
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	XCore
Core Size	32-Bit 10-Core
Speed	800MIPS
Connectivity	Configurable
Peripherals	-
Number of I/O	84
Program Memory Size	128KB (32K x 32)
Program Memory Type	SRAM
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	124-TFQFN Dual Rows, Exposed Pad
Supplier Device Package	124-QFN DualRow (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xs1-l10a-128-qf124-i8

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 XS1-L10A-128-QF124 Features

► Multicore Microcontroller with Advanced Multi-Core RISC Architecture

- 10 real-time logical cores on 2 xCORE tiles
- Cores share up to 500 MIPS
- Each logical core has:
 - Guaranteed throughput of between 1/4 and 1/5 of tile MIPS
 - 16x32bit dedicated registers
- 159 high-density 16/32-bit instructions
 - All have single clock-cycle execution (except for divide)
 - 32x32 \rightarrow 64-bit MAC instructions for DSP, arithmetic and user-definable cryptographic functions

► Programmable I/O

- 28 general-purpose I/O pins, configurable as input or output
 - Up to 32 x 1 bit port, 12 x 4bit port, 7 x 8bit port, 3 x 16bit port
 4 xCONNECT links
- Port sampling rates of up to 60 MHz with respect to an external clock
- 64 channel ends for communication with other cores, on or off-chip

Memory

- 128KB internal single-cycle SRAM (max 64KB per tile) for code and data storage
- 8KB internal OTP (max 8KB per tile) for application boot code

Hardware resources

- 12 clock blocks (6 per tile)
- 20 timers (10 per tile)
- 8 locks (4 per tile)

► JTAG Module for On-Chip Debug

Security Features

• Programming lock disables debug and prevents read-back of memory contents

-XMOS

• AES bootloader ensures secrecy of IP held on external flash memory

► Ambient Temperature Range

- Commercial qualification: 0°C to 70°C
- Industrial qualification: -40 °C to 85 °C

Speed Grade

- 10: 1000 MIPS
- 8: 800 MIPS
- Power Consumption
 - Active Mode
 - 400 mA at 500 MHz (typical)
 - 320 mA at 400 MHz (typical)
 - Standby Mode
 - 28 mA
- 124-pin QF124 package 0.5 mm pitch

	pins (5)									
Signal	Function	Туре	Properties							
PCU_CLK	Clock input									
PCU_GATE	Power control gate control									
PCU_VDD	PCU tile power									
PCU_VDDIO	PCU I/O supply									
PCU_WAKE	Wakeup reset									

5 Product Overview

The XS1-L10A-128-QF124 is a powerful device that consists of two xCORE Tiles, each comprising a flexible logical processing cores with tightly integrated I/O and on-chip memory.

5.1 Logical cores

MIPS

Speed

grade

Each tile has 5 active logical cores, which issue instructions down a shared fourstage pipeline. Instructions from the active cores are issued round-robin. If up to four logical cores are active, each core is allocated a quarter of the processing cycles. If more than four logical cores are active, each core is allocated at least 1/ncycles (for *n* cores). Figure 2 shows the guaranteed core performance depending on the number of cores used.

2

Minimum MIPS per core (for *n* cores)

4

5

3

Figure 2: Logical core performance

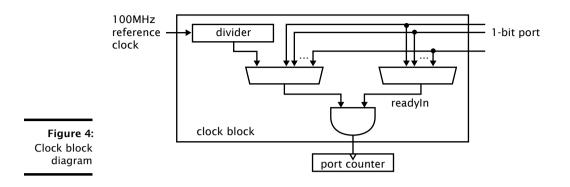
core	8	800 MIPS	400 MHz	100	100	100	100	80				
ince	10	1000 MIPS	500 MHz	125	125	125	125	100				
	There is i	no way that i	the performa	nce of	a logic	al core	e can b	e redu	ced	be	low	r thes

1

Frequency

There is no way that the performance of a logical core can be reduced below these predicted levels. Because cores may be delayed on I/O, however, their unused processing cycles can be taken by other cores. This means that for more than four logical cores, the performance of each core is often higher than the predicted minimum but cannot be guaranteed.

The logical cores are triggered by events instead of interrupts and run to completion. A logical core can be paused to wait for an event.


5.2 xTIME scheduler

The xTIME scheduler handles the events generated by xCORE Tile resources, such as channel ends, timers and I/O pins. It ensures that all events are serviced and synchronized, without the need for an RTOS. Events that occur at the I/O pins are handled by the Hardware-Response ports and fed directly to the appropriate xCORE Tile. An xCORE Tile can also choose to wait for a specified time to elapse, or for data to become available on a channel.

Tasks do not need to be prioritised as each of them runs on their own logical xCORE. It is possible to share a set of low priority tasks on a single core using cooperative multitasking.

5.3 Hardware Response Ports

Hardware Response ports connect an xCORE tile to one or more physical pins and as such define the interface between hardware attached to the XS1-L10A-128-QF124, and the software running on it. A combination of 1 bit, 4bit, 8bit, 16bit and 32bit ports are available. All pins of a port provide either output or input. Signals in different directions cannot be mapped onto the same port.

In many cases I/O signals are accompanied by strobing signals. The xCORE ports can input and interpret strobe (known as readyIn and readyOut) signals generated by external sources, and ports can generate strobe signals to accompany output data.

On reset, each port is connected to clock block 0, which runs from the xCORE Tile reference clock.

5.5 Channels and Channel Ends

Logical cores communicate using point-to-point connections, formed between two channel ends. A channel-end is a resource on an xCORE tile, that is allocated by the program. Each channel-end has a unique system-wide identifier that comprises a unique number and their tile identifier. Data is transmitted to a channel-end by an output-instruction; and the other side executes an input-instruction. Data can be passed synchronously or asynchronously between the channel ends.

5.6 xCONNECT Switch and Links

XMOS devices provide a scalable architecture, where multiple xCORE devices can be connected together to form one system. Each xCORE device has an xCONNECT interconnect that provides a communication infrastructure for all tasks that run on the various xCORE tiles on the system.

The interconnect relies on a collection of switches and XMOS links. Each xCORE device has an on-chip switch that can set up circuits or route data. The switches are connected by xConnect Links. An XMOS link provides a physical connection between two switches. The switch has a routing algorithm that supports many different topologies, including lines, meshes, trees, and hypercubes.

The links operate in either 2 wires per direction or 5 wires per direction mode, depending on the amount of bandwidth required. Circuit switched, streaming and packet switched data can both be supported efficiently. Streams provide the fastest possible data rates between xCORE Tiles (up to 250 MBit/s), but each stream requires a single link to be reserved between switches on two tiles. All packet communications can be multiplexed onto a single link.

Figure 5: Switch, links and channel ends

> Information on the supported routing topologies that can be used to connect multiple devices together can be found in the XS1-L Link Performance and Design Guide, X2999.

6 PLL

The PLL creates a high-speed clock that is used for the switch, tile, and reference clock.

The PLL multiplication value is selected through the two MODE pins, and can be changed by software to speed up the tile or use less power. The MODE pins are set as shown in Figure 6:

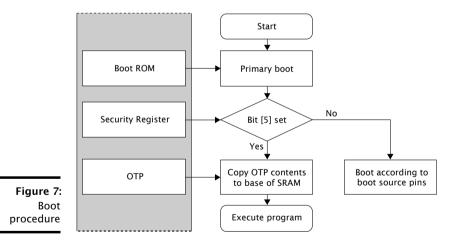
	Oscillator	МС	DDE	Tile	PLL Ratio	PLL	setting	gs
	Frequency	1	0	Frequency		OD	F	R
Figure 6:	5-13 MHz	0	0	130-399.75 MHz	30.75	1	122	0
PLL multiplier	13-20 MHz	1	1	260-400.00 MHz	20	2	119	0
values and	20-48 MHz	1	0	167-400.00 MHz	8.33	2	49	0
MODE pins	48-100 MHz	0	1	196-400.00 MHz	4	2	23	0

Figure 6 also lists the values of OD, F and R, which are the registers that define the ratio of the tile frequency to the oscillator frequency:

-XMOS"

$$F_{core} = F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \times \frac{1}{OD+1}$$

OD, *F* and *R* must be chosen so that $0 \le R \le 63$, $0 \le F \le 4095$, $0 \le OD \le 7$, and $260MHz \le F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \le 1.3GHz$. The *OD*, *F*, and *R* values can be modified by writing to the digital node PLL configuration register.


The MODE pins must be held at a static value during and after deassertion of the system reset.

If a different tile frequency is required (eg, 500 MHz), then the PLL must be reprogrammed after boot to provide the required tile frequency. The XMOS tools perform this operation by default. Further details on configuring the clock can be found in the XS1-L Clock Frequency Control document, X1433.

7 Boot Procedure

The device is kept in reset by driving RST_N low. When in reset, all GPIO pins are high impedance. When the device is taken out of reset by releasing RST_N the processor starts its internal reset process. After 15-150 μ s (depending on the input clock), all GPIO pins have their internal pull-resistor enabled, and the processor boots at a clock speed that depends on MODE0 and MODE1.

The xCORE Tile boot procedure is illustrated in Figure 7. In normal usage, MODE[4:2] controls the boot source according to the table in Figure 8. If bit 5 of the security register (*see* §8.1) is set, the device boots from OTP.

The boot image has the following format:

- A 32-bit program size *s* in words.
- Program consisting of $s \times 4$ bytes.
- A 32-bit CRC, or the value 0x0D15AB1E to indicate that no CRC check should be performed.

Feature	Bit	Description
Disable JTAG	0	The JTAG interface is disabled, making it impossible for the tile state or memory content to be accessed via the JTAG interface.
Disable Link access	1	Other tiles are forbidden access to the processor state via the system switch. Disabling both JTAG and Link access transforms an xCORE Tile into a "secure island with other tiles free for non-secure user application code.
Secure Boot	5	The xCORE Tile is forced to boot from address 0 o the OTP, allowing the xCORE Tile boot ROM to be bypassed (<i>see</i> §7).
Redundant rows	7	Enables redundant rows in OTP.
Sector Lock 0	8	Disable programming of OTP sector 0.
Sector Lock 1	9	Disable programming of OTP sector 1.
Sector Lock 2	10	Disable programming of OTP sector 2.
Sector Lock 3	11	Disable programming of OTP sector 3.
OTP Master Lock	12	Disable OTP programming completely: disables up dates to all sectors and security register.
Disable JTAG-OTP	13	Disable all (read & write) access from the JTAG inter face to this OTP.
Disable Global Debug	14	Disables access to the DEBUG_N pin.
	2115	General purpose software accessable security registe available to end-users.
	3122	General purpose user programmable JTAG UserII code extension.

Figure 10: Security register features

data in four sectors each containing 512 rows of 32 bits which can be used to implement secure bootloaders and store encryption keys. Data for the security register is loaded from the OTP on power up. All additional data in OTP is copied from the OTP to SRAM and executed first on the processor.

The OTP memory is programmed using three special I/O ports: the OTP address port is a 16-bit port with resource ID 0x100200, the OTP data is written via a 32-bit port with resource ID 0x200100, and the OTP control is on a 16-bit port with ID 0x100300. Programming is performed through libotp and xburn.

8.2 SRAM

Each xCORE Tile integrates a single 64KBSRAM bank for both instructions and data. All internal memory is 32 bits wide, and instructions are either 16-bit or 32-bit. Byte (8-bit), half-word (16-bit) or word (32-bit) accesses are supported and are executed within one tile clock cycle. There is no dedicated external memory interface, although data memory can be expanded through appropriate use of the ports.

11.4 Reset Timing

Figure 21: Reset timing

Symbol	Parameters	MIN	TYP	MAX	UNITS	Notes
T(RST)	Reset pulse width	5			us	
T(INIT)	Initialization time			150	μs	А

A Shows the time taken to start booting after RST_N has gone high.

11.5 Power Consumption

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
I(DDCQ)	Quiescent VDD current		28		mA	A, B, C
PD	Tile power dissipation		450		µW/MIPS	A, D, E, F
IDD	Active VDD current (Speed Grade 8)		320	600	mA	A, G
	Active VDD current (Speed Grade 10)		400	750	mA	А, Н
I(ADDPLL)	PLL_AVDD current			14	mA	I

Figure 22: xCORE Tile currents

A Use for budgetary purposes only.

B Assumes typical tile and I/O voltages with no switching activity.

C Includes PLL current.

D Assumes typical tile and I/O voltages with nominal switching activity.

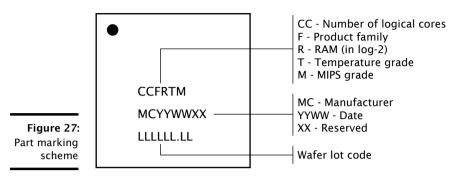
E Assumes 1 MHz = 1 MIPS.

F PD(TYP) value is the usage power consumption under typical operating conditions.

-XM()S

G Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 400 MHz, average device resource usage.

H Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 500 MHz, average device resource usage.

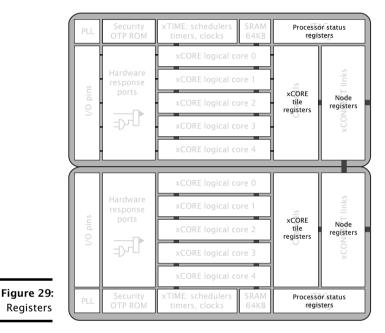

I PLL_AVDD = 1.0 V

The tile power consumption of the device is highly application dependent and should be used for budgetary purposes only.

More detailed power analysis can be found in the XS1-L Power Consumption document, X2999.

12.1 Part Marking

13 Ordering Information


	Product Code	Marking	Qualification	Speed Grade
	XS1-L10A-128-QF124-C8	10L7C8	Commercial	800 MIPS
Figure 28:	XS1-L10A-128-QF124-C10	10L7C10	Commercial	1000 MIPS
Orderable	XS1-L10A-128-QF124-I8	10L7I8	Industrial	800 MIPS
part numbers	XS1-L10A-128-QF124-I10	10L7I10	Industrial	1000 MIPS

-XMOS

Appendices

A Configuration of the XS1

The device is configured through three banks of registers, as shown in Figure 29.

The following communication sequences specify how to access those registers. Any messages transmitted contain the most significant 24 bits of the channel-end to which a response is to be sent. This comprises the node-identifier and the channel number within the node. if no response is required on a write operation, supply 24-bits with the last 8-bits set, which suppresses the reply message. Any multi-byte data is sent most significant byte first.

A.1 Accessing a processor status register

The processor status registers are accessed directly from the processor instruction set. The instructions GETPS and SETPS read and write a word. The register number should be translated into a processor-status resource identifier by shifting the register number left 8 places, and ORing it with 0x0C. Alternatively, the functions getps(reg) and setps(reg,value) can be used from XC.

A.2 Accessing an xCORE Tile configuration register

xCORE Tile configuration registers can be accessed through the interconnect using the functions write_tile_config_reg(tileref, ...) and read_tile_config_reg(tile

B.8 Ring Oscillator Value: 0x08

This register contains the current count of the xCORE Tile Wire ring oscillator. This value is not reset on a system reset.

0x08: Ring Oscillator Value

:	Bits	Perm	Init	Description
9 r	31:16	RO	-	Reserved
9	15:0	RO	-	Ring oscillator counter data.

B.9 Ring Oscillator Value: 0x09

This register contains the current count of the Peripheral Cell ring oscillator. This value is not reset on a system reset.

0x09 Ring Oscillator Value

): ~	Bits	Perm	Init	Description
g r	31:16	RO	-	Reserved
e	15:0	RO	-	Ring oscillator counter data.

B.10 Ring Oscillator Value: 0x0A

This register contains the current count of the Peripheral Wire ring oscillator. This value is not reset on a system reset.

0x0A: Ring Oscillator Value

A: ng	Bits	Perm	Init	Description
or	31:16	RO	-	Reserved
ue	15:0	RO	-	Ring oscillator counter data.

B.11 Debug SSR: 0x10

This register contains the value of the SSR register when the debugger was called.

0x10:	Bits	Perm	Init	Description
Debug SSR	31:0	RO	-	Reserved

B.12 Debug SPC: 0x11

This register contains the value of the SPC register when the debugger was called.

C Tile Configuration

The xCORE Tile control registers can be accessed using configuration reads and writes (use write_tile_config_reg(tileref, ...) and read_tile_config_reg(tileref, \rightarrow ...) for reads and writes).

Number	Perm	Description	
	_	•	
0x00	RO	Device identification	
0x01	RO	CORE Tile description 1	
0x02	RO	xCORE Tile description 2	
0x04	CRW	Control PSwitch permissions to debug registers	
0x05	CRW	Cause debug interrupts	
0x06	RW	xCORE Tile clock divider	
0x07	RO	Security configuration	
0x10 0x13	RO	PLink status	
0x20 0x27	CRW	Debug scratch	
0x40	RO	PC of logical core 0	
0x41	RO	PC of logical core 1	
0x42	RO	PC of logical core 2	
0x43	RO	PC of logical core 3	
0x44	RO	PC of logical core 4	
0x60	RO	SR of logical core 0	
0x61	RO	SR of logical core 1	
0x62	RO	SR of logical core 2	
0x63	RO	SR of logical core 3	
0x64	RO	SR of logical core 4	
0x80 0x9F	RO	Chanend status	

Figure 31: Summary

C.1 Device identification: 0x00

	Bits	Perm	Init	Description
	31:24	RO		Processor ID of this xCORE tile.
0x00: Device cation	23:16	RO		Number of the node in which this xCORE tile is located.
	15:8	RO		xCORE tile revision.
	7:0	RO		xCORE tile version.

-XMOS

0x00 Device identificatior

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:24	RO		00 - ChannelEnd, 01 - ERROR, 10 - PSCTL, 11 - Idle.	
23:16	RO		Based on SRC_TARGET_TYPE value, it represents channelEnd ID or Idle status.	
15:6	RO	-	Reserved	
5:4	RO		Two-bit network identifier	
3	RO	-	Reserved	
2	RO		1 when the current packet is considered junk and will be thrown away.	
1	RO	0	Set to 1 if the switch is routing data into the link, and if a route exists from another link.	
0	RO	0	Set to 1 if the link is routing data into the switch, and if a route is created to another link on the switch.	

0x80 .. 0x9F: Chanend status 47

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:23	RW		DD: Output divider value The initial value depends on pins MODE0 and MODE1.	
22:21	RO	-	Reserved	
20:8	RW		F: Feedback multiplication ratio The initial value depends on pins MODE0 and MODE1.	
7	RO	-	Reserved	
6:0	RW		R: Oscilator input divider value The initial value depends on pins MODE0 and MODE1.	

0x06: PLL settings

D.6 System switch clock divider: 0x07

Sets the ratio of the PLL clock and the switch clock.

0x07 System switch clock divider

07:	Bits	Perm	Init	Description
em	31:16	RO	-	Reserved
ick ler	15:0	RW	0	Switch clock divider. The PLL clock will be divided by this value plus one to derive the switch clock.

D.7 Reference clock: 0x08

Sets the ratio of the PLL clock and the reference clock used by the node.

0x08: Reference clock

Bits	Perm	Init	Description
31:16	RO	-	Reserved
15:0	RW	3	Architecture reference clock divider. The PLL clock will be divided by this value plus one to derive the 100 MHz reference clock.

D.8 Directions 0-7: 0x0C

This register contains eight directions, for packets with a mismatch in bits 7..0 of the node-identifier. The direction in which a packet will be routed is goverened by the most significant mismatching bit.

50

D.11 Debug source: 0x1F

Contains the source of the most recent debug event.

Bits	Perm	Init	Description	
31:5	RO	-	Reserved	
4	RW		If set, the external DEBUG_N pin is the source of the most recent debug interrupt.	
3:1	RO	-	Reserved	
0	RW		If set, the xCORE Tile is the source of the most recent debug interrupt.	

0x1F: Debug source

D.12 Link status, direction, and network: 0x20 .. 0x27

These registers contain status information for low level debugging (read-only), the network number that each link belongs to, and the direction that each link is part of. The registers control links C, D, A, B, G, H, E, and F in that order.

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:24	RO		If this link is currently routing data into the switch, this field specifies the type of link that the data is routed to: 0: plink 1: external link 2: internal control link	
23:16	RO	0	If the link is routing data into the switch, this field specifies the destination link number to which all tokens are sent.	
15:12	RO	-	Reserved	
11:8	RW	0	The direction that this this link is associated with; set for rout- ing.	
7:6	RO	-	Reserved	
5:4	RW	0	Determines the network to which this link belongs, set for quality of service.	
3	RO	-	Reserved	
2	RO	0	Set to 1 if the current packet is junk and being thrown away. A packet is considered junk if, for example, it is not routable.	
1	RO	0	Set to 1 if the switch is routing data into the link, and if a route exists from another link.	
0	RO	0	Set to 1 if the link is routing data into the switch, and if a route is created to another link on the switch.	

-XMOS

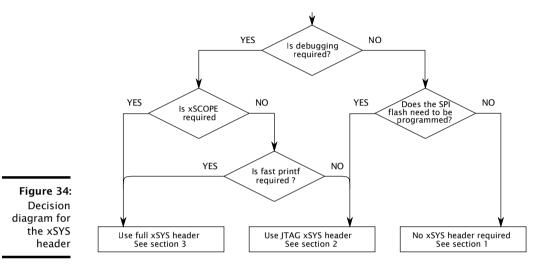
0x20 .. 0x27: Link status, direction, and network

D.13 PLink status and network: 0x40 .. 0x43

These registers contain status information and the network number that each processor-link belongs to.

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:24	RO		If this link is currently routing data into the switch, this field specifies the type of link that the data is routed to: 0: plink 1: external link 2: internal control link	
23:16	RO	0	If the link is routing data into the switch, this field specifies the destination link number to which all tokens are sent.	
15:6	RO	-	Reserved	
5:4	RW	0	Determines the network to which this link belongs, set for quality of service.	
3	RO	-	Reserved	
2	RO	0	Set to 1 if the current packet is junk and being thrown away. A packet is considered junk if, for example, it is not routable.	
1	RO	0	Set to 1 if the switch is routing data into the link, and if a route exists from another link.	
0	RO	0	Set to 1 if the link is routing data into the switch, and if a route is created to another link on the switch.	

0x40 .. 0x43: PLink status and network


D.14 Link configuration and initialization: 0x80 .. 0x87

-XMOS[®]

These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links C, D, A, B, G, H, E, and F in that order.

G JTAG, xSCOPE and Debugging

If you intend to design a board that can be used with the XMOS toolchain and xTAG debugger, you will need an xSYS header on your board. Figure 34 shows a decision diagram which explains what type of xSYS connectivity you need. The three subsections below explain the options in detail.

G.1 No xSYS header

The use of an xSYS header is optional, and may not be required for volume production designs. However, the XMOS toolchain expects the xSYS header; if you do not have an xSYS header then you must provide your own method for writing to flash/OTP and for debugging.

G.2 JTAG-only xSYS header

The xSYS header connects to an xTAG debugger, which has a 20-pin 0.1" female IDC header. The design will hence need a male IDC header. We advise to use a boxed header to guard against incorrect plug-ins. If you use a 90 degree angled header, make sure that pins 2, 4, 6, ..., 20 are along the edge of the PCB.

Connect pins 4, 8, 12, 16, 20 of the xSYS header to ground, and then connect:

- ▶ TDI to pin 5 of the xSYS header
- TMS to pin 7 of the xSYS header
- TCK to pin 9 of the xSYS header
- DEBUG_N to pin 11 of the xSYS header

H.4 Clock

- □ The CLK input pin is supplied with a clock with monotonic rising edges and low jitter.
- The PCU_CLK pin is supplied with a clock, for example it is tied to the main CLK (Section 9.1).
- The PCU_WAKE and PCU_GATE pins should be left unconnected (Section 9.1).
- Pins MODE0 and MODE1 are set to the correct value for the chosen oscillator frequency. The MODE settings are shown in the Oscillator section, Section 6. If you have a choice between two values, choose the value with the highest multiplier ratio since that will boot faster.

H.5 USB ULPI Mode

This section can be skipped if you do not have an external USB PHY.

- □ If using ULPI, the ULPI signals are connected to specific ports as shown in Section E.
- □ If using ULPI, the ports that are used internally are not connected, see Section E. (Note that this limitation only applies when the ULPI is enabled, they can still be used before or after the ULPI is being used.)

H.6 Boot

- The device is connected to a SPI flash for booting, connected to X0D0, X0D01, X0D10, and X0D11 (Section 7). If not, you must boot the device through OTP or JTAG.
- □ The device that is connected to flash has both MODE2 and MODE3 connected to pin 3 on the xSYS Header (MSEL). If no debug adapter connection is supported (not recommended) MODE2 and MODE3 are to be left NC (Section 7). MODE4 is set in accordance with Section 7.
- The SPI flash that you have chosen is supported by **xflash**, or you have created a specification file for it.

H.7 JTAG, XScope, and debugging

 \Box You have decided as to whether you need an XSYS header or not (Section G)

- □ If you included an XSYS header, you connected pin 3 to any MODE2/MODE3 pin that would otherwise be NC (Section G).
- \Box If you have not included an XSYS header, you have devised a method to program the SPI-flash or OTP (Section G).

H.8 GPIO

 $\hfill \Box$ You have not mapped both inputs and outputs to the same multi-bit port.

H.9 Multi device designs

Skip this section if your design only includes a single XMOS device.

- \Box One device is connected to a SPI flash for booting.
- Devices that boot from link have MODE2 grounded and MODE3 NC. These device must have link XLB connected to a device to boot from (see 7).
- □ If you included an XSYS header, you have included buffers for RST_N, TRST_N, TMS, TCK, MODE2, and MODE3 (Section F).

J Associated Design Documentation

Document Title	Information	Document Number
Estimating Power Consumption For XS1-L Devices	Power consumption	X4271
Programming XC on XMOS Devices	Timers, ports, clocks, cores and channels	X9577
xTIMEcomposer User Guide	Compilers, assembler and linker/mapper	X3766
	Timing analyzer, xScope, debugger	
	Flash and OTP programming utilities	

K Related Documentation

Document Title	Information	Document Number
The XMOS XS1 Architecture	ISA manual	X7879
XS1 Port I/O Timing	Port timings	X5821
xCONNECT Architecture	Link, switch and system information	X4249
XS1-L Link Performance and Design Guidelines	Link timings	X2999
XS1-L Clock Frequency Control	Advanced clock control	X1433
XS1-L Active Power Conservation	Low-power mode during idle	X7411

-XMOS[®]-