E·XFL

XMOS - XS1-L10A-128-QF124-I10 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	XCore
Core Size	32-Bit 10-Core
Speed	1000MIPS
Connectivity	Configurable
Peripherals	-
Number of I/O	84
Program Memory Size	128KB (32K x 32)
Program Memory Type	SRAM
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-TFQFN Dual Rows, Exposed Pad
Supplier Device Package	124-QFN DualRow (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xs1-l10a-128-qf124-i10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal	Functio	on					Туре	Properties
X1D00		1A ⁰					I/O	PD _S , R _S
X1D01	XLA ⁴ out	1 B ⁰					I/O	PD _S , R _S
X1D02	XLA ³ out		4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	PD _S , R _U
X1D03	XLA ² _{out}		4A ¹	8A ¹	16A ¹	32A ²¹	I/O	PDs, Ru
X1D04	XLA ¹ _{out}		4B ⁰	8A ²	16A ²	32A ²²	I/O	PDs, Ru
X1D05	XLA ⁰ out		4B ¹	8A ³	16A ³	32A ²³	I/0	PD _S , R _U
X1D06	XLA ⁰		4B ²	8A ⁴	16A ⁴	32A ²⁴	I/0	PD _S , R _U
X1D07	XLA ¹		4B ³	8A ⁵	16A ⁵	32A ²⁵	I/0	PD _S , R _U
X1D08	XLA ²		4A ²	8A ⁶	16A ⁶	32A ²⁶	I/0	PD _S , R _U
X1D09	XLA ³		4A ³	8A ⁷	16A ⁷	32A ²⁷	I/0	PD_S, R_U
X1D10	XLA ⁴	1C ⁰					I/O	PDs, Rs
X1D11		1D ⁰					I/O	PD _S , R _S
X1D12		1E ⁰					I/0	PD _S , R _U
X1D13	XLB ⁴ out	1 F ⁰					I/0	PD _S , R _U
X1D14	XLB ³ out		4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/0	PD _S , R _U
X1D15	XLB ² out		4C ¹	8B1	16A ⁹	32A ²⁹	I/0	PD_S, R_U
X1D16	XLB ¹ out		4D ⁰	8B ²	16A ¹⁰		I/O	PD _S , R _U
X1D17	XLB ⁰ out		4D ¹	8B ³	16A ¹¹		I/O	PD _S , R _U
X1D18	XLB ⁰		4D ²	8B ⁴	16A ¹²		I/0	PD _S , R _U
X1D19	XLB ¹		4D ³	8B ⁵	16A ¹³		I/0	PD _S , R _U
X1D20	XLB ²		4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/0	PD _S , R _U
X1D21	XLB ³		4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/0	PD_S, R_U
X1D22	XLB ⁴	1G ⁰					I/O	PD _S , R _U
X1D23		1H ⁰					I/O	PD _S , R _U
X1D24		110					I/O	PDs
X1D25		1J ⁰					I/O	PDs
X1D26			4E ⁰	8C ⁰	16B ⁰		I/O	PD _S , R _U
X1D27			4E ¹	8C1	16B ¹		I/O	PD_S, R_U
X1D28			4F ⁰	8C ²	16B ²		I/O	PD _S , R _U
X1D29			4F ¹	8C ³	16B ³		I/O	PD _S , R _U
X1D30			4F ²	8C ⁴	16B ⁴		I/O	PD _S , R _U
X1D31			4F ³	8C ⁵	16B ⁵		I/O	PD _S , R _U
X1D32			4E ²	8C ⁶	16B ⁶		I/O	PD _S , R _U
X1D33			4E ³	8C ⁷	16B ⁷		I/O	PD_S, R_U
X1D34		1K ⁰					I/O	PDs
X1D35		1L ⁰					I/O	PDs
X1D36		1 M ⁰		8D ⁰	16B ⁸		I/O	PDs
X1D37		1 N ⁰		8D ¹	16B ⁹		I/O	PD _S , R _U
X1D38		100		8D ²	16B ¹⁰		I/O	PD_S, R_U
X1D39		1 P ⁰		8D ³	16B ¹¹		I/O	PD _s , R _U

-XMOS[®]-

pins (5)							
Signal	Function	Туре	Properties				
PCU_CLK	Clock input						
PCU_GATE	Power control gate control						
PCU_VDD	PCU tile power						
PCU_VDDIO	PCU I/O supply						
PCU_WAKE	Wakeup reset						

Figure 5: Switch, links and channel ends

> Information on the supported routing topologies that can be used to connect multiple devices together can be found in the XS1-L Link Performance and Design Guide, X2999.

6 PLL

The PLL creates a high-speed clock that is used for the switch, tile, and reference clock.

The PLL multiplication value is selected through the two MODE pins, and can be changed by software to speed up the tile or use less power. The MODE pins are set as shown in Figure 6:

	Oscillator	MC	DDE	Tile	PLL Ratio	PLL	PLL settings	
	Frequency	1	0	Frequency		OD	F	R
Figure 6:	5-13 MHz	0	0	130-399.75 MHz	30.75	1	122	0
PLL multiplier	13-20 MHz	1	1	260-400.00 MHz	20	2	119	0
values and	20-48 MHz	1	0	167-400.00 MHz	8.33	2	49	0
MODE pins	48-100 MHz	0	1	196-400.00 MHz	4	2	23	0

Figure 6 also lists the values of OD, F and R, which are the registers that define the ratio of the tile frequency to the oscillator frequency:

-XMOS"

$$F_{core} = F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \times \frac{1}{OD+1}$$

OD, *F* and *R* must be chosen so that $0 \le R \le 63$, $0 \le F \le 4095$, $0 \le OD \le 7$, and $260MHz \le F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \le 1.3GHz$. The *OD*, *F*, and *R* values can be modified by writing to the digital node PLL configuration register.

The MODE pins must be held at a static value during and after deassertion of the system reset.

If a different tile frequency is required (eg, 500 MHz), then the PLL must be reprogrammed after boot to provide the required tile frequency. The XMOS tools perform this operation by default. Further details on configuring the clock can be found in the XS1-L Clock Frequency Control document, X1433.

7 Boot Procedure

The device is kept in reset by driving RST_N low. When in reset, all GPIO pins are high impedance. When the device is taken out of reset by releasing RST_N the processor starts its internal reset process. After 15-150 μ s (depending on the input clock), all GPIO pins have their internal pull-resistor enabled, and the processor boots at a clock speed that depends on MODE0 and MODE1.

The xCORE Tile boot procedure is illustrated in Figure 7. In normal usage, MODE[4:2] controls the boot source according to the table in Figure 8. If bit 5 of the security register (*see* §8.1) is set, the device boots from OTP.

The boot image has the following format:

- A 32-bit program size *s* in words.
- Program consisting of $s \times 4$ bytes.
- A 32-bit CRC, or the value 0x0D15AB1E to indicate that no CRC check should be performed.

-XM()S

MODE	MODE	MODE	Boot Source
[4]	[3]	[2]	
Х	0	0	None: Device waits to be booted via JTAG
X	0	1	Reserved
0	1	0	Tile0 boots from link B, Tile1 from channel end 0 via Tile0
0	1	1	Tile0 boots from SPI, Tile1 from channel end 0 via Tile0
1	1	0	Tile0 and Tile1 independently enable link B and internal links
			(E, F, G, H), and boot from channel end 0
1	1	1	Tile0 and Tile 1 boot from SPI independently

Figure 8: Boot source pins

The program size and CRC are stored least significant byte first. The program is loaded into the lowest memory address of RAM, and the program is started from that address. The CRC is calculated over the byte stream represented by the program size and the program itself. The polynomial used is 0xEDB88320 (IEEE 802.3); the CRC register is initialized with 0xFFFFFFFF and the residue is inverted to produce the CRC.

7.1 Boot from SPI master

If set to boot from SPI master, the processor enables the four pins specified in Figure 9, and drives the SPI clock at 2.5 MHz (assuming a 400 MHz core clock). A READ command is issued with a 24-bit address 0x000000. The clock polarity and phase are 0 / 0.

	Pin	Signal	Description
	X0D00	MISO	Master In Slave Out (Data)
Figure 9:	X0D01	SS	Slave Select
SPI master	X0D10	SCLK	Clock
pins	X0D11	MOSI	Master Out Slave In (Data)

The xCORE Tile expects each byte to be transferred with the *least-significant bit first*. Programmers who write bytes into an SPI interface using the most significant bit first may have to reverse the bits in each byte of the image stored in the SPI device.

If a large boot image is to be read in, it is faster to first load a small boot-loader that reads the large image using a faster SPI clock, for example 50 MHz or as fast as the flash device supports.

The pins used for SPI boot are hardcoded in the boot ROM and cannot be changed. If required, an SPI boot program can be burned into OTP that uses different pins.

7.2 Boot from xConnect Link

If set to boot from an xConnect Link, the processor enables Link B around 200 ns after the boot process starts. Enabling the Link switches off the pull-down on

Feature	Bit	Description
Disable JTAG	0	The JTAG interface is disabled, making it impossible for the tile state or memory content to be accessed via the JTAG interface.
Disable Link access	1	Other tiles are forbidden access to the processor state via the system switch. Disabling both JTAG and Link access transforms an xCORE Tile into a "secure island" with other tiles free for non-secure user application code.
Secure Boot	5	The xCORE Tile is forced to boot from address 0 of the OTP, allowing the xCORE Tile boot ROM to be bypassed (see \S 7).
Redundant rows	7	Enables redundant rows in OTP.
Sector Lock 0	8	Disable programming of OTP sector 0.
Sector Lock 1	9	Disable programming of OTP sector 1.
Sector Lock 2	10	Disable programming of OTP sector 2.
Sector Lock 3	11	Disable programming of OTP sector 3.
OTP Master Lock	12	Disable OTP programming completely: disables up- dates to all sectors and security register.
Disable JTAG-OTP	13	Disable all (read & write) access from the JTAG inter- face to this OTP.
Disable Global Debug	14	Disables access to the DEBUG_N pin.
	2115	General purpose software accessable security register available to end-users.
	3122	General purpose user programmable JTAG UserID code extension.

Figure 10: Security register features

data in four sectors each containing 512 rows of 32 bits which can be used to implement secure bootloaders and store encryption keys. Data for the security register is loaded from the OTP on power up. All additional data in OTP is copied from the OTP to SRAM and executed first on the processor.

The OTP memory is programmed using three special I/O ports: the OTP address port is a 16-bit port with resource ID 0x100200, the OTP data is written via a 32-bit port with resource ID 0x200100, and the OTP control is on a 16-bit port with ID 0x100300. Programming is performed through libotp and xburn.

8.2 SRAM

Each xCORE Tile integrates a single 64KBSRAM bank for both instructions and data. All internal memory is 32 bits wide, and instructions are either 16-bit or 32-bit. Byte (8-bit), half-word (16-bit) or word (32-bit) accesses are supported and are executed within one tile clock cycle. There is no dedicated external memory interface, although data memory can be expanded through appropriate use of the ports.

-XM()S

12 Package Information

-XMOS[®]

12.1 Part Marking

13 Ordering Information

	Product Code	Marking	Qualification	Speed Grade
	XS1-L10A-128-QF124-C8	10L7C8	Commercial	800 MIPS
Figure 28:	XS1-L10A-128-QF124-C10	10L7C10	Commercial	1000 MIPS
Orderable	XS1-L10A-128-QF124-I8	10L7I8	Industrial	800 MIPS
part numbers	XS1-L10A-128-QF124-I10	10L7I10	Industrial	1000 MIPS

-XMOS

Bits	Perm	Init	Description
31:24	RO	-	Reserved
23:16	RO		xCORE tile number on the switch.
15:9	RO	-	Reserved
8	RO		Set to 1 if boot from OTP is enabled.
7:0	RO		The boot mode pins MODE0, MODE1,, specifying the boot frequency, boot source, etc.

0x03: xCORE Tile boot status

B.5 Security configuration: 0x05

Copy of the security register as read from OTP.

0x05: Security configuration

Bits	Perm	Init	Description
31:0	RO		Value.

B.6 Ring Oscillator Control: 0x06

There are four free-running oscillators that clock four counters. The oscillators can be started and stopped using this register. The counters should only be read when the ring oscillator is stopped. The counter values can be read using four subsequent registers. The ring oscillators are asynchronous to the xCORE tile clock and can be used as a source of random bits.

0x06 Ring Oscillator Control

-	Bits	Perm	Init	Description
):	31:2	RO	-	Reserved
a r	1	RW	0	Set to 1 to enable the xCORE tile ring oscillators
l	0	RW	0	Set to 1 to enable the peripheral ring oscillators

B.7 Ring Oscillator Value: 0x07

This register contains the current count of the xCORE Tile Cell ring oscillator. This value is not reset on a system reset.

0x07: Ring Oscillator Value

Bits	Perm	Init	Description
31:16	RO	-	Reserved
15:0	RO	-	Ring oscillator counter data.

-XMOS-

0x11:	Bits	Perm	Init	Description
Debug SPC	31:0	DRW		Value.

B.13 Debug SSP: 0x12

This register contains the value of the SSP register when the debugger was called.

0x12:	Bits	Perm	Init	Description
Debug SSP	31:0	DRW		Value.

B.14 DGETREG operand 1: 0x13

The resource ID of the logical core whose state is to be read.

0x13	Bits	Perm	Init	Description
DGETREG	31:8	RO	-	Reserved
operand 1	7:0	DRW		Thread number to be read

B.15 DGETREG operand 2: 0x14

Register number to be read by DGETREG

0x14: DGETREG operand 2

Bits	Perm	Init	Description
31:5	RO	-	Reserved
4:0	DRW		Register number to be read

B.16 Debug interrupt type: 0x15

Register that specifies what activated the debug interrupt.

B.19 Debug scratch: 0x20 .. 0x27

A set of registers used by the debug ROM to communicate with an external debugger, for example over JTAG. This is the same set of registers as the Debug Scratch registers in the xCORE tile configuration.

0x20 .. 0x27: Debug scratch

xz7: bug	Bits	Perm	Init	Description
atch	31:0	DRW		Value.

B.20 Instruction breakpoint address: 0x30 .. 0x33

This register contains the address of the instruction breakpoint. If the PC matches this address, then a debug interrupt will be taken. There are four instruction breakpoints that are controlled individually.

0x30 .. 0x33: Instruction breakpoint address

tion oint	Bits	Perm	Init	Description
ress	31:0	DRW		Value.

B.21 Instruction breakpoint control: 0x40 .. 0x43

This register controls which logical cores may take an instruction breakpoint, and under which condition.

Bit	Perm	Init	Description
31:24	RO	-	Reserved
23:10	DRW	0	A bit for each logical core in the tile allowing the breakpoint to be enabled individually for each logical core.
15:2	RO	-	Reserved
	DRW	0	Set to 1 to cause an instruction breakpoint if the PC is not equal to the breakpoint address. By default, the breakpoint is triggered when the PC is equal to the breakpoint address.
(DRW	0	When 1 the instruction breakpoint is enabled.

0x40 .. 0x43: Instruction breakpoint control

B.22 Data watchpoint address 1: 0x50 .. 0x53

This set of registers contains the first address for the four data watchpoints.

XMOS

0x50 .. 0x53: Data watchpoint address 1

Data point	Bits	Perm	Init	Description
ess 1	31:0	DRW		Value.

B.23 Data watchpoint address 2: 0x60 ... 0x63

This set of registers contains the second address for the four data watchpoints.

0x60 .. 0x63: Data watchpoint address 2

a it	Bits	Perm	Init	Description
2	31:0	DRW		Value.

B.24 Data breakpoint control register: 0x70 .. 0x73

This set of registers controls each of the four data watchpoints.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each logical core in the tile allowing the breakpoint to be enabled individually for each logical core.
	15:3	RO	-	Reserved
	2	DRW	0	Set to 1 to enable breakpoints to be triggered on loads. Breakpoints always trigger on stores.
3: a it	1	DRW	0	By default, data watchpoints trigger if memory in the range [Address1Address2] is accessed (the range is inclusive of Address1 and Address2). If set to 1, data watchpoints trigger if memory outside the range (Address2Address1) is accessed (the range is exclusive of Address2 and Address1).
r	0	DRW	0	When 1 the instruction breakpoint is enabled.

0x70 .. 0x73: Data breakpoint control register

B.25 Resources breakpoint mask: 0x80 .. 0x83

This set of registers contains the mask for the four resource watchpoints.

-XMOS[®]

0x80 .. 0x83: Resources breakpoint mask

rces oint	Bits	Perm	Init	Description
nask	31:0	DRW		Value.

B.26 Resources breakpoint value: 0x90 .. 0x93

This set of registers contains the value for the four resource watchpoints.

0x90 .. 0x93: Resources breakpoint value

es nt	Bits	Perm	Init	Description
ue	31:0	DRW		Value.

B.27 Resources breakpoint control register: 0x9C .. 0x9F

This set of registers controls each of the four resource watchpoints.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each logical core in the tile allowing the breakpoint to be enabled individually for each logical core.
	15:2	RO	-	Reserved
0x9C 0x9F: Resources breakpoint control	1	DRW	0	By default, resource watchpoints trigger when the resource id masked with the set Mask equals the Value. If set to 1, resource watchpoints trigger when the resource id masked with the set Mask is not equal to the Value.
register	0	DRW	0	When 1 the instruction breakpoint is enabled.

-XMOS°

40

C Tile Configuration

The xCORE Tile control registers can be accessed using configuration reads and writes (use write_tile_config_reg(tileref, ...) and read_tile_config_reg(tileref, \rightarrow ...) for reads and writes).

Number	Perm	Description
0x00	RO	Device identification
0x01	RO	xCORE Tile description 1
0x02	RO	xCORE Tile description 2
0x04	CRW	Control PSwitch permissions to debug registers
0x05	CRW	Cause debug interrupts
0x06	RW	xCORE Tile clock divider
0x07	RO	Security configuration
0x10 0x13	RO	PLink status
0x20 0x27	CRW	Debug scratch
0x40	RO	PC of logical core 0
0x41	RO	PC of logical core 1
0x42	RO	PC of logical core 2
0x43	RO	PC of logical core 3
0x44	RO	PC of logical core 4
0x60	RO	SR of logical core 0
0x61	RO	SR of logical core 1
0x62	RO	SR of logical core 2
0x63	RO	SR of logical core 3
0x64	RO	SR of logical core 4
0x80 0x9F	RO	Chanend status

Figure 31: Summary

C.1 Device identification: 0x00

	Bits	Perm	Init	Description
	31:24	RO		Processor ID of this xCORE tile.
<u>~~~</u>	23:16	RO		Number of the node in which this xCORE tile is located.
evice	15:8	RO		xCORE tile revision.
ation	7:0	RO		xCORE tile version.

-XMOS

0x00 Device identificatior

0x05:
Cause debug
interrupts

	Bits	Perm	Init	Description
<u> </u>	31:2	RO	-	Reserved
g.	1	RO	0	Set to 1 when the processor is in debug mode.
S	0	CRW	0	Set to 1 to request a debug interrupt on the processor.

C.6 xCORE Tile clock divider: 0x06

This register contains the value used to divide the PLL clock to create the xCORE tile clock. The divider is enabled under control of the tile control register

0x06: xCORE Tile clock divider

Bits	Perm	Init	Description
31:8	RO	-	Reserved
7:0	RW		Value of the clock divider minus one.

C.7 Security configuration: 0x07

Copy of the security register as read from OTP.

0x07: Security configuration

0x07: curity	Bits	Perm	Init	Description
ation	31:0	RO		Value.

-XMOS

C.8 PLink status: 0x10 .. 0x13

Status of each of the four processor links; connecting the xCORE tile to the switch.

Bits	Perm	Init	Description
31:26	RO	-	Reserved
25:24	RO		00 - ChannelEnd, 01 - ERROR, 10 - PSCTL, 11 - Idle.
23:16	RO		Based on SRC_TARGET_TYPE value, it represents channelEnd ID or Idle status.
15:6	RO	-	Reserved
5:4	RO		Two-bit network identifier
3	RO	-	Reserved
2	RO		1 when the current packet is considered junk and will be thrown away.
1	RO	0	Set to 1 if the switch is routing data into the link, and if a route exists from another link.
0	RO	0	Set to 1 if the link is routing data into the switch, and if a route is created to another link on the switch.

0x10 .. 0x13: PLink status

C.9 Debug scratch: 0x20 .. 0x27

A set of registers used by the debug ROM to communicate with an external debugger, for example over the switch. This is the same set of registers as the Debug Scratch registers in the processor status.

0x20 .. 0x27 Debug scratch

Debug	Bits	Perm	Init	Description
scratch	31:0	CRW		Value.

C.10 PC of logical core 0: 0x40

Value of the PC of logical core 0.

0x40 PC of logical core 0

al	Bits	Perm	Init	Description
0	31:0	RO		Value.

C.11 PC of logical core 1: 0x41

Ox41:
PC of logical
core 1BitsPermInitDescription31:0ROValue.

C.12 PC of logical core 2: 0x42

0x42: PC of logical	Bits	Perm	Init	Description
core 2	31:0	RO		Value.

C.13 PC of logical core 3: 0x43

Ox43:
PC of logical
core 3BitsPermInitDescription31:0ROValue.

C.14 PC of logical core 4: 0x44

0x44: PC of logical core 4

Bits	Perm	Init	Description
31:0	RO		Value.

C.15 SR of logical core 0: 0x60

Value of the SR of logical core 0

0x60: SR of logical core 0

Bits	Perm	Init	Description
31:0	RO		Value.

-XMOS

C.16 SR of logical core 1: 0x61

Ox61: SR of logical core 1 31:0

 Perm
 Init
 Description

 RO
 Value.

C.17 SR of logical core 2: 0x62

0x62:
SR of logical
core 2BitsPermInitDescription31:0ROValue.

C.18 SR of logical core 3: 0x63

0x63: SR of logical core 3

Bits	Perm	Init	Description
31:0	RO		Value.

C.19 SR of logical core 4: 0x64

0x64: SR of logical core 4

Bits	Perm	Init	Description
31:0	RO		Value.

C.20 Chanend status: 0x80 .. 0x9F

These registers record the status of each channel-end on the tile.

-XMOS

46

Bits	Perm	Init	Description
31:28	RW	0	The direction for packets whose first mismatching bit is 7.
27:24	RW	0	The direction for packets whose first mismatching bit is 6.
23:20	RW	0	The direction for packets whose first mismatching bit is 5.
19:16	RW	0	The direction for packets whose first mismatching bit is 4.
15:12	RW	0	The direction for packets whose first mismatching bit is 3.
11:8	RW	0	The direction for packets whose first mismatching bit is 2.
7:4	RW	0	The direction for packets whose first mismatching bit is 1.
3:0	RW	0	The direction for packets whose first mismatching bit is 0.

0x0C: Directions 0-7

D.9 Directions 8-15: 0x0D

This register contains eight directions, for packets with a mismatch in bits 15..8 of the node-identifier. The direction in which a packet will be routed is goverened by the most significant mismatching bit.

Bits	Perm	Init	Description
31:28	RW	0	The direction for packets whose first mismatching bit is 15.
27:24	RW	0	The direction for packets whose first mismatching bit is 14.
23:20	RW	0	The direction for packets whose first mismatching bit is 13.
19:16	RW	0	The direction for packets whose first mismatching bit is 12.
15:12	RW	0	The direction for packets whose first mismatching bit is 11.
11:8	RW	0	The direction for packets whose first mismatching bit is 10.
7:4	RW	0	The direction for packets whose first mismatching bit is 9.
3:0	RW	0	The direction for packets whose first mismatching bit is 8.

0x0D: Directions 8-15

D.10 DEBUG_N configuration: 0x10

Configures the behavior of the DEBUG_N pin.

	Bits	Perm	Init	Description
	31:2	RO	-	Reserved
-):	1	RW	0	Set to 1 to enable signals on DEBUG_N to generate DCALL on the core.
N n	0	RW	0	When set to 1, the DEBUG_N wire will be pulled down when the node enters debug mode.

0x10 DEBUG_N configuration

E XMOS USB Interface

XMOS provides a low-level USB interface for connecting the device to a USB transceiver using the UTMI+ Low Pin Interface (ULPI). The ULPI signals must be connected to the pins named in Figure 33. Note also that some ports on the same tile are used internally and are not available for use when the USB driver is active (they are available otherwise).

Pin	Signal
X <i>n</i> D02	
X <i>n</i> D03	
X <i>n</i> D04	
X <i>n</i> D05	Unavailable when USB
X <i>n</i> D06	active
X <i>n</i> D07	
X <i>n</i> D08	
X <i>n</i> D09	

Pin	Signal
X <i>n</i> D12	ULPI_STP
X <i>n</i> D13	ULPI_NXT
X <i>n</i> D14	ULPI_DATA[0]
X <i>n</i> D15	ULPI_DATA[1]
X <i>n</i> D16	ULPI_DATA[2]
X <i>n</i> D17	ULPI_DATA[3]
X <i>n</i> D18	ULPI_DATA[4]
X <i>n</i> D19	ULPI_DATA[5]
X <i>n</i> D20	ULPI_DATA[6]
X <i>n</i> D21	ULPI_DATA[7]
X <i>n</i> D22	ULPI_DIR
X <i>n</i> D23	ULPI_CLK

Pin	Signal
X <i>n</i> D26	
X <i>n</i> D27	
X <i>n</i> D28	
X <i>n</i> D29	Unavailable when USB
X <i>n</i> D30	active
X <i>n</i> D31	
X <i>n</i> D32	
X <i>n</i> D33	

X <i>n</i> D37	
X <i>n</i> D38	
X <i>n</i> D39	Unavailable
X <i>n</i> D40	when USB
X <i>n</i> D41	active
X <i>n</i> D42	
X <i>n</i> D43	

Figure 33: ULPI signals provided by the XMOS USB driver

F Device Errata

This section describes minor operational differences from the data sheet and recommended workarounds. As device and documentation issues become known, this section will be updated the document revised.

To guarantee a logic low is seen on the pins RST_N, DEBUG_N, MODE[4:0], TRST_N, TMS, TCK and TDI, the driving circuit should present an impedance of less than 100Ω to ground. Usually this is not a problem for CMOS drivers driving single inputs. If one or more of these inputs are placed in parallel, however, additional logic buffers may be required to guarantee correct operation.

For static inputs tied high or low, the relevant input pin should be tied directly to GND or VDDIO.

-XM()S