Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 416 | | Number of Logic Elements/Cells | 4160 | | Total RAM Bits | 53248 | | Number of I/O | 93 | | Number of Gates | 263000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k100ct144c7 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 4. APEX 20KC FineLine BGA Package Options & I/O Count Notes (1), (2) | | | | | | | | |----------------------------------------------------------------------------------|---------|---------|---------|---------|-----------|--|--| | Device | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | | | EP20K100C | 93 | 246 | | | | | | | EP20K200C | | | 376 | 376 | | | | | EP20K400C | | | | 488 (3) | | | | | EP20K600C | | | | 508 (3) | 588 | | | | EP20K1000C | | | | 508 (3) | 708 | | | | EP20K1500C | | | | | 808 | | | ## *Notes to tables:* - (1) I/O counts include dedicated input and clock pins. - (1) A Counts include declared right and clock pins. (2) APEX 20KC device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), and 1.00-mm pitch FineLine BGA packages. (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device* - Package Information Data Sheet for detailed package size information. | Table 5. APEX 20KC QFP & BGA Package Sizes | | | | | | | | |--------------------------------------------|--------------|--------------|--------------|-------------|-------------|--|--| | Feature | 144-Pin TQFP | 208-Pin PQFP | 240-Pin PQFP | 356-Pin BGA | 652-Pin BGA | | | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.27 | 1.27 | | | | Area (mm ²) | 484 | 924 | 1,218 | 1,225 | 2,025 | | | | Length × Width (mm × mm) | 22.0 × 22.0 | 30.4 × 30.4 | 34.9 × 34.9 | 35.0 × 35.0 | 45.0 × 45.0 | | | | Table 6. APEX 20KC FineLine BGA Package Sizes | | | | | | | | | |-----------------------------------------------|---------|---------|---------|---------|-----------|--|--|--| | Feature | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | | | | Pitch (mm) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Area (mm ²) | 169 | 361 | 529 | 729 | 1,089 | | | | | Length × Width (mm × mm) | 13 × 13 | 19 × 19 | 23 × 23 | 27 × 27 | 33 × 33 | | | | # General Description Similar to APEX 20K and APEX 20KE devices, APEX 20KC devices offer the MultiCore architecture, which combines the strengths of LUT-based and product-term-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for datapath, register-intensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20KC architecture uniquely suited for SOPC designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20KC device. APEX 20KC devices include additional features such as enhanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. Table 7 shows the features included in APEX 20KC devices. | Table 7. APEX 20KC Device Features (Part 1 of 2) | | | | | | |--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | Feature | APEX 20KC Devices | | | | | | MultiCore system integration | Full support | | | | | | Hot-socketing support | Full support | | | | | | SignalTap logic analysis | Full support | | | | | | 32-/64-bit, 33-MHz PCI | Full compliance | | | | | | 32-/64-bit, 66-MHz PCI | Full compliance in -7 speed grade | | | | | | MultiVolt I/O | 1.8-V, 2.5-V, or 3.3-V V _{CCIO} V _{CCIO} selected bank by bank 5.0-V tolerant with use of external resistor | | | | | | ClockLock support | Clock delay reduction m/(n × v) clock multiplication Drive ClockLock output off-chip External clock feedback ClockShift circuitry LVDS support Up to four PLLs ClockShift, clock phase adjustment | | | | | | Dedicated clock and input pins | Eight | | | | | | Table 7. APEX 20KC Device Features (Part 2 of 2) | | | | | | |--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | Feature | APEX 20KC Devices | | | | | | I/O standard support | 1.8-V, 2.5-V, 3.3-V, 5.0-V I/O 3.3-V PCI and PCI-X 3.3-V AGP CTT GTL+ LVCMOS LVTTL True-LVDS TM and LVPECL data pins (in EP20K400C and larger devices) LVDS and LVPECL clock pins (in all devices) LVDS and LVPECL data pins up to 156 Mbps (in all devices) HSTL Class I PCI-X SSTL-2 Class I and II SSTL-3 Class I and II | | | | | | Memory support | CAM Dual-port RAM FIFO RAM ROM | | | | | All APEX 20KC devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault-coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20KC devices can be configured on the board for the specific functionality required. APEX 20KC devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC16, EPC2, and EPC1 configuration devices, which configure APEX 20KC devices via a serial data stream. Moreover, APEX 20KC devices contain an optimized interface that permits microprocessors to configure APEX 20KC devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20KC devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy. # MegaLAB Structure APEX 20KC devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains 16 logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. In EP20K1000C and EP20K1500C devices, MegaLAB structures contain 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure. Figure 2. MegaLAB Structure # **Logic Array Block** Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20KC LAB. APEX 20KC devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas, minimizing the use of the MegaLAB and FastTrack interconnect and providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect. The APEX 20KC architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure. # Carry Chain The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20KC architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as DesignWare functions from Synopsys and library of parameterized modules (LPM) functions automatically take advantage of carry chains for the appropriate functions. The Quartus II Compiler creates carry chains longer than ten LEs by automatically linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 6 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack interconnect routing structures. The counter mode uses two 3-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. # Clear & Preset Logic Control Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset or to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted. In addition to the two clear and preset modes, APEX 20KC devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset. # FastTrack Interconnect In the APEX 20KC architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack interconnect. The FastTrack interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9. Figure 9. APEX 20KC Interconnect Structure A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure. A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows. Figure 10 shows how the FastTrack interconnect uses the local interconnect to drive LEs within MegaLAB structures. Figure 12. APEX 20KC FastRow Interconnect Table 8 summarizes how various elements of the APEX 20KC architecture drive each other. The Quartus II Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20KC IOE offers one output enable per pin, the Quartus II Compiler can emulate open-drain operation efficiently. The APEX 20KC IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Table 9 describes the APEX 20KC programmable delays and their logic options in the Quartus II software. | Table 9. APEX 20KC Programmable Delay Chains | | | | | |----------------------------------------------|-----------------------------------------|--|--|--| | Programmable Delay | Quartus II Logic Option | | | | | Input pin to core delay | Decrease input delay to internal cells | | | | | Input pin to input register delay | Decrease input delay to input registers | | | | | Core to output register delay | Decrease input delay to output register | | | | | Output register t _{CO} delay | Increase delay to output pin | | | | | Clock enable delay | Increase clock enable delay | | | | The Quartus II Compiler can program these delays automatically to minimize setup time while providing a zero hold time. The register in the APEX 20KC IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. This feature is useful for cases where the APEX 20KC device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. Figure 25 shows how fast bidirectional I/O pins are implemented in APEX 20KC devices. This feature is useful for cases where the APEX 20KC device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. Figure 28. APEX 20KC I/O Banks # Notes: - (1) Any I/O pin within two pads of the LVDS pins can only be used as an input to maintain an acceptable noise level on the V_{CCIO} plane. No output pin can be placed within two pads of LVDS pins unless separated by a power or ground pin. Use the **Show Pads** view in the Quartus II software's Floor Plan Editor to locate these pads. The Quartus II software will give an error message for illegal output or bidirectional pin placement next to the LVDS pin. - (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with $V_{\rm CCIO}$ set to 3.3 V, 2.5 V, or 1.8 V. # **Power Sequencing & Hot Socketing** Because APEX 20KC devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any order. Signals can be driven into APEX 20KC devices before and during power-up without damaging the device. In addition, APEX 20KC devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20KC devices operate as specified by the user. # MultiVolt I/O Interface The APEX architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). APEX 20KC devices support the MultiVolt I/O interface feature. The APEX 20KC VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KC device is 5.0-V tolerant with the addition of a resistor. | Table | 10 | summarizes | APEX | 20KC | Multi\ | /olt I/C |) suppo | ort. | |-------|----|------------|------|------|--------|----------|---------|------| |-------|----|------------|------|------|--------|----------|---------|------| | Table 10. APEX 20KC MultiVolt I/O Support | | | | | | | | | | |-------------------------------------------|----------------------------------------------|--------------|--------------|--------------|----------|--------------|----------|----------|--| | V _{CCIO} (V) | CIO (V) Input Signals (V) Output Signals (V) | | | | | | | | | | | 1.8 | 2.5 | 3.3 | 5.0 | 1.8 | 2.5 | 3.3 | 5.0 | | | 1.8 | ✓ | √ (1) | √ (1) | | ✓ | | | | | | 2.5 | | ✓ | √ (1) | | | ✓ | | | | | 3.3 | | ✓ | ✓ | √ (2) | | √ (3) | ✓ | ✓ | | #### Notes: - The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case. - (2) An APEX 20KC device can be made 5.0-V tolerant with the addition of an external resistor. - (3) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20KC device can drive a 2.5-V device with 3.3-V tolerant inputs. Open-drain output pins on APEX 20KC devices (with a series resistor and a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor. # ClockLock & ClockBoost Features APEX 20KC devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20KC devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20KC device's high-speed clock to provide significant improvements in system performance and bandwidth. APEX 20KC devices in -7 and -8 speed grades include the ClockLock feature. The ClockLock and ClockBoost features in APEX 20KC devices are enabled through the Quartus II software. External devices are not required to use these features. # **APEX 20KC ClockLock Feature** APEX 20KC devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K100C and EP20K200C devices have two PLLs; the EP20K400C and larger devices have four PLLs. The following sections describe some of the features offered by the APEX 20KC PLLs. # External PLL Feedback The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KC device and another high-speed device, such as SDRAM. | Table 2 | Table 20. APEX 20KC Device Capacitance Note (10) | | | | | | | | | |--------------------|--------------------------------------------------|-------------------------------------|-----|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | # Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -0.5 V or overshoot to 4.6 V for input currents less than 100 mA and periods shorter than 20 ns. - Numbers in parentheses are for industrial-temperature-range devices. - Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - These values are specified under the APEX 20KC device recommended operating conditions, shown in Table 18 on - This value is specified for normal device operation. The value may vary during power-up. - (9) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}. - (10) Capacitance is sample-tested only. Tables 21 through 36 list the DC operating specifications for the supported I/O standards. These tables list minimal specifications only; APEX 20KC devices may exceed these specifications. | Symbol | Parameter | Conditions | Minimum | Maximum | Units | |-------------------|---------------------------|---------------------------------------------------------------|---------|-------------------------|-------| | V _{CCIO} | Output supply voltage | | 3.0 | 3.6 | V | | V _{IH} | High-level input voltage | | 2.0 | V _{CCIO} + 0.3 | V | | V _{IL} | Low-level input voltage | | -0.3 | 0.8 | V | | I _I | Input pin leakage current | V _{IN} = 0 V or 3.3 V | -10 | 10 | μА | | V _{OH} | High-level output voltage | $I_{OH} = -12 \text{ mA},$
$V_{CCIO} = 3.0 \text{ V } (1)$ | 2.4 | | V | | V _{OL} | Low-level output voltage | I _{OL} = 12 mA,
V _{CCIO} = 3.0 V (2) | | 0.4 | V | | Table 28. GTL+ I/O Specifications | | | | | | | | | | |-----------------------------------|--------------------------|-----------------------------|------------------------|---------|------------------------|-------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Units | | | | | V _{TT} | Termination voltage | | 1.35 | 1.5 | 1.65 | V | | | | | V_{REF} | Reference voltage | | 0.88 | 1.0 | 1.12 | V | | | | | V _{IH} | High-level input voltage | | V _{REF} + 0.1 | | | V | | | | | V _{IL} | Low-level input voltage | | | | V _{REF} – 0.1 | V | | | | | V _{OL} | Low-level output voltage | I _{OL} = 36 mA (2) | | | 0.65 | V | | | | | Table 29. SS | Table 29. SSTL-2 Class I Specifications | | | | | | | | | |-------------------|---|--------------------------------|-------------------------|------------------|-------------------------|-------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Units | | | | | V _{CCIO} | I/O supply voltage | | 2.375 | 2.5 | 2.625 | ٧ | | | | | V _{TT} | Termination voltage | | V _{REF} - 0.04 | V _{REF} | V _{REF} + 0.04 | V | | | | | V _{REF} | Reference voltage | | 1.15 | 1.25 | 1.35 | ٧ | | | | | V _{IH} | High-level input voltage | | V _{REF} + 0.18 | | V _{CCIO} + 0.3 | V | | | | | V _{IL} | Low-level input voltage | | -0.3 | | V _{REF} – 0.18 | V | | | | | V _{OH} | High-level output voltage | $I_{OH} = -7.6 \text{ mA} (1)$ | V _{TT} + 0.57 | | | V | | | | | V _{OL} | Low-level output voltage | I _{OL} = 7.6 mA (2) | | | V _{TT} – 0.57 | V | | | | | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Units | |-------------------|---------------------------|------------------------------|-------------------------|------------------|-------------------------|-------| | V _{CCIO} | I/O supply voltage | | 3.0 | 3.3 | 3.6 | V | | V _{TT} | Termination voltage | | V _{REF} - 0.05 | V _{REF} | V _{REF} + 0.05 | V | | V _{REF} | Reference voltage | | 1.3 | 1.5 | 1.7 | V | | V _{IH} | High-level input voltage | | V _{REF} + 0.2 | | V _{CCIO} + 0.3 | V | | V _{IL} | Low-level input voltage | | -0.3 | | V _{REF} - 0.2 | V | | V _{OH} | High-level output voltage | I _{OH} = -16 mA (1) | V _{TT} + 0.8 | | | V | | V _{OL} | Low-level output voltage | I _{OL} = 16 mA (2) | | | V _{TT} – 0.8 | V | | Table 33. HS | Table 33. HSTL Class I I/O Specifications | | | | | | | | | |-------------------|---|-----------------------------|-------------------------|------------------|-------------------------|-------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Units | | | | | V _{CCIO} | I/O supply voltage | | 1.71 | 1.8 | 1.89 | V | | | | | V _{TT} | Termination voltage | | V _{REF} – 0.05 | V _{REF} | V _{REF} + 0.05 | V | | | | | V_{REF} | Reference voltage | | 0.68 | 0.75 | 0.90 | V | | | | | V _{IH} | High-level input voltage | | V _{REF} + 0.1 | | V _{CCIO} + 0.3 | V | | | | | V _{IL} | Low-level input voltage | | -0.3 | | V _{REF} – 0.1 | V | | | | | V _{OH} | High-level output voltage | I _{OH} = -8 mA (1) | V _{CCIO} - 0.4 | | | V | | | | | V _{OL} | Low-level output voltage | I _{OL} = 8 mA (2) | | | 0.4 | V | | | | | Table 36. CT | T I/O Specifications | | | | | | |---------------------------------------|--|--|------------------------|---------|------------------------|-------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Units | | V _{CCIO} | I/O supply voltage | | 3.0 | 3.3 | 3.6 | V | | V _{TT} /V _{REF} (3) | Termination and reference voltage | | 1.35 | 1.5 | 1.65 | V | | V _{IH} | High-level input voltage | | V _{REF} + 0.2 | | | V | | V _{IL} | Low-level input voltage | | | | V _{REF} – 0.2 | V | | I ₁ | Input pin leakage current | 0 < V _{IN} < V _{CCIO} | -10 | | 10 | μΑ | | V _{OH} | High-level output voltage | $I_{OH} = -8 \text{ mA } (1)$ | V _{REF} + 0.4 | | | V | | V _{OL} | Low-level output voltage | I _{OL} = 8 mA (2) | | | V _{REF} – 0.4 | V | | Io | Output leakage
current (when output
is high Z) | GND ≤ V _{OUT} ≤ V _{CCIO} | -10 | | 10 | μΑ | # Notes to tables: - The I_{OH} parameter refers to high-level output current. The I_{OL} parameter refers to low-level output current. This parameter applies to open-drain pins as well as output pins. (3) V_{REF} specifies center point of switching range. Figure 32 shows the output drive characteristics of APEX 20KC devices. Figure 34. Synchronous Bidirectional Pin External Timing ## Notes: - (1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. Use the "Output Enable Routing = Single-Pin" option in the Quartus II software to set the output enable register. - (2) Use the "Decrease Input Delay to Internal Cells = OFF" option in the Quartus II software to set the LAB-adjacent input register. This maintains a zero hold time for LAB-adjacent registers while giving a fast, position-independent setup time. Set "Decrease Input Delay to Internal Cells = ON" and move the input register farther away from the bidirectional pin for a faster setup time with zero hold time. The exact position where zero hold occurs with the minimum setup time varies with device density and speed grade. Tables 37 to 39 describes the f_{MAX} timing parameters shown in Figure 33. Table 40 describes the functional timing parameters. | Table 37. APEX 20KC f _{MAX} LE Timing Parameters | | | | | | | |---|-------------------------------------|--|--|--|--|--| | Symbol | Parameter | | | | | | | t_{SU} | LE register setup time before clock | | | | | | | t_H | LE register hold time before clock | | | | | | | t_{CO} | LE register clock-to-output delay | | | | | | | t_{CO} t_{LUT} | LUT delay for data-in to data-out | | | | | | Tables 43 through 78 show the f_{MAX} and external timing parameters for EPC20K100C, EPC20K200C, EP20K400C, EP20K600C, EP20K1000C, and EP20K1500C devices. | Table 43. EP20K100C f _{MAX} LE Timing Parameters Note (1) | | | | | | | | | |--|---------|---------|-----------------------------------|-----|-----|-----|------|--| | Symbol | -7 Spee | d Grade | -8 Speed Grade (2) -9 Speed Grade | | | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | 0.3 | | | | | | ns | | | t _H | 0.3 | | | | | | ns | | | t_{CO} | | 0.3 | | | | | ns | | | t_{LUT} | | 0.7 | | | | | ns | | | Table 44. EP20K100C f _{MAX} ESB Timing Parameters Note (1) | | | | | | | | | |---|----------------|-----|----------|--------------------|-----|--------------------|----|--| | Symbol | -7 Speed Grade | | -8 Speed | -8 Speed Grade (2) | | -9 Speed Grade (2) | | | | | Min | Max | Min | Max | Min | Max | 1 | | | t _{ESBARC} | | 1.4 | | | | | ns | | | t _{ESBSRC} | | 2.5 | | | | | ns | | | t _{ESBAWC} | | 3.1 | | | | | ns | | | t _{ESBSWC} | | 3.0 | | | | | ns | | | t _{ESBWASU} | 0.5 | | | | | | ns | | | t _{ESBWAH} | 0.5 | | | | | | ns | | | t _{ESBWDSU} | 0.6 | | | | | | ns | | | t _{ESBWDH} | 0.5 | | | | | | ns | | | t _{ESBRASU} | 1.4 | | | | | | ns | | | t _{ESBRAH} | 0.0 | | | | | | ns | | | t _{ESBWESU} | 2.3 | | | | | | ns | | | t _{ESBDATASU} | 0.0 | | | | | | ns | | | t _{ESBWADDRSU} | 0.2 | | | | | | ns | | | t _{ESBRADDRSU} | 0.2 | | | | | | ns | | | t _{ESBDATACO1} | | 1.0 | | | | | ns | | | t _{ESBDATACO2} | | 2.3 | | | | | ns | | | t _{ESBDD} | | 2.7 | | | | | ns | | | t _{PD} | | 1.6 | | | | | ns | | | t _{PTERMSU} | 1.0 | | | | | | ns | | | t _{PTERMCO} | | 1.0 | | | | | ns | | | Table 48. EP20K100C External Bidirectional Timing Parameters | | | | | | | | | | |--|--------|----------|--------------------|-----|--------------------|-----|------|--|--| | Symbol | -7 Spe | ed Grade | -8 Speed Grade (2) | | -9 Speed Grade (2) | | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSUBIDIR} | 1.9 | | | | | | ns | | | | t _{INHBIDIR} | 0.0 | | | | | | ns | | | | t _{OUTCOBIDIR} | 2.0 | 5.0 | | | | | ns | | | | t _{XZBIDIR} | | 7.1 | | | | | ns | | | | t _{ZXBIDIR} | | 7.1 | | | | | ns | | | | t _{INSUBIDIRPLL} | 3.9 | | | | | | ns | | | | t _{INHBIDIRPLL} | 0.0 | | | | | | ns | | | | †OUTCOBIDIRPLL | 0.5 | 2.1 | | | | | ns | | | | t _{XZBIDIRPLL} | | 4.2 | | | | | ns | | | | t _{ZXBIDIRPLL} | | 4.2 | | | | | ns | | | | Table 49. EP20K200C f _{MAX} LE Timing Parameters Note (1) | | | | | | | | | | |--|---------|---------|----------|-----------|----------|-----------|------|--|--| | Symbol | -7 Spee | d Grade | -8 Speed | Grade (2) | -9 Speed | Grade (2) | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{SU} | 0.3 | | | | | | ns | | | | t_H | 0.3 | | | | | | ns | | | | t_{CO} | | 0.3 | | | | | ns | | | | t _{LUT} | | 0.7 | | | | | ns | | | | Table 64. EP20K600C Minimum Pulse Width Timing Parameters Note (1) | | | | | | | | | |---|---------|---------|--------------------|-----|--------------------|-----|------|--| | Symbol | -7 Spee | d Grade | -8 Speed Grade (2) | | -9 Speed Grade (2) | | Unit | | | | Min | Max | Min | Max | Min | Max | † | | | t _{CH} | 2.3 | | | | | | ns | | | t_{CL} | 2.3 | | | | | | ns | | | t _{CLRP} | 0.2 | | | | | | ns | | | t _{PREP} | 0.2 | | | | | | ns | | | t _{ESBCH} | 2.3 | | | | | | ns | | | t _{ESBCL} | 2.3 | | | | | | ns | | | t _{ESBWP} | 1.1 | | | | | | ns | | | t _{ESBRP} | 0.9 | | | | | | ns | | | Table 65. EP20K600C External Timing Parameters | | | | | | | | | | |--|--------|----------|----------|-----------------------------------|-----|-----------|------|--|--| | Symbol | -7 Spe | ed Grade | -8 Speed | peed Grade (2) -9 Speed Grade (2) | | Grade (2) | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSU} | 2.2 | | | | | | ns | | | | t _{INH} | 0.0 | | | | | | ns | | | | tоитсо | 2.0 | 5.0 | | | | | ns | | | | t _{INSUPLL} | 3.3 | | | | | | ns | | | | t _{INHPLL} | 0.0 | | | | | | ns | | | | †OUTCOPLL | 0.5 | 2.1 | | | | | ns | | |