	P3.6	GPIO	Port 3 Pin 6, analog/digital/lcd/csd			
B8	XTAL32I/P6.1	CLOCK	32.768-kHz crystal or external clock input			
B9	XTAL320/P6.0	CLOCK	32.768-kHz crystal			
C1	NC	NC	Do not connect			

Table 2. PSoC 4XX8 BLE 4.2 Pin List (WLCSP Package) (continued)

Pin	Name	Туре	Description	
C2	VSSA	GROUND	Analog ground	
C3	P2.2	GPIO	Port 2 Pin 2, analog/digital/lcd/csd	
C4	P2.6	GPIO	Port 2 Pin 6, analog/digital/lcd/csd	
C5	P3.0	GPIO	Port 3 Pin 0, analog/digital/lcd/csd	
C6	P3.1	GPIO	Port 3 Pin 1, analog/digital/lcd/csd	
C7	P3.2	GPIO	Port 3 Pin 2, analog/digital/lcd/csd	
C8	XRES	RESET	Reset, active LOW	
C9	P4.0	GPIO	Port 4 Pin 0, analog/digital/lcd/csd	
D1	NC	NC	Do not connect	
D2	P1.7	GPIO	Port 1 Pin 7, analog/digital/lcd/csd	
D3	VDDA	POWER	1.71-V to 5.5-V analog supply	
D4	P2.0	GPIO	Port 2 Pin 0, analog/digital/lcd/csd	
D5	P2.1	GPIO	Port 2 Pin 1, analog/digital/lcd/csd	
D6	P2.5	GPIO	Port 2 Pin 5, analog/digital/lcd/csd	
D7	VSSD	GROUND	Digital ground	
D8	P4.1	GPIO	Port 4 Pin 1, analog/digital/lcd/csd	
D9	P5.0	GPIO	Port 5 Pin 0, analog/digital/lcd/csd	
E1	NC	NC	Do not connect	
E2	P1.2	GPIO	Port 1 Pin 2, analog/digital/lcd/csd	
E3	P1.3	GPIO	Port 1 Pin 3, analog/digital/lcd/csd	
E4	P1.4	GPIO	Port 1 Pin 4, analog/digital/lcd/csd	
E5	P1.5	GPIO	Port 1 Pin 5, analog/digital/lcd/csd	
E6	P1.6	GPIO	Port 1 Pin 6, analog/digital/lcd/csd	
E7	P2.4	GPIO	Port 2 Pin 4, analog/digital/lcd/csd	
E8	P5.1	GPIO	Port 5 Pin 1, analog/digital/lcd/csd	
E9	VSSD	GROUND	Digital ground	
F1	NC	NC	Do not connect	
F2	VSSD	GROUND	Digital ground	
F3	P0.7	GPIO	Port 0 Pin 7, analog/digital/lcd/csd	
F4	P0.3	GPIO	Port 0 Pin 3, analog/digital/lcd/csd	
F5	P1.0	GPIO	Port 1 Pin 0, analog/digital/lcd/csd	
F6	P1.1	GPIO	Port 1 Pin 1, analog/digital/lcd/csd	
F7	VSSR	GROUND	Radio ground	
F8	VSSR	GROUND	Radio ground	
F9	VDDR	POWER	1.9-V to 5.5-V radio supply	
G1	NC	NC	Do not connect	
G2	P0.6	GPIO	Port 0 Pin 6, analog/digital/lcd/csd	
G3	VDDD	POWER	1.71-V to 5.5-V digital supply	
G4	P0.2	GPIO	Port 0 Pin 2, analog/digital/lcd/csd	
G5	VSSD	GROUND	Digital ground	

The selection of peripheral function for different GPIO pins is given in Table 4.

Table 4. Port Pin Connections

Name	Angler	Digital							
Name	Analog	GPIO Active #0		Active #1	Active #2	Deep Sleep #0	Deep Sleep #1		
P0.0	COMP0_INP	GPIO	TCPWM0_P[3]	SCB1_UART_RX[1]	-	SCB1_I2C_SDA[1]	SCB1_SPI_MOSI[1]		
P0.1	COMP0_INN	GPIO	TCPWM0_N[3]	SCB1_UART_TX[1]	-	SCB1_I2C_SCL[1]	SCB1_SPI_MISO[1]		
P0.2	-	GPIO	TCPWM1_P[3]	SCB1_UART_RTS[1]	-	COMP0_OUT[0]	SCB1_SPI_SS0[1]		
P0.3	-	GPIO	TCPWM1_N[3]	SCB1_UART_CTS[1]	-	COMP1_OUT[0]	SCB1_SPI_SCLK[1]		
P0.4	COMP1_INP	GPIO	TCPWM1_P[0]	SCB0_UART_RX[1]	EXT_CLK[0]/ ECO_OUT[0]	SCB0_I2C_SDA[1]	SCB0_SPI_MOSI[1]		
P0.5	COMP1_INN	GPIO	TCPWM1_N[0]	SCB0_UART_TX[1]	- SCB0_I2C_SCL[1]		SCB0_SPI_MISO[1]		
P0.6	-	GPIO	TCPWM2_P[0]	SCB0_UART_RTS[1]	-	SWDIO[0]	SCB0_SPI_SS0[1]		
P0.7	-	GPIO	TCPWM2_N[0]	SCB0_UART_CTS[1]	-	SWDCLK[0]	SCB0_SPI_SCLK[1]		
P1.0	CTBm1_OA0_INP	GPIO	TCPWM0_P[1]	-	-	COMP0_OUT[1]	WCO_OUT[2]		
P1.1	CTBm1_OA0_INN	GPIO	TCPWM0_N[1]	-	-	COMP1_OUT[1]	SCB1_SPI_SS1		
P1.2	CTBm1_OA0_OUT	GPIO	TCPWM1_P[1]	-	-	-	SCB1_SPI_SS2		
P1.3	CTBm1_OA1_OUT	GPIO	TCPWM1_N[1]	-	-	-	SCB1_SPI_SS3		
P1.4	CTBm1_OA1_INN	GPIO	TCPWM2_P[1]	SCB0_UART_RX[0]	-	SCB0_I2C_SDA[0]	SCB0_SPI_MOSI[1]		
P1.5	CTBm1_OA1_INP	GPIO	TCPWM2_N[1]	SCB0_UART_TX[0]	-	SCB0_I2C_SCL[0]	SCB0_SPI_MISO[1]		
P1.6	CTBm1_OA0_INP	GPIO	TCPWM3_P[1]	SCB0_UART_RTS[0]	-	-	SCB0_SPI_SS0[1]		
P1.7	CTBm1_OA1_INP	GPIO	TCPWM3_N[1]	SCB0_UART_CTS[0]	-	-	SCB0_SPI_SCLK[1]		
P2.0	CTBm0_OA0_INP	GPIO	-	-	-	-	SCB0_SPI_SS1		
P2.1	CTBm0_OA0_INN	GPIO	-	-	-	-	SCB0_SPI_SS2		
P2.2	CTBm0_OA0_OUT	GPIO	-	-	-	WAKEUP	SCB0_SPI_SS3		
P2.3	CTBm0_OA1_OUT	GPIO	-	-	-	-	WCO_OUT[1]		
P2.4	CTBm0_OA1_INN	GPIO	-	-	-	-	-		
P2.5	CTBm0_OA1_INP	GPIO	-	-	-	-	-		
P2.6	CTBm0_OA0_INP	GPIO	-	-	-	-	-		
P2.7	CTBm0_OA1_INP	GPIO	-	-	EXT_CLK[1]/ECO_OUT[1]	-	-		
P3.0	SARMUX_0	GPIO	TCPWM0_P[2]	SCB0_UART_RX[2]	-	SCB0_I2C_SDA[2]	-		
P3.1	SARMUX_1	GPIO	TCPWM0_N[2]	SCB0_UART_TX[2]	-	SCB0_I2C_SCL[2]	-		
P3.2	SARMUX_2	GPIO	TCPWM1_P[2]	SCB0_UART_RTS[2]	-	-	-		
P3.3	SARMUX_3	GPIO	TCPWM1_N[2]	SCB0_UART_CTS[2]	-	-	-		
P3.4	SARMUX_4	GPIO	TCPWM2_P[2]	SCB1_UART_RX[2]	-	SCB1_I2C_SDA[2]	-		
P3.5	SARMUX_5	GPIO	TCPWM2_N[2]	SCB1_UART_TX[2]	-	SCB1_I2C_SCL[2]	-		
P3.6	SARMUX_6	GPIO	TCPWM3_P[2]	SCB1_UART_RTS[2]	-	-	-		
P3.7	SARMUX_7	GPIO	TCPWM3_N[2]	SCB1_UART_CTS[2]			WCO_OUT[0]		
P4.0	CMOD	GPIO	TCPWM0_P[0]	SCB1_UART_RTS[0]	-	-	SCB1_SPI_MOSI[0]		
P4.1	CTANK	GPIO	TCPWM0_N[0]	SCB1_UART_CTS[0]	-	-	SCB1_SPI_MISO[0]		
P5.0	-	GPIO	TCPWM3_P[0]	SCB1_UART_RX[0]	EXTPA_EN	SCB1_I2C_SDA[0]	SCB1_SPI_SS0[0]		
P5.1	-	GPIO	TCPWM3_N[0]	SCB1_UART_TX[0]	EXT_CLK[2]/ECO_OUT[2]	SCB1_I2C_SCL[0]	SCB1_SPI_SCLK[0]		
P6.0_XTAL32O	-	GPIO	-	-	-	-	-		
P6.1_XTAL32I	-	GPIO	-	_	-	_	-		

PRELIMINARY

Table 6. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions	
SID41	I _{DD31}	GPIO and reset active	-	_	_	nA	T = 25 °C	
SID42	I _{DD32}	GPIO and reset active	-	-	-	nA	T = -40 °C to 85 °C	
Stop Mode,	V _{DD} = 1.8 to 3	3.6 V						
SID43	I _{DD33}	Stop mode current (V _{DD})	-	20	-	nA	T = 25 °C, V _{DD} = 3.3 V	
SID44	I _{DD34}	Stop mode current (V _{DDR})	_	40		nA	T = 25 °C, V _{DDR} = 3.3 V	
SID45	I _{DD35}	Stop mode current (V _{DD})	-	_	-	nA	T = -40 °C to 85 °C	
SID46	I _{DD36}	Stop mode current (V _{DDR})	_	_	_	nA	T = -40 °C to 85 °C, V _{DDR} = 1.9 V to 3.6 V	
Stop Mode,	V _{DD} = 3.6 to \$	5.5 V						
SID47	I _{DD37}	Stop mode current (V _{DD})	-	-	_	nA	T = 25 °C, V _{DD} = 5 V	
SID48	I _{DD38}	Stop mode current (V _{DDR})	-	-	_	nA	T = 25 °C, V _{DDR} = 5 V	
SID49	I _{DD39}	Stop mode current (V _{DD})	-	_	-	nA	T = -40 °C to 85 °C	
SID50	I _{DD40}	Stop mode current (V _{DDR})	_	_	_	nA	T = -40 °C to 85 °C	
Stop Mode,	Stop Mode, V _{DD} = 1.71 to 1.89 V (Regulator Bypassed)							
SID51	I _{DD41}	Stop mode current (V _{DD})	-	-	_	nA	T = 25 °C	
SID52	I _{DD42}	Stop mode current (V _{DD})	-	_	_	nA	T = -40 °C to 85 °C	

Table 7. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID53	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71~V \leq V_{DD} \leq 5.5~V$
SID54	T _{SLEEP}	Wakeup from Sleep mode	_	0	_	μs	Guaranteed by characterization
SID55	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	_	_	25	μs	24-MHz IMO. Guaranteed by characterization.
SID56	T _{HIBERNATE}	Wakeup from Hibernate mode	_	_	0.7	ms	Guaranteed by characterization
SID57	T _{STOP}	Wakeup from Stop mode	_	_	2.2	ms	Guaranteed by characterization

Table 14. O	pamp Specifica	tions (continued)
-------------	----------------	-------------------

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID122	V _{N3}	Input referred, 10-kHz, power = high	_	28	-	nV/rtHz	_
SID123	V _{N4}	Input referred, 100-kHz, power = high	_	15	_	nV/rtHz	-
SID124	C _{LOAD}	Stable up to maximum load. Perfor- mance specs at 50 pF	-	-	125	pF	_
SID125	Slew_rate	Cload = 50 pF, Power = High, $V_{DDA} \ge 2.7 V$	6	-	_	V/µsec	_
SID126	T_op_wake	From disable to enable, no external RC dominating	-	300	-	µsec	_
Comp_mo	de (Comparator	Mode; 50-mV Drive, T _{RISE} = T _{FALL} (App	orox.)				
SID127	T _{PD1}	Response time; power = high	_	150	_	nsec	-
SID128	T _{PD2}	Response time; power = medium	_	400	-	nsec	-
SID129	T _{PD3}	Response time; power = low	_	2000	-	nsec	-
SID130	Vhyst_op	Hysteresis	_	10	-	mV	-
Deep Slee	o (Deep Sleep m	ode operation is only guaranteed for V	_{DDA} > 2.5	V)			
SID131	GBW_DS	Gain bandwidth product	_	50	-	kHz	-
SID132	IDD_DS	Current	_	15	-	μA	-
SID133	Vos_DS	Offset voltage	_	5	-	mV	_
SID134	Vos_dr_DS	Offset voltage drift	_	20	-	µV/°C	_
SID135	Vout_DS	Output voltage	0.2	-	V _{DD} -0.2	V	_
SID136	Vcm_DS	Common mode voltage	0.2	-	V _{DD} -1.8	V	_

Table 15. Comparator DC Specifications^[3]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID140	V _{OFFSET1}	Input offset voltage, Factory trim	_	-	±10	mV	-
SID141	V _{OFFSET2}	Input offset voltage, Custom trim	-	-	±6	mV	-
SID141A	V _{OFFSET3}	Input offset voltage, ultra-low-power mode	-	±12	-	mV	V _{DDD} ≥ 2.6 V for Temp < 0°C, V _{DDD} ≥ 1.8 V for Temp > 0 °C
SID142	V _{HYST}	Hysteresis when enabled. Common Mode voltage range from 0 to VDD –1	-	10	35	mV	-
SID143	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} -0.1	V	Modes 1 and 2
SID144	V _{ICM2}	Input common mode voltage in low power mode	0	-	V _{DDD}	V	-
SID145	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} -1.15	V	V _{DDD} ≥ 2.6 V for Temp < 0°C, V _{DDD} ≥ 1.8 V for Temp > 0 °C
SID146	CMRR	Common mode rejection ratio	50	-	-	dB	V _{DDD} ≥ 2.7 V
SID147	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} ≤ 2.7 V
SID148	I _{CMP1}	Block current, normal mode	_	-	400	μA	-
SID149	I _{CMP2}	Block current, low power mode	_	-	100	μA	-

Table 15. Comparator DC Specifications^[3] (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID150	I _{CMP3}	Block current in ultra low-power mode	_	6	-	μA	V _{DDD} ≥ 2.6 V for Temp < 0°C, V _{DDD} ≥ 1.8 V for Temp > 0 °C
SID151	Z _{CMP}	DC input impedance of comparator	35	-	—	MΩ	-

Table 16. Comparator AC Specifications^[4]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID152	T _{RESP1}	Response time, normal mode, 50-mV overdrive	-	38	-	ns	50-mV overdrive
SID153	T _{RESP2}	Response time, low power mode, 50-mV overdrive	_	70	_	ns	50-mV overdrive
SID154	T _{RESP3}	Response time, ultra-low-power mode, 50-mV overdrive	_	2.3	_	μs	200-mV overdrive. $V_{DDD} \ge 2.6 V$ for Temp < 0°C, $V_{DDD} \ge 1.8 V$ for Temp > 0 °C

Temperature Sensor

Table 17. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID155	T _{SENSACC}	Temperature sensor accuracy	-5	±1	5	°C	–40 to +85 °C

SAR ADC

Table 18. SAR ADC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID156	A_RES	Resolution	-	—	12	bits	-
SID157	A_CHNIS_S	Number of channels - single-ended	-	—	8	-	8 full-speed
SID158	A-CHNKS_D	Number of channels - differential	-	-	4	-	Diff inputs use neighboring I/O
SID159	A-MONO	Monotonicity	-	—	-	-	Yes
SID160	A_GAINERR	Gain error	-	-	±0.1	%	With external reference.
SID161	A_OFFSET	Input offset voltage	-	-	2	mV	Measured with 1-V V _{REF}
SID162	A_ISAR	Current consumption	-	—	1	mA	-
SID163	A_VINS	Input voltage range - single-ended	V _{SS}	-	V _{DDA}	V	-
SID164	A_VIND	Input voltage range - differential	V _{SS}	—	V _{DDA}	V	-
SID165	A_INRES	Input resistance	-	—	2.2	kΩ	-
SID166	A_INCAP	Input capacitance	-	-	10	pF	-
SID312	VREFSAR	Trimmed internal reference to SAR	-1	_	1	%	Percentage of Vbg (1.024-V)

Note

ULP LCOMP operating conditions:
 - V_{DDD} 2.6 V-5.5 V for datasheet temp range < 0 °C
 - V_{DDD} 1.8 V-5.5 V for datasheet temp range ≥ 0 °C

Table 19. SAR ADC AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID167	A_psrr	Power supply rejection ratio	70	-	-	dB	Measured at 1-V reference
SID168	A_cmrr	Common mode rejection ratio	66	-	-	dB	-
SID169	A_samp	Sample rate	_	-	1	Msps	806 Ksps for PSoC 41X8_BLE devices
SID313	Fsarintref	SAR operating speed without external ref. bypass	-	-	100	Ksps	12-bit resolution
SID170	A_snr	Signal-to-noise ratio (SNR)	65	—	-	dB	Fin = 10 kHz
SID171	A_bw	Input bandwidth without aliasing	-	-	A_samp/2	kHz	-
SID172	A_inl	Integral non linearity. V _{DD} = 1.71 to 5.5 V, 1 Msps	-1.7	-	2	LSB	Vref = 1 V to V _{DD}
SID173	A_INL	Integral non linearity. V _{DDD} = 1.71 to 3.6 V, 1 Msps	-1.5	-	1.7	LSB	Vref = 1.71 V to V _{DD}
SID174	A_INL	Integral non linearity. V _{DD} = 1.71 to 5.5 V, 500 Ksps	-1.5	-	1.7	LSB	Vref = 1 V to V _{DD}
SID175	A_dnl	Differential non linearity. V _{DD} = 1.71 to 5.5 V, 1 Msps	-1	-	2.2	LSB	Vref = 1 V to V _{DD}
SID176	A_DNL	Differential non linearity. V _{DD} = 1.71 to 3.6 V, 1 Msps	-1	-	2	LSB	Vref = 1.71 V to V _{DD}
SID177	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5 V, 500 Ksps	-1	-	2.2	LSB	Vref = 1 V to V _{DD}
SID178	A_thd	Total harmonic distortion	_	_	-65	dB	Fin = 10 kHz

PRELIMINARY

CSD

Table 20. CSD Block Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID179	V _{CSD}	Voltage range of operation	1.71	-	5.5	V	_
SID180	IDAC1	DNL for 8-bit resolution	-1	_	1	LSB	_
SID181	IDAC1	INL for 8-bit resolution	-3	_	3	LSB	_
SID182	IDAC2	DNL for 7-bit resolution	-1	_	1	LSB	-
SID183	IDAC2	INL for 7-bit resolution	-3	-	3	LSB	_
SID184	SNR	Ratio of counts of finger to noise	5	_	_	Ratio	Capacitance range of 9 to 35 pF, 0.1 pF sensitivity. Radio is not operating during the scan
SID185	IDAC1_CRT1	Output current of IDAC1 (8 bits) in High range	_	612	_	μA	_
SID186	I _{DAC1_CRT2}	Output current of IDAC1 (8 bits) in Low range	_	306	_	μA	_
SID187	IDAC2_CRT1	Output current of IDAC2 (7 bits) in High range	_	305	_	μA	_
SID188	I _{DAC2_CRT2}	Output current of IDAC2 (7 bits) in Low range	-	153	_	μA	_

Table 26. PWM AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID214	T _{PWMFREQ}	Operating frequency	F _{CLK}	-	48	MHz	-
SID215	T _{PWMPWINT}	Pulse width (internal)	2 × T _{CLK}	_	-	ns	-
SID216	T _{PWMEXT}	Pulse width (external)	2 × T _{CLK}	-	-	ns	-
SID217	T _{PWMKILLINT}	Kill pulse width (internal)	2 × T _{CLK}	_	-	ns	-
SID218	T _{PWMKILLEXT}	Kill pulse width (external)	2 × T _{CLK}	_	-	ns	-
SID219	T _{PWMEINT}	Enable pulse width (internal)	2 × T _{CLK}	-	_	ns	-
SID220	T _{PWMENEXT}	Enable pulse width (external)	2 × T _{CLK}	-	_	ns	-
SID221	T _{PWMRESWINT}	Reset pulse width (internal)	2 × T _{CLK}	_	-	ns	-
SID222	T _{PWMRESWEXT}	Reset pulse width (external)	2 × T _{CLK}	-	_	ns	_

βĈ

Table 27. Fixed I²C DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	I _{I2C1}	Block current consumption at 100 kHz	-	-	50	μΑ	_
SID224	I _{I2C2}	Block current consumption at 400 kHz	-	-	155	μΑ	-
SID225	I _{I2C3}	Block current consumption at 1 Mbps	-	-	390	μA	_
SID226	I _{I2C4}	I ² C enabled in Deep Sleep mode	1		1.4	μA	_

Table 28. Fixed I²C AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID227	F _{I2C1}	Bit rate	_	_	1	Mbps	-

LCD Direct Drive

Table 29. LCD Direct Drive DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID228	I _{LCDLOW}	Operating current in low-power mode	-	17.5	-	μA	16 × 4 small segment display at 50 Hz
SID229	C _{LCDCAP}	LCD capacitance per segment/common driver	_	500	5000	pF	-
SID230	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	-
SID231	I _{LCDOP1}	LCD system operating current V _{BIAS} = 5 V.	-	2	-	mA	32 × 4 segments. 50 Hz at 25 °C
SID232	I _{LCDOP2}	LCD system operating current. V _{BIAS} = 3.3 V	_	2	-	mA	32 × 4 segments 50 Hz at 25 °C

Table 30. LCD Direct Drive AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID233	F _{LCD}	LCD frame rate	10	50	150	Hz	_

Table 31. Fixed UART DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	I _{UART1}	Block current consumption at 100 kbps	-	-	55	μA	-
SID235	I _{UART2}	Block current consumption at 1000 kbps	_	Ι	360	μA	_

Table 38. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions		
SID250	T _{ROWWRITE} ^[5]	Row (block) write time (erase and program)	_	_	20	ms	Row (block) = 256 bytes		
SID251	T _{ROWERASE} ^[5]	Row erase time	-	_	13	ms	-		
SID252	T _{ROWPROGRAM} ^[5]	Row program time after erase	-	_	7	ms	-		
SID253	T _{BULKERASE} ^[5]	Bulk erase time (256 KB)	-	-	35	ms	-		
SID254	T _{DEVPROG} ^[5]	Total device program time	-	-	50	seconds	For 256 KB		
SID255	F _{END}	Flash endurance	100 K	_	-	cycles	-		
SID256	F _{RET}	Flash retention. $T_A \le 55 \text{ °C}$, 100 K P/E cycles	K 20 – – years			years	_		
SID257	F _{RET2}	Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	_	years	_		

PRELIMINARY

System Resources

Power-on-Reset (POR)

Table 39. POR DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID258	V _{RISEIPOR}	Rising trip voltage	0.80	_	1.45	V	-
SID259	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.40	V	_
SID260	VIPORHYST	Hysteresis	15	-	200	mV	_

Table 40. POR AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID264		PPOR response time in Active and Sleep modes	-	-	1	μs	-

Table 41. Brown-Out Detect

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID261	V _{FALLPPOR}	BOD trip voltage in Active and Sleep modes	1.64	-	-	V	_
SID262	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep mode	1.4	-	-	V	-

Table 42. Hibernate Reset

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID263	V _{HBRTRIP}	BOD trip voltage in Hibernate mode	1.1	-	Ι	V	_

Note

^{5.} It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Table 52. BLE Subsystem (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions			
SID356	RXSE2	Receiver spurious emission 1.0 GHz to 12.75 GHz	_	_	-47	dBm	1-MHz measurement bandwidth ETSI EN300 328 V1.8.1			
RF Transn	nitter Specification	ns								
SID357	TXP, ACC	RF power accuracy	-	±4	-	dB	-			
SID358	TXP, RANGE	RF power control range	-	20	-	dB	-			
SID359	TXP, 0dBm	Output power, 0-dB Gain setting (PA7)	-	0	-	dBm	-			
SID360	TXP, MAX	Output power, maximum power setting (PA10)	-	3	-	dBm	-			
SID361	TXP, MIN	Output power, minimum power setting (PA1)	-	-18	-	dBm	_			
SID362	F2AVG	Average frequency deviation for 10101010 pattern	185	-	-	kHz	RF-PHY Specification (TRM-LE/CA/05/C)			
SID363	F1AVG	Average frequency deviation for 11110000 pattern	225	250	275	kHz	RF-PHY Specification (TRM-LE/CA/05/C)			
SID364	EO	Eye opening = Δ F2AVG/ Δ F1AVG	0.8	-	-		RF-PHY Specification (TRM-LE/CA/05/C)			
SID365	FTX, ACC	Frequency accuracy	-150	-	150	kHz	RF-PHY Specification (TRM-LE/CA/06/C)			
SID366	FTX, MAXDR	Maximum frequency drift	-50	-	50	kHz	RF-PHY Specification (TRM-LE/CA/06/C)			
SID367	FTX, INITDR	Initial frequency drift	-20	_	20	kHz	RF-PHY Specification (TRM-LE/CA/06/C)			
SID368	FTX, DR	Maximum drift rate	-20	-	20	kHz/ 50 μs	RF-PHY Specification (TRM-LE/CA/06/C)			
SID369	IBSE1	In-band spurious emission at 2-MHz offset	-	_	-20	dBm	RF-PHY Specification (TRM-LE/CA/03/C)			
SID370	IBSE2	In-band spurious emission at ≥3-MHz offset	-	-	-30	dBm	RF-PHY Specification (TRM-LE/CA/03/C)			
SID371	TXSE1	Transmitter spurious emissions (average), <1.0 GHz	-	-	-55.5	dBm	FCC-15.247			
SID372	TXSE2	Transmitter spurious emissions (average), >1.0 GHz	_	-	-41.5	dBm	FCC-15.247			
RF Curren	t Specifications									
SID373	IRX	Receive current in normal mode	-	18.7	-	mA	-			
SID373A	IRX_RF	Radio receive current in normal mode	-	16.4	-	mA	Measured at V _{DDR}			
SID374	IRX, HIGHGAIN	Receive current in high-gain mode	-	21.5	-	mA	-			
SID375	ITX, 3dBm	TX current at 3-dBm setting (PA10)	-	20	-	mA	_			
SID376	ITX, 0dBm	TX current at 0-dBm setting (PA7)	-	16.5	-	mA	- 1			
SID376A	ITX_RF, 0dBm	Radio TX current at 0 dBm setting (PA7)	Ι	15.6	-	mA	Measured at V _{DDR}			
SID376B	ITX_RF, 0dBm	Radio TX current at 0 dBm excluding Balun loss	Ι	14.2	-	 mA Guaranteed by design simulation 				
SID377	ITX,-3dBm	TX current at –3-dBm setting (PA4)	-	15.5	-	mA	-			

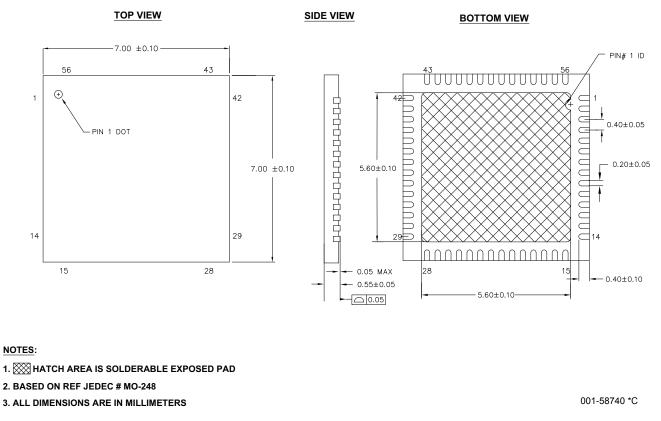
Table 54. WCO Specifications

Spec ID#	Parameter	Description		Тур	Мах	Units	Details/ Conditions			
SID398	F _{WCO}	Crystal frequency	-	32.768	-	kHz	-			
SID399	FTOL	Frequency tolerance	-	50	-	ppm	-			
SID400	ESR	Equivalent series resistance	-	50	-	kΩ	-			
SID401	PD	Drive level	-	-	1	μW	-			
SID402	T _{START}	Startup time	-	-	500	ms	-			
SID403	CL	Crystal load capacitance	6	-	12.5	pF	-			
SID404	C0	Crystal shunt capacitance	-	1.35	-	pF	-			
SID405	I _{WCO1}	Operating current (High-Power mode)	-	-	8	μA	-			
SID406	I _{WCO2}	Operating current (Low-Power mode)	_	_	2.6	μA	A –			

PRELIMINARY

Ordering Information

The PSoC 4XX8 BLE 4.2 part numbers and features are listed in Table 55. Table 55. PSoC 4XXX8_BLE Part Numbers


									Fe	eature	s							
Family	Ndw	Max CPU Speed (MHz)	BLE sub-system	Flash (KB)	SRAM (KB)	UDB	Op-amp	CapSense	TMG (Gestures)	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	PWMs (using UDBs)	I2S (using UDB)	GPIO	Package
	CY8C4128LQI-BL543	24	\checkmark	256	32	1	2	-	-	1	806 Ksps	-	4	2	NA		36	QFN
	CY8C4128FNI-BL543	24	\checkmark	256	32	-	2	-	-	-	806 Ksps	-	4	2			36	CSP
	CY8C4128LQI-BL573	24	\checkmark	256	32	-	2	-	-	-	806 Ksps	2	4	2			36	QFN
·:	CY8C4128FNI-BL573	24	\checkmark	256	32	-	2	-	-	-	806 Ksps	2	4	2			36	CSP
PSoC 4 BLE256K: CY8C41XX	CY8C4128LQI-BL553	24		256	32	-	2	\checkmark	-	-	806 Ksps	2	4	2			36	QFN
41X	CY8C4128FNI-BL553	24		256	32	-	2	\checkmark	-	-	806 Ksps	2	4	2			36	CSP
4 B () 8 ()	CY8C4128LQI-BL563	24		256	32	-	2	-	-	\checkmark	806 Ksps	2	4	2			36	QFN
ပွပ်	CY8C4128FNI-BL563	24		256	32	-	2	-	-		806 Ksps	2	4	2			36	CSP
Ъ	CY8C4128LQI-BL583	24		256	32	-	2	\checkmark	-	\checkmark	806 Ksps	2	4	2			36	QFN
	CY8C4128FNI-BL583	24		256	32	-	2	\checkmark	-	\checkmark	806 Ksps	2	4	2			36	CSP
	CY8C4128LQI-BL593	24		256	32	-	2	\checkmark	\checkmark	\checkmark	806 Ksps	2	4	2			36	QFN
	CY8C4128FNI-BL593	24		256	32	-	2	\checkmark	\checkmark	\checkmark	806 Ksps	2	4	2			36	CSP
	CY8C4248LQI-BL543	48	\checkmark	256	32	-	2	-	-	-	1 Msps	-	4	2	-	-	36	QFN
	CY8C4248FNI-BL543	48	\checkmark	256	32	-	2	-	-	-	1 Msps	-	4	2	-	-	36	CSP
	CY8C4248LQI-BL573	48		256	32	4	4	-	-	-	1 Msps	2	4	2	4	\checkmark	36	QFN
	CY8C4248FNI-BL573	48		256	32	4	4	-	-	-	1 Msps	2	4	2	4	\checkmark	36	CSP
	CY8C4248LQI-BL553	48	\checkmark	256	32	4	4	\checkmark	-	-	1 Msps	2	4	2	4	\checkmark	36	QFN
ÿ	CY8C4248FNI-BL553	48		256	32	4	4	\checkmark	-	-	1 Msps	2	4	2	4	\checkmark	36	CSP
256 XX	CY8C4248LQI-BL563	48		256	32	4	4	-	-	\checkmark	1 Msps	2	4	2	4	\checkmark	36	QFN
3LE 042	CY8C4248FNI-BL563	48	\checkmark	256	32	4	4	-	-	\checkmark	1 Msps	2	4	2	4		36	CSP
, 4 Е У8(CY8C4248LQI-BL583	48	\checkmark	256	32	4	4	\checkmark	-	\checkmark	1 Msps	2	4	2	4	\checkmark	36	QFN
PSoC 4 BLE256K: CY8C42xx	CY8C4248FNI-BL583	48	\checkmark	256	32	4	4	\checkmark	-	\checkmark	1 Msps	2	4	2	4		36	CSP
۹ ۹	CY8C4248FLI-BL583	48	V	256	32	4	4	V	-	V	1 Msps	2	4	2	4	\checkmark	36	Thin CSP
	CY8C4248LQQ-BL583	48		256	32	4	4	\checkmark	-	\checkmark	1 Msps	2	4	2	4	\checkmark	36	QFN
	CY8C4248FNQ-BL583	48	\checkmark	256	32	4	4	\checkmark	-	\checkmark	1 Msps	2	4	2	4	\checkmark	36	CSP
	CY8C4248LQI-BL593	48	\checkmark	256	32	4	4	\checkmark	\checkmark		1 Msps	2	4	2	4	\checkmark	36	QFN
	CY8C4248FNI-BL593	48	\checkmark	256	32	4	4	\checkmark	\checkmark	\checkmark	1 Msps	2	4	2	4	\checkmark	36	CSP

PRELIMINARY

PSoC 4 devices follow the part numbering convention described in the following table. All fields are single-character alphanumeric (0, 1, 2, ..., 9, A,B, ..., Z) unless stated otherwise.

Figure 8. 56-Pin QFN 7 × 7 × 0.6 mm

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance.

PRELIMINARY

Acronyms

Table 60. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 60. Acronyms Used in this Document (continued)

ETMembedded trace macrocellFIRfinite impulse response, see also IIRFPBflash patch and breakpointFSfull-speedGPIOgeneral-purpose input/output, applies to a PSoC pinHVIhigh-voltage interrupt, see also LVI, LVDICintegrated circuitIDACcurrent DAC, see also DAC, VDACIDEintegrated development environmentI²C, or IICInter-Integrated Circuit, a communications protocolIIRinfinite impulse response, see also FIRILOinternal main oscillator, see also ILOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTLlow-voltage interrupt, see also HVILVTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOL<	Acronym	Description
FPBflash patch and breakpointFSfull-speedGPIOgeneral-purpose input/output, applies to a PSoC pinHVIhigh-voltage interrupt, see also LVI, LVDICintegrated circuitIDACcurrent DAC, see also DAC, VDACIDEintegrated development environmentI ² C, or IICInter-Integrated Circuit, a communications protocolIIRinfinite impulse response, see also FIRILOinternal low-speed oscillator, see also IMOIMOinternal main oscillator, see also INOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interrupt controllerNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	ETM	embedded trace macrocell
FSfull-speedGPIOgeneral-purpose input/output, applies to a PSoCHVIhigh-voltage interrupt, see also LVI, LVDICintegrated circuitIDACcurrent DAC, see also DAC, VDACIDEintegrated development environmentI ² C, or IICInter-Integrated Circuit, a communications protocolIIRinfinite impulse response, see also FIRILOinternal low-speed oscillator, see also IMOIMOinternal main oscillator, see also INOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTLlow-cottage interrupt, see also HVILVTLlow-cottage interrupt, see also HVILVTLlow-cottage interrupt, see also HVINACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier<	FIR	finite impulse response, see also IIR
GPIOgeneral-purpose input/output, applies to a PSoC pinHVIhigh-voltage interrupt, see also LVI, LVDICintegrated circuitIDACcurrent DAC, see also DAC, VDACIDEintegrated development environmentI²C, or IICInter-Integrated Circuit, a communications protocolIIRinfinite impulse response, see also FIRILOinternal low-speed oscillator, see also IMOIMOinternal nain oscillator, see also IDOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLoperational amplifier	FPB	flash patch and breakpoint
pinPinHVIhigh-voltage interrupt, see also LVI, LVDICintegrated circuitIDACcurrent DAC, see also DAC, VDACIDEintegrated development environmentI²C, or IICInter-Integrated Circuit, a communications protocolIIRinfinite impulse response, see also FIRILOinternal now-speed oscillator, see also IMOIMOinternal non socillator, see also IMOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	FS	full-speed
ICintegrated circuitIDACcurrent DAC, see also DAC, VDACIDEintegrated development environmentI ² C, or IICInter-Integrated Circuit, a communications protocolIIRinfinite impulse response, see also FIRILOinternal low-speed oscillator, see also IMOIMOinternal main oscillator, see also ILOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlow-voltage detect, see also HVILVDlow-voltage interrupt, see also HVILVTLlow-voltage transistor-transistor logicMAC multiply-accumulatemultiply-accumulateMCU microcontroller unitmoster-in slave-outNC NCnon-return-to-zeroNVIC nested vectored interrupt controllerNVL nonvolatile latch, see also WOLopamp operational amplifier	GPIO	
IDACcurrent DAC, see also DAC, VDACIDEintegrated development environmentI ² C, or IICInter-Integrated Circuit, a communications protocolIIRinfinite impulse response, see also FIRILOinternal low-speed oscillator, see also IMOIMOinternal main oscillator, see also IMOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	HVI	high-voltage interrupt, see also LVI, LVD
IDEintegrated development environmentIPC, or IICInter-Integrated Circuit, a communications protocolIIRinfinite impulse response, see also FIRILOinternal low-speed oscillator, see also IMOIMOinternal main oscillator, see also IMOIMOinternal main oscillator, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	IC	integrated circuit
I ² C, or IICInter-Integrated Circuit, a communications protocolIIRinfinite impulse response, see also FIRILOinternal low-speed oscillator, see also IMOIMOinternal main oscillator, see also ILOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also HVILVTLlow-voltage interrupt, see also HVILVTTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	IDAC	current DAC, see also DAC, VDAC
protocolIIRinfinite impulse response, see also FIRILOinternal low-speed oscillator, see also IMOIMOinternal main oscillator, see also ILOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also HVILVTLlow-voltage interrupt, see also HVILVTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	IDE	integrated development environment
ILOinternal low-speed oscillator, see also IMOIMOinternal main oscillator, see also ILOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTTLlow-controller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLopampoperational amplifier	I ² C, or IIC	
IMOinternal main oscillator, see also ILOINLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	lir	infinite impulse response, see also FIR
INLintegral nonlinearity, see also DNLI/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	ILO	internal low-speed oscillator, see also IMO
I/Oinput/output, see also GPIO, DIO, SIO, USBIOIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	IMO	internal main oscillator, see also ILO
IPORinitial power-on resetIPORinitial power-on resetIPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	INL	integral nonlinearity, see also DNL
IPSRinterrupt program status registerIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVLCnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	I/O	input/output, see also GPIO, DIO, SIO, USBIO
IRQInterrupt requestIRQinterrupt requestITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVLCnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	IPOR	initial power-on reset
ITMinstrumentation trace macrocellLCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVLnonvolatile latch, see also WOLopampoperational amplifier	IPSR	interrupt program status register
LCDliquid crystal displayLINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTIlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	IRQ	interrupt request
LINLocal Interconnect Network, a communications protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTLlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	ITM	instrumentation trace macrocell
protocol.LRlink registerLUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVTIlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	LCD	liquid crystal display
LUTlookup tableLVDlow-voltage detect, see also LVILVIlow-voltage interrupt, see also HVILVIlow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	LIN	
LVDIow-voltage detect, see also LVILVIIow-voltage interrupt, see also HVILVTTLIow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	LR	link register
LVIIow-voltage interrupt, see also HVILVTLIow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	LUT	lookup table
LVTTLIow-voltage transistor-transistor logicMACmultiply-accumulateMCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	LVD	low-voltage detect, see also LVI
MAC multiply-accumulate MCU microcontroller unit MISO master-in slave-out NC no connect NMI nonmaskable interrupt NRZ non-return-to-zero NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier	LVI	low-voltage interrupt, see also HVI
MCUmicrocontroller unitMISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	LVTTL	low-voltage transistor-transistor logic
MISOmaster-in slave-outNCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	MAC	multiply-accumulate
NCno connectNMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	MCU	microcontroller unit
NMInonmaskable interruptNRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	MISO	master-in slave-out
NRZnon-return-to-zeroNVICnested vectored interrupt controllerNVLnonvolatile latch, see also WOLopampoperational amplifier	NC	no connect
NVIC nested vectored interrupt controller NVL nonvolatile latch, see also WOL opamp operational amplifier	NMI	nonmaskable interrupt
NVL nonvolatile latch, see also WOL opamp operational amplifier	NRZ	non-return-to-zero
opamp operational amplifier	NVIC	nested vectored interrupt controller
	NVL	nonvolatile latch, see also WOL
PAL programmable array logic, see also PLD	opamp	operational amplifier
	PAL	programmable array logic, see also PLD