Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 416 | | Number of Logic Elements/Cells | 4160 | | Total RAM Bits | 53248 | | Number of I/O | 189 | | Number of Gates | 263000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k100cq240c9 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Advanced interconnect structure - Copper interconnect for high performance - Four-level hierarchical FastTrack® interconnect structure providing fast, predictable interconnect delays - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions) - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions) - Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect #### Advanced software support - Software design support and automatic place-and-route provided by the Altera® QuartusTM II development system for Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations - Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions optimized for APEX 20KC architecture available - NativeLinkTM integration with popular synthesis, simulation, and timing analysis tools - Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation - Supports popular revision-control software packages including PVCS, RCS, and SCCS | Table 3. APEX 20KC QFP &BGA Package Options & I/O CountNotes (1), (2) | | | | | | | | | | |---|--------------|--------------|--------------|-------------|-------------|--|--|--|--| | Device | 144-Pin TQFP | 208-Pin PQFP | 240-Pin PQFP | 356-Pin BGA | 652-Pin BGA | | | | | | EP20K100C | 92 | 151 | 183 | 246 | | | | | | | EP20K200C | | 136 | 168 | 271 | 376 | | | | | | EP20K400C | | | | | 488 | | | | | | EP20K600C | | | | | 488 | | | | | | EP20K1000C | | | | | 488 | | | | | | EP20K1500C | | | | | 488 | | | | | #### Cascade Chain With the cascade chain, the APEX 20KC architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II Compiler during design processing, or manually by the designer during design entry. Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. Figure 7. APEX 20KC Cascade Chain | Source | Destination | | | | | | | | | |-------------------------------------|----------------|-------------------|----------|----------|-----------------------|-------------------------|----------------------------------|-------------------------------------|-------------------------| | | Row
I/O Pin | Column
I/O Pin | LE | ESB | Local
Interconnect | MegaLAB
Interconnect | Row
FastTrack
Interconnect | Column
FastTrack
Interconnect | FastRow
Interconnect | | Row I/O pin | | | | | ✓ | ✓ | ✓ | ✓ | | | Column I/O
pin | | | | | ✓ | | | ✓ | ✓ | | LE | | | | | ✓ | ✓ | ✓ | ✓ | | | ESB | | | | | ✓ | ✓ | ✓ | ✓ | | | Local interconnect | ✓ | ✓ | ✓ | ✓ | | | | | | | MegaLAB interconnect | | | | | ✓ | | | | | | Row
FastTrack
interconnect | | | | | | √ | | ✓ | | | Column
FastTrack
interconnect | | | | | | √ | √ | | | | FastRow interconnect | | | | | ✓ | | | | | ### **Product-Term Logic** The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals. In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode. **Dedicated Clocks** Global Signals MegaLAB Interconnect 65 🕹 9 32 Macrocell Inputs (1 to 16) To Row From CLK[1..0] and Column Adjacent LAB Interconnect ENA[1..0] CLRN[1..0] Local Interconnect Figure 13. Product-Term Logic in ESB #### Macrocells APEX 20KC macrocells can be configured individually for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Combinatorial logic is implemented in the product terms. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as parallel expanders to be used to increase the logic available to another macrocell. One product term can be inverted; the Quartus II software uses this feature to perform De Morgan's inversion for more efficient implementation of wide OR functions. The Quartus II Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Figure 14 shows the APEX 20KC macrocell. Figure 16. APEX 20KC Parallel Expanders ## Embedded System Block The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram. Figure 17. ESB Block Diagram ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock. ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the FastTrack or MegaLAB interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the FastTrack and MegaLAB interconnects. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic. When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays. To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18. Figure 18. Deep Memory Block Implemented with Multiple ESBs The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two ESBs are used to support two simultaneous reads or writes. The ESB can also use Altera megafunctions to implement dual-port RAM applications where both ports can read or write, as shown in Figure 19. Figure 19. APEX 20KC ESB Implementing Dual-Port RAM #### Read/Write Clock Mode The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode. Dedicated Inputs & Global Signals **Dedicated Clocks** RAM/ROM 128 × 16 256 × 8 512 × 4 1.024×2 2,048 × 1 To MegaLAB, FNA FastTrack & Data Out Local ENA Interconnect rdaddress[] Read Address Write Address wraddress[] Ь FNA rden Read Enable ENA wren Write Enable outclocken D Q Write ENA Pulse inclock Generato outclock Figure 20. ESB in Read/Write Clock Mode Note (1) #### Note: (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. Tables 11 and 12 summarize the ClockLock and ClockBoost parameters for APEX 20KC devices. | Table 11. APEX 20KC ClockLock & ClockBoost Parameters Note (1) | | | | | | | | | | |--|---|-----------|-----|-----|------------------------|------|--|--|--| | Symbol | Parameter | Condition | Min | Тур | Max | Unit | | | | | t_R | Input rise time | | | | 5 | ns | | | | | t _F | Input fall time | | | | 5 | ns | | | | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | | | | t _{INJITTER} | Input jitter peak-to-peak | | | | 2% of input period | % | | | | | t _{OUTJITTER} | RMS jitter on ClockLock or
ClockBoost-generated clock | | | | 0.35% of output period | % | | | | | <i>t</i> OUTDUTY | Duty cycle for ClockLock or
ClockBoost-generated clock | | 45 | | 55 | % | | | | | t _{LOCK} (2),
(3) | Time required for ClockLock or ClockBoost to acquire lock | | | | 40 | μS | | | | | Table 12. Al | Table 12. APEX 20KC Clock Input & Output Parameters (Part 1 of 2) Note (1) | | | | | | | | | | | |-------------------------|---|-----------------|----------------|-----|----------------|-----|------------------------------|--|-------|--|--| | Symbol | Parameter | I/O Standard | -7 Speed Grade | | -8 Speed Grade | | -7 Speed Grade -8 Speed Grad | | Units | | | | | | | Min | Max | Min | Max | | | | | | | f _{VCO} (4) | Voltage controlled oscillator operating range | | 200 | 500 | 200 | 500 | MHz | | | | | | f _{CLOCK0} | Clock0 PLL output frequency for internal use | | 1.5 | 335 | 1.5 | 200 | MHz | | | | | | f _{CLOCK1} | Clock1 PLL output frequency for internal use | | 20 | 335 | 20 | 200 | MHz | | | | | | f _{CLOCK0_EXT} | Output clock frequency for | 3.3-V LVTTL | (5) | (5) | (5) | (5) | MHz | | | | | | | external clock0 output | 2.5-V LVTTL | (5) | (5) | (5) | (5) | MHz | | | | | | | | 1.8-V LVTTL | (5) | (5) | (5) | (5) | MHz | | | | | | | | GTL+ | (5) | (5) | (5) | (5) | MHz | | | | | | | | SSTL-2 Class I | (5) | (5) | (5) | (5) | MHz | | | | | | | | SSTL-2 Class II | (5) | (5) | (5) | (5) | MHz | | | | | | | | SSTL-3 Class I | (5) | (5) | (5) | (5) | MHz | | | | | | | | SSTL-3 Class II | (5) | (5) | (5) | (5) | MHz | | | | | | | | LVDS | (5) | (5) | (5) | (5) | MHz | | | | | The APEX 20KC device instruction register length is 10 bits. The APEX 20KC device USERCODE register length is 32 bits. Tables 14 and 15 show the boundary-scan register length and device IDCODE information for APEX 20KC devices. | Table 14. APEX 20KC Boundary-Scan Register Length | | | | | | | |---|-------|--|--|--|--|--| | Device Boundary-Scan Register Len | | | | | | | | EP20K100C | 774 | | | | | | | EP20K200C | 1,164 | | | | | | | EP20K400C | 1,506 | | | | | | | EP20K600C | 1,806 | | | | | | | EP20K1000C | 2,190 | | | | | | | EP20K1500C | 2,502 | | | | | | | Table 15. 32-Bit APEX 20KC Device IDCODE | | | | | | | | | | |--|---------------------|-----------------------|------------------------------------|-----------|--|--|--|--|--| | Device | DCODE (32 Bits) (1) | | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer
Identity (11 Bits) | 1 (1 Bit) | | | | | | | EP20K100C | 0000 | 1000 0001 0000 0000 | 000 0110 1110 | 1 | | | | | | | EP20K200C | 0000 | 1000 0010 0000 0000 | 000 0110 1110 | 1 | | | | | | | EP20K400C | 0000 | 1000 0100 0000 0000 | 000 0110 1110 | 1 | | | | | | | EP20K600C | 0000 | 1000 0110 0000 0000 | 000 0110 1110 | 1 | | | | | | | EP20K1000C | 0000 | 1001 0000 0000 0000 | 000 0110 1110 | 1 | | | | | | | EP20K1500C | 0000 | 1001 0101 0000 0000 | 000 0110 1110 | 1 | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The IDCODE's least significant bit (LSB) is always 1. Figure 30 shows the timing requirements for the JTAG signals. ### **Generic Testing** Each APEX 20KC device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20KC devices are made under conditions equivalent to those shown in Figure 31. Multiple test patterns can be used to configure devices during all stages of the production flow. AC test criteria include: - Power supply transients can affect ACmeasurements. - Simultaneous transitions of multiple outputs should be avoided for accurate measurement. - Threshold tests must not be performed under AC conditions. - Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Figure 31. APEX 20KC AC Test Conditions ## Operating Conditions Tables 17 through 20 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KC devices. | Table 17. APEX 20KC Device Absolute Maximum Ratings Note (1) | | | | | | | | | | |--|----------------------------|--|------|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V _{CCINT} | Supply voltage | With respect to ground (2) | -0.5 | 2.5 | V | | | | | | V _{CCIO} | | | -0.5 | 4.6 | V | | | | | | V _I | DC input voltage | | -0.5 | 4.6 | V | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | °C | | | | | | TJ | Junction temperature | PQFP, RQFP, TQFP, and BGA packages, under bias | | 135 | °C | | | | | | | | Ceramic PGA packages, under bias | | 150 | °C | | | | | | Table 2 | Table 20. APEX 20KC Device Capacitance Note (10) | | | | | | | | | | |--------------------|--|-------------------------------------|-----|-----|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -0.5 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns. - Numbers in parentheses are for industrial-temperature-range devices. - Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - These values are specified under the APEX 20KC device recommended operating conditions, shown in Table 18 on - This value is specified for normal device operation. The value may vary during power-up. - (9) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}. - (10) Capacitance is sample-tested only. Tables 21 through 36 list the DC operating specifications for the supported I/O standards. These tables list minimal specifications only; APEX 20KC devices may exceed these specifications. | Symbol | Parameter | Conditions | Minimum | Maximum | Units | |-------------------|---------------------------|---|---------|-------------------------|-------| | V _{CCIO} | Output supply voltage | | 3.0 | 3.6 | V | | V _{IH} | High-level input voltage | | 2.0 | V _{CCIO} + 0.3 | V | | V _{IL} | Low-level input voltage | | -0.3 | 0.8 | V | | I _I | Input pin leakage current | V _{IN} = 0 V or 3.3 V | -10 | 10 | μА | | V _{OH} | High-level output voltage | $I_{OH} = -12 \text{ mA},$
$V_{CCIO} = 3.0 \text{ V } (1)$ | 2.4 | | V | | V _{OL} | Low-level output voltage | I _{OL} = 12 mA,
V _{CCIO} = 3.0 V (2) | | 0.4 | V | | Table 30. SSTL-2 Class II Specifications | | | | | | | | | | |--|---------------------------|--------------------------------|-------------------------|------------------|-------------------------|-------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Units | | | | | V _{CCIO} | I/O supply voltage | | 2.375 | 2.5 | 2.625 | V | | | | | V _{TT} | Termination voltage | | V _{REF} - 0.04 | V _{REF} | V _{REF} + 0.04 | V | | | | | V_{REF} | Reference voltage | | 1.15 | 1.25 | 1.35 | V | | | | | V _{IH} | High-level input voltage | | V _{REF} + 0.18 | | V _{CCIO} + 0.3 | V | | | | | V _{IL} | Low-level input voltage | | -0.3 | | V _{REF} – 0.18 | V | | | | | V _{OH} | High-level output voltage | I _{OH} = -15.2 mA (1) | V _{TT} + 0.76 | | | V | | | | | V _{OL} | Low-level output voltage | I _{OL} = 15.2 mA (2) | | | V _{TT} – 0.76 | V | | | | | Table 31. SSTL-3 Class I Specifications | | | | | | | | | | |---|---------------------------|-----------------------------|-------------------------|-----------|-------------------------|-------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Units | | | | | V _{CCIO} | I/O supply voltage | | 3.0 | 3.3 | 3.6 | V | | | | | V _{TT} | Termination voltage | | V _{REF} – 0.05 | V_{REF} | V _{REF} + 0.05 | ٧ | | | | | V_{REF} | Reference voltage | | 1.3 | 1.5 | 1.7 | V | | | | | V _{IH} | High-level input voltage | | V _{REF} + 0.2 | | V _{CCIO} + 0.3 | V | | | | | V _{IL} | Low-level input voltage | | -0.3 | | V _{REF} – 0.2 | V | | | | | V _{OH} | High-level output voltage | I _{OH} = -8 mA (1) | V _{TT} + 0.6 | | | V | | | | | V _{OL} | Low-level output voltage | I _{OL} = 8 mA (2) | | | V _{TT} – 0.6 | V | | | | | Table 36. CTT I/O Specifications | | | | | | | |---------------------------------------|--|--|------------------------|---------|------------------------|-------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Units | | V _{CCIO} | I/O supply voltage | | 3.0 | 3.3 | 3.6 | V | | V _{TT} /V _{REF} (3) | Termination and reference voltage | | 1.35 | 1.5 | 1.65 | V | | V _{IH} | High-level input voltage | | V _{REF} + 0.2 | | | V | | V _{IL} | Low-level input voltage | | | | V _{REF} – 0.2 | V | | I ₁ | Input pin leakage current | 0 < V _{IN} < V _{CCIO} | -10 | | 10 | μΑ | | V _{OH} | High-level output voltage | $I_{OH} = -8 \text{ mA } (1)$ | V _{REF} + 0.4 | | | V | | V _{OL} | Low-level output voltage | I _{OL} = 8 mA (2) | | | V _{REF} – 0.4 | V | | Io | Output leakage
current (when output
is high Z) | GND ≤ V _{OUT} ≤ V _{CCIO} | -10 | | 10 | μΑ | #### Notes to tables: - The I_{OH} parameter refers to high-level output current. The I_{OL} parameter refers to low-level output current. This parameter applies to open-drain pins as well as output pins. (3) V_{REF} specifies center point of switching range. Figure 32 shows the output drive characteristics of APEX 20KC devices. | Table 38. APEX 20KC f _{MAX} ESB Timing Parameters | | | | | | |--|--|--|--|--|--| | Symbol | Parameter | | | | | | t _{ESBARC} | ESB asynchronous read cycle time | | | | | | t _{ESBSRC} | ESB synchronous read cycle time | | | | | | t _{ESBAWC} | ESB asynchronous write cycle time | | | | | | t _{ESBSWC} | ESB synchronous write cycle time | | | | | | t _{ESBWASU} | ESB write address setup time with respect to WE | | | | | | t _{ESBWAH} | ESB write address hold time with respect to WE | | | | | | t _{ESBWDSU} | ESB data setup time with respect to WE | | | | | | t _{ESBWDH} | ESB data hold time with respect to WE | | | | | | t _{ESBRASU} | ESB read address setup time with respect to RE | | | | | | t _{ESBRAH} | ESB read address hold time with respect to RE | | | | | | t _{ESBWESU} | ESB WE setup time before clock when using input register | | | | | | t _{ESBDATASU} | ESB data setup time before clock when using input register | | | | | | t _{ESBWADDRSU} | ESB write address setup time before clock when using input registers | | | | | | t _{ESBRADDRSU} | ESB read address setup time before clock when using input registers | | | | | | t _{ESBDATACO1} | ESB clock-to-output delay when using output registers | | | | | | t _{ESBDATACO2} | ESB clock-to-output delay without output registers | | | | | | t _{ESBDD} | ESB data-in to data-out delay for RAM mode | | | | | | t _{PD} | ESB macrocell input to non-registered output | | | | | | t _{PTERMSU} | ESB macrocell register setup time before clock | | | | | | t _{PTERMCO} | ESB macrocell register clock-to-output delay | | | | | | Table 39. APEX 20KC f _{MAX} Routing Delays | | | | | | |---|---|--|--|--|--| | Symbol | Parameter | | | | | | t _{F1-4} | an-out delay estimate using local interconnect | | | | | | t _{F5-20} | Fan-out delay estimate using MegaLab interconnect | | | | | | t _{F20+} | Fan-out delay estimate using FastTrack interconnect | | | | | | Table 42. APEX 20KC External Bidirectional Timing Parameters Note (1) | | | | | | |---|---|------------|--|--|--| | Symbol | Parameter | Condition | | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at LAB-adjacent input register | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at LAB-adjacent input register | | | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE C1 = 35 pF register | | | | | | t _{XZBIDIR} | Synchronous output enable register to output buffer disable delay | C1 = 35 pF | | | | | t _{ZXBIDIR} | Synchronous output enable register to output buffer enable delay | C1 = 35 pF | | | | | ^t INSUBIDIRPLL | Setup time for bidirectional pins with PLL clock at LAB-adjacent input register | | | | | | t _{INHBIDIRPLL} | Hold time for bidirectional pins with PLL clock at LAB-adjacent input register | | | | | | †OUTCOBIDIRPLL | Clock-to-output delay for bidirectional pins with PLL clock at IOE register | C1 = 35 pF | | | | | t _{XZBIDIRPLL} | Synchronous output enable register to output buffer disable delay with PLL | C1 = 35 pF | | | | | t _{ZXBIDIRPLL} | Synchronous output enable register to output buffer enable delay with PLL | C1 = 35 pF | | | | Note to tables: (1) These timing parameters are sample-tested only. | Table 48. EP20K100C External Bidirectional Timing Parameters | | | | | | | | |--|----------------|-----|--------------------|-----|--------------------|-----|------| | Symbol | -7 Speed Grade | | -8 Speed Grade (2) | | -9 Speed Grade (2) | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 1.9 | | | | | | ns | | t _{INHBIDIR} | 0.0 | | | | | | ns | | t _{OUTCOBIDIR} | 2.0 | 5.0 | | | | | ns | | t _{XZBIDIR} | | 7.1 | | | | | ns | | t _{ZXBIDIR} | | 7.1 | | | | | ns | | t _{INSUBIDIRPLL} | 3.9 | | | | | | ns | | t _{INHBIDIRPLL} | 0.0 | | | | | | ns | | †OUTCOBIDIRPLL | 0.5 | 2.1 | | | | | ns | | t _{XZBIDIRPLL} | | 4.2 | | | | | ns | | t _{ZXBIDIRPLL} | | 4.2 | | | | | ns | | Table 49. EP20K200C f _{MAX} LE Timing Parameters Note (1) | | | | | | | | |--|----------------|-----|--------------------|-----|--------------------|-----|------| | Symbol | -7 Speed Grade | | -8 Speed Grade (2) | | -9 Speed Grade (2) | | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{SU} | 0.3 | | | | | | ns | | t_H | 0.3 | | | | | | ns | | t_{CO} | | 0.3 | | | | | ns | | t _{LUT} | | 0.7 | | | | | ns | | Table 60. EP20K400C External Bidirectional Timing Parameters | | | | | | | | |--|--------|----------|--------------------|-----|--------------------|-----|------| | Symbol | -7 Spe | ed Grade | -8 Speed Grade (2) | | -9 Speed Grade (2) | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.4 | | | | | | ns | | t _{INHBIDIR} | 0.0 | | | | | | ns | | t _{OUTCOBIDIR} | 2.0 | 5.0 | | | | | ns | | t _{XZBIDIR} | | 7.1 | | | | | ns | | t _{ZXBIDIR} | | 7.1 | | | | | ns | | t _{INSUBIDIRPLL} | 3.8 | | | | | | ns | | t _{INHBIDIRPLL} | 0.0 | | | | | | ns | | t _{OUTCOBIDIRPLL} | 0.5 | 2.1 | | | | | ns | | t _{XZBIDIRPLL} | | 4.2 | | | | | ns | | t _{ZXBIDIRPLL} | | 4.2 | | | | | ns | | Table 61. EP20K600C f _{MAX} LE Timing Parameters Note (1) | | | | | | | | |--|----------------|-----|--------------------|-----|--------------------|-----|------| | Symbol | -7 Speed Grade | | -8 Speed Grade (2) | | -9 Speed Grade (2) | | Unit | | | Min | Max | Min | Max | Min | Max | | | t_{SU} | 0.3 | | | | | | ns | | t_H | 0.3 | | | | | | ns | | t_{CO} | | 0.3 | | | | | ns | | t _{LUT} | | 0.7 | | | | | ns | | Table 79. Selectable I/O Standard Input Delays | | | | | | | | |--|----------------|------|----------|--------------------|-----|-----------|------| | Symbol | -7 Speed Grade | | -8 Speed | -8 Speed Grade (1) | | Grade (1) | Unit | | | Min | Max | Min | Max | Min | Max | Min | | LVCMOS | | 0.0 | | | | | ns | | LVTTL | | 0.0 | | | | | ns | | 2.5 V | | 0.1 | | | | | ns | | 1.8 V | | 0.5 | | | | | ns | | PCI | | 0.4 | | | | | ns | | GTL+ | | -0.3 | | | | | ns | | SSTL-3 Class I | | -0.4 | | | | | ns | | SSTL-3 Class II | | -0.4 | | | | | ns | | SSTL-2 Class I | | -0.3 | | | | | ns | | SSTL-2 Class II | | -0.3 | | | | | ns | | LVDS | | -0.2 | | | | | ns | | СТТ | | -0.3 | | | | | ns | | AGP | | 0.0 | | | | | ns | | Table 80. Selectable I/O Standard Output Delays | | | | | | | | |---|---------|---------|--------------------------|-----|--------------------|-----|------| | Symbol | -7 Spee | d Grade | Grade -8 Speed Grade (1) | | -9 Speed Grade (1) | | Unit | | | Min | Max | Min | Max | Min | Max | Min | | LVCMOS | | 0.0 | | | | | ns | | LVTTL | | 0.0 | | | | | ns | | 2.5 V | | 0.5 | | | | | ns | | 1.8 V | | 1.7 | | | | | ns | | PCI | | -0.2 | | | | | ns | | GTL+ | | -0.4 | | | | | ns | | SSTL-3 Class I | | -0.1 | | | | | ns | | SSTL-3 Class II | | -0.6 | | | | | ns | | SSTL-2 Class I | | 0.0 | | | | | ns | | SSTL-2 Class II | | -0.4 | | | | | ns | | LVDS | | -0.8 | | | | | ns | | CTT | | -0.2 | | | | | ns | | AGP | | -0.4 | | | | | ns | #### Note to tables: $(1) \quad \mbox{Timing information will be released in a future version of this data sheet.}$ Multiple APEX 20KC devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 81. Data Sources for Configuration | | | | | | |--|---|--|--|--|--| | Configuration Scheme | Data Source | | | | | | Configuration device | EPC16, EPC2, or EPC1 configuration device | | | | | | Passive serial (PS) | MasterBlaster or ByteBlasterMV download cable or serial data source | | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | | JTAG | MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam Standard Test and Programming Language (STAPL) or JBC File | | | | | For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices.*) ## Device Pin-Outs See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information. # Revision History The information contained in the *APEX 20KC Programmable Logic Device Data Sheet* version 1.1 supersedes information published in pervious versions. The following changes were made to the *APEX 20KC Programmable Logic Device Data Sheet* version 1.1: updated maximum user I/O pins in Table 1.