

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	57
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pa32vlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PA60 and PA32.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

MC 9 S08 PA AA B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
MC	Qualification status	MC = fully qualified, general market flow
9	Memory	
S08	Core	• S08 = 8-bit CPU
PA	Device family	• PA
AA	Approximate flash size in KB	• 60 = 60 KB • 32 = 32 KB
В	Temperature range (°C)	• V = -40 to 105

Field	Description	Values
СС	Package designator	 QH = 64-pin QFP LH = 64-pin LQFP LF = 48-pin LQFP LD = 44-pin LQFP LC = 32-pin LQFP

2.4 Example

This is an example part number:

MC9S08PA60VQH

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	– 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

Ratings

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

^{1.} Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Supply voltage	-0.3	5.8	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	V _{DD} + 0.3	V

Symbol	Description	Min.	Max.	Unit
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

^{1.} Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 2. DC characteristics

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
_	_	Оре	rating voltage	_	2.7	_	5.5	V
V _{OH}	Р	Output high voltage	All I/O pins, low-drive strength	5 V, I _{load} = -2 mA	V _{DD} - 1.5	_	_	V
	С			3 V, I _{load} = -0.6 mA	V _{DD} - 0.8	_	_	V
	Р		pins, high-drive strength	5 V, I _{load} = -20 mA	V _{DD} - 1.5	_	_	V
	С			3 V, I _{load} = -6 mA	V _{DD} - 0.8	_	_	V
I _{OHT}	D	Output high	Max total I _{OH} for all	5 V	_	_	-100	mA
		current	ports	3 V	_	_	-60	1
V _{OL}	Р	Output low voltage	All I/O pins, low-drive strength	5 V, I _{load} = 2 mA	_	_	1.5	V
	С			3 V, I _{load} = 0.6 mA		_	0.8	V
	Р		High current drive pins, high-drive	5 V, I _{load} =20 mA	_	_	1.5	V
С	strength ²	3 V, I _{load} = 6 mA	_	_	0.8	V		
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	_	60	

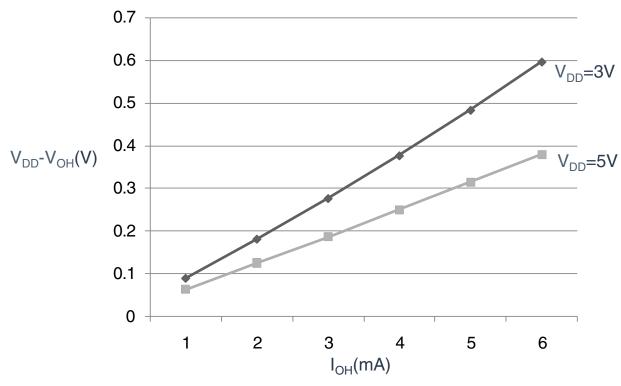


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH}

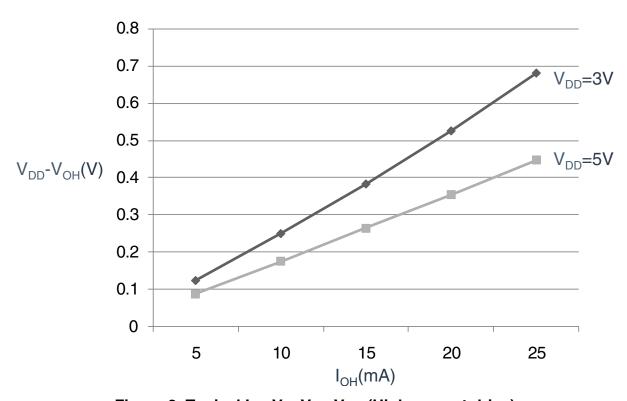


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (High current drive)

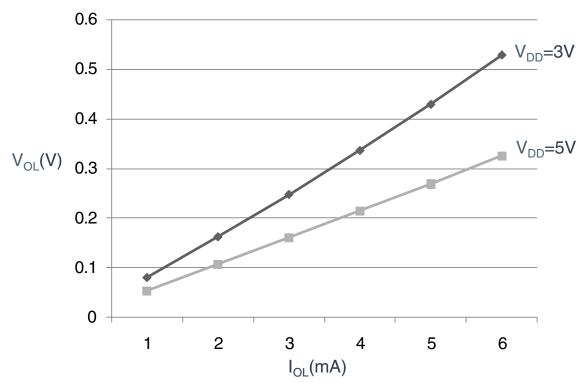


Figure 3. Typical I_{OL} Vs. V_{OL}

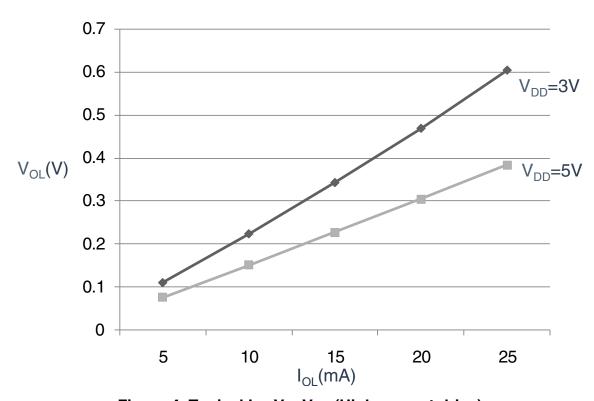


Figure 4. Typical I_{OL} Vs. V_{OL} (High current drive)

Table 5.	Control	timing	(continued)
----------	---------	--------	-------------

Num	С	Rating	J	Symbol	Min	Typical ¹	Max	Unit
7	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100		_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
9	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	Normal drive strength (HDRVE_PTXx = 0) (load = 50 pF)		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	Extreme high drive strength (HDRVE_PTXx = 1) (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- 3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD} .
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 105 °C.

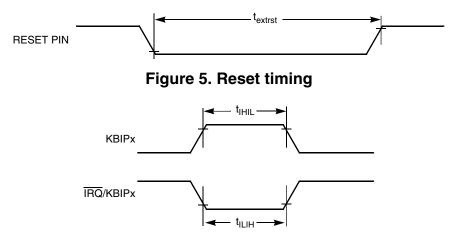


Figure 6. IRQ/KBIPx timing

5.2.2 Debug trace timing specifications

Table 6. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	MHz	
t _{wl}	Low pulse width	2	_	ns
t _{wh}	High pulse width	2	_	ns
t _r	Clock and data rise time	_	3	ns
t _f	Clock and data fall time	_	3	ns

Table 6. Debug trace operating behaviors (continued)

Symbol	Description	Min.	Max.	Unit
t _s	Data setup	3	_	ns
t _h	Data hold	2	_	ns

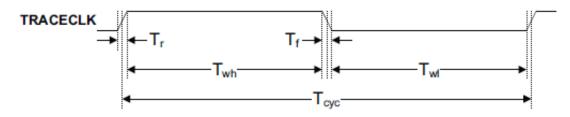


Figure 7. TRACE_CLKOUT specifications

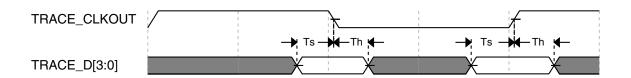


Figure 8. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 7. FTM input timing

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

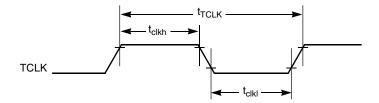


Figure 9. Timer external clock

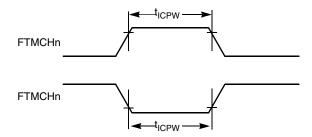


Figure 10. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating **Symbol** Value Unit °C T_A -40 to 105 Operating temperature range (packaged) -40 to 150 °C T_{J} Junction temperature range Thermal resistance single-layer board 64-pin LQFP °C/W θ_{JA} 71 °C/W 64-pin QFP θ_{JA} 61 °C/W 48-pin LQFP θ_{JA} 81 44-pin LQFP θ_{JA} 75 °C/W 32-pin LQFP 86 °C/W θ_{JA}

Table 8. Thermal characteristics

Table 10. Flash characteristics (continued)

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	_	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17030	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16977	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	843	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	517	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	0.10	0.10	0.11	ms
D	Read Once	t _{RDONCE}	_	_	455	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.14	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.24	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.24	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.02	0.02	0.02	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.20	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	125.80	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	125.76	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	25.05	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	6.30	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	125.80	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	469	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	442	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 105 °C	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 105 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

- 1. Minimun times are based on maxmum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 2. Typical times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 3. Maximum times are based on minimum f_{NVMOP} and maximum f_{NVMBUS}
- 4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ¹	ΔV_{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		
	10-bit mode • f _{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0) f _{ADCK}		0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{1.} DC potential difference.

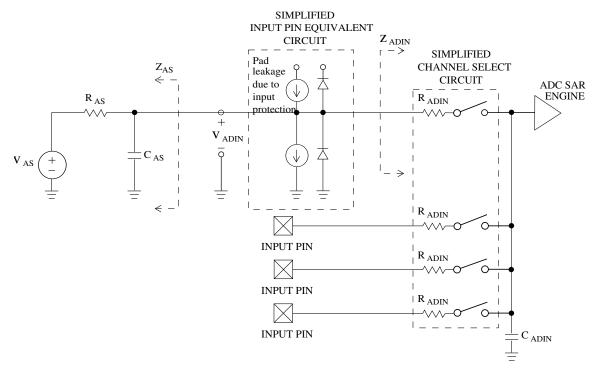


Figure 12. ADC input impedance equivalency diagram

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μΑ
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μΑ
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μΑ
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μΑ
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μА

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	_	±5.0	_	LSB
Error	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	_	±1.0	_	LSB ²
Liniarity	10-bit mode	Р		_	±0.25	±0.5	_
	8-bit mode ³	Р		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	_	LSB ²
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error	12-bit mode	С	E _{ZS}	_	±2.0	_	LSB ²
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	Р		_	±0.65	±1.0	
Full-scale error ⁵	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ²
	10-bit mode	Т		_	±0.5	±1.0	
	8-bit mode	Т		_	±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ	_		±0.5	LSB ²
Input leakage error ⁶	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m		3.266	_	mV/°C
	25°C- 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}		1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} $1 LSB = (V_{REFH} - V_{REFL})/2^{N}$

^{3.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{3.} $V_{ADIN} = V_{DDA}$

^{4.} I_{ln} = leakage current (refer to DC characteristics)

6.3.2 Analog comparator (ACMP) electricals

Table 13. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V_{H}	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V_{H}	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes slew rate control is disabled and high drive strength is enabled for SPI output pins.

Table 14. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_

Table 15. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{Fl}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

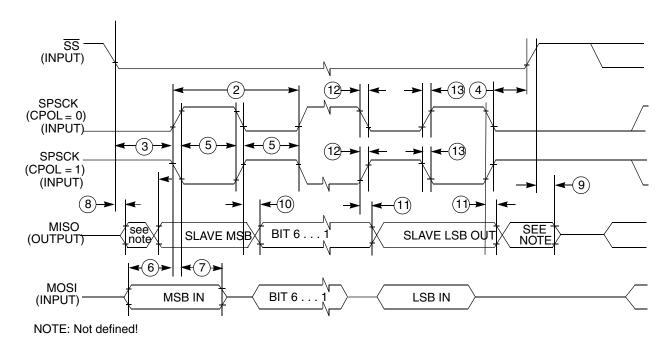


Figure 15. SPI slave mode timing (CPHA = 0)

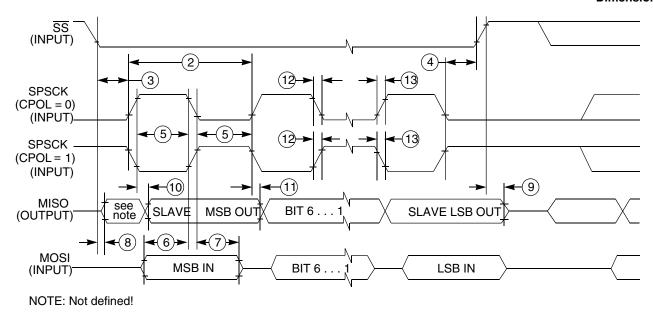


Figure 16. SPI slave mode timing (CPHA=1)

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin LQFP	98ASH70029A
44-pin LQFP	98ASS23225W
48-pin LQFP	98ASH00962A
64-pin QFP	98ASB42844B
64-pin LQFP	98ASS23234W

8 Pinout

8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Table 16. Pin availability by package pin-count

	Pin N	umber			Lowest F	Priority <> H	lighest	
64-LQFP 64-QFP	48-LQFP	44-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	1	PTD1	KBI1P1	FTM2CH3	MOSI1	_
2	2	2	2	PTD0 ¹	KBI1P0	FTM2CH2	SPSCK1	_
3	_	_	_	PTH7	_	_	_	_
4	_	_	_	PTH6	_	_	_	_
5	3	3	_	PTE7	_	TCLK2	_	_
6	4	4	_	PTH2	_	BUSOUT	_	_
7	5	5	3	_	_	_	_	V _{DD}
8	6	6	4	_	_	_	V_{DDA}	V _{REFH}
9	7	7	5	_	_	_	V _{SSA}	V _{REFL}
10	8	8	6	_	_	_	_	V _{SS}
11	9	9	7	PTB7	_	SCL	_	EXTAL
12	10	10	8	PTB6	_	SDA	_	XTAL
13	11	11	_	_	_	_	_	V _{SS}
14	_	_	_	PTH1 ¹	_	FTM2CH1	_	_
15	_	_	_	PTH0 ¹	_	FTM2CH0	_	_
16	12	_	_	PTE6	_	_	_	_
17	13	_	_	PTE5	_	_	_	_
18	14	12	9	PTB5 ¹	FTM2CH5	SS0	_	_
19	15	13	10	PTB4 ¹	FTM2CH4	MISO0	_	_
20	16	14	11	PTC3	FTM2CH3	_	ADP11	_
21	17	15	12	PTC2	FTM2CH2	_	ADP10	_
22	18	16	_	PTD7	KBI1P7	TXD2	_	_
23	19	17	_	PTD6	KBI1P6	RXD2	_	_
24	20	18	_	PTD5	KBI1P5	_	_	_
25	21	19	13	PTC1	_	FTM2CH1	ADP9	_
26	22	20	14	PTC0	_	FTM2CH0	ADP8	_
27	_	_	_	PTF7	_	_	ADP15	_

Pinout

- 1. This is a high current drive pin when operated as output.
- 2. This is a true open-drain pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

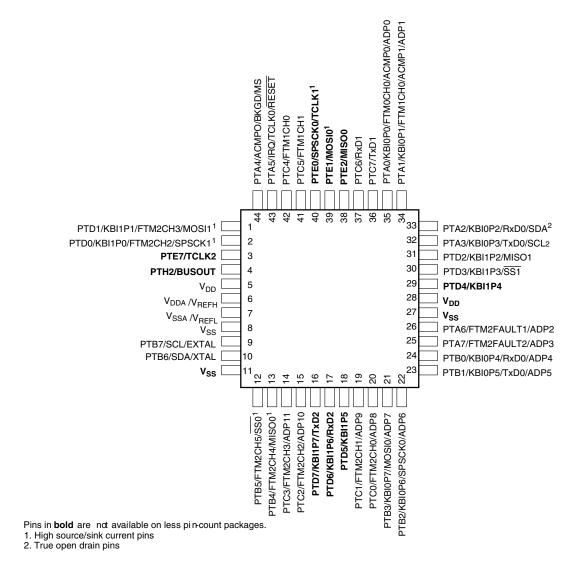


Figure 19. MC9S08PA60 44-pin LQFP package

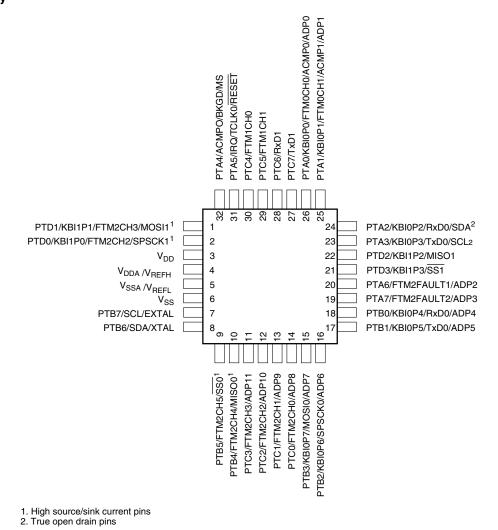


Figure 20. MC9S08PA60 32-pin LQFP package

9 Revision history

The following table provides a revision history for this document.

Table 17. Revision history

Rev. No.	Date	Substantial Changes
1	10/2012	Initial public release