

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	363 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f707-e-ml

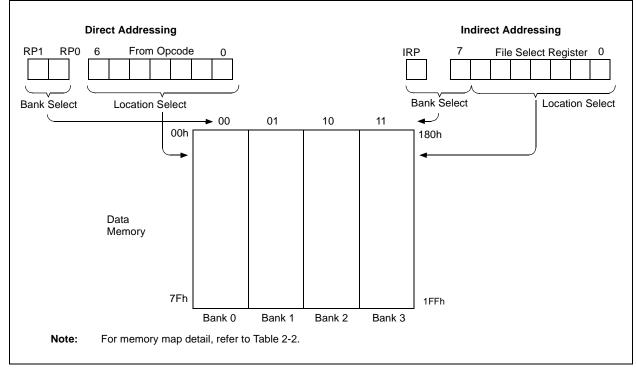
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	11
2.0	Memory Organization	. 17
3.0	Resets	. 28
4.0	Interrupts	
5.0	Low Dropout (LDO) Voltage Regulator	. 47
6.0	I/O Ports	-
7.0	Oscillator Module	
8.0	Device Configuration	
9.0	Analog-to-Digital Converter (ADC) Module	
10.0	Fixed Voltage Reference	
11.0	Digital-to-Analog Converter (DAC) Module	
12.0	Timer0 Module	
13.0	Timer1/3 Modules with Gate Control	
14.0	TimerA/B Modules	
15.0	Timer2 Module	
16.0	Capacitive Sensing Module	
17.0	Capture/Compare/PWM (CCP) Module	
18.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	
19.0	SSP Module Overview	
	Program Memory Read	
21.0	Power-Down Mode (Sleep)	
22.0	In-Circuit Serial Programming™ (ICSP™)	
23.0	Instruction Set Summary	
24.0	Development Support.	
25.0	Electrical Specifications	
26.0	DC and AC Characteristics Graphs and Charts	
27.0	Packaging Information	
	ndix A: Data Sheet Revision History	
	ndix B: Migrating From Other PIC [®] Devices	
	/icrochip Website	
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	266

2.5 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-3.

A simple program to clear RAM location 020h-02Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

	MOVLW MOVWF BANKISEL	020h FSR 020h	;initialize pointer ;to RAM
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONT	INUE		;yes continue

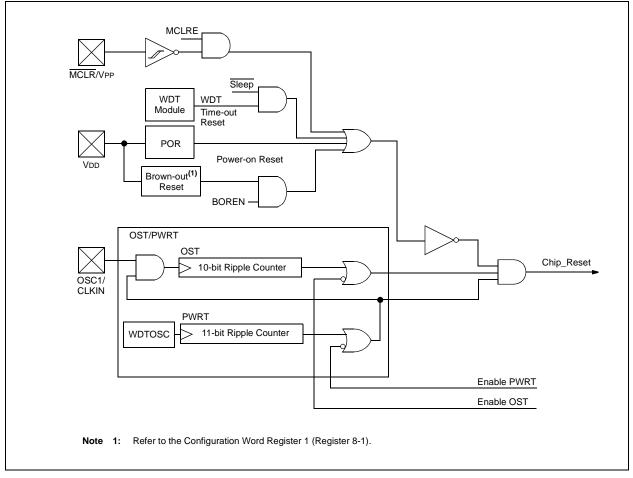
FIGURE 2-3: DIRECT/INDIRECT ADDRESSING

3.0 RESETS

The PIC16(L)F707 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:


- Power-on Reset (POR)
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

Most registers are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 3-3. These bits are used in software to determine the nature of the Reset.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 25.0** "**Electrical Specifications**" for pulse width specifications.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Register	Address	Power-on Reset/ Brown-out Reset ⁽¹⁾	MCLR Reset/ WDT Reset	Wake-up from Sleep through Interrupt/Time-out
TBCON	111h	0-00 0000	0-00 0000	u-uu uuuu
TMRB	112h	0000 0000	0000 0000	uuuu uuuu
DACCON0	113h	000- 00	000- 00	uuu- uu
DACCON1	114h	0 0000	0 0000	u uuuu
ANSELA	185h	1111 1111	1111 1111	uuuu uuuu
ANSELB	186h	1111 1111	1111 1111	uuuu uuuu
ANSELC	187h	1111 1111	1111 1111	uuuu uuuu
ANSELD	188h	1111 1111	1111 1111	uuuu uuuu
ANSELE	189h	111	111	uuu
PMCON1	18Ch	10	10	uu

TABLE 3-5: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

- 2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).
- **3:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
- 4: See Table 3-2 for Reset value for specific condition.
- **5:** If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
PCON	_	_	_	_	_	_	POR	BOR	dd	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by Resets.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

6.2 PORTA and TRISA Registers

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 6-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 6-1 shows how to initialize PORTA.

Reading the PORTA register (Register 6-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISA register (Register 6-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the

REGISTER 6-2: PORTA: PORTA REGISTER

TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSELA register must be initialized
	to configure an analog channel as a digital
	input. Pins configured as analog inputs
	will read '0'.

EXAMPLE 6-1:	INITIALIZING PORTA
BANKSEL PORTA CLRF PORTA BANKSEL ANSELA CLRF ANSELA BANKSEL TRISA MOVLW OCh MOVWF TRISA	; ;Init PORTA ; ;digital I/O ; ;Set RA<3:2> as inputs ;and set RA<7:4,1:0> ;as outputs

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻO'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **RA<7:0>**: PORTA I/O Pin bits

1 = Port pin is > VIH

0 = Port pin is < VIL

REGISTER 6-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | • | | | • | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0

l egend.

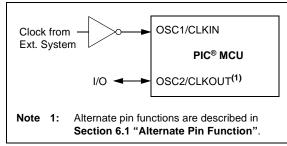
TRISA<7:0>: PORTA Tri-State Control bits

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

7.6 External Clock Modes

7.6.1 OSCILLATOR START-UP TIMER (OST)


If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations on the OSC1 pin before the device is released from Reset. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

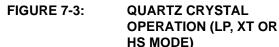
7.6.2 EC MODE

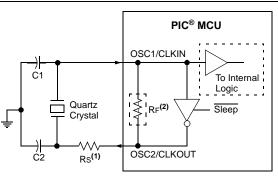
The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 7-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 7-2: EXTERNAL CLOCK (EC) MODE OPERATION

7.6.3 LP, XT, HS MODES


The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.


LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals.

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

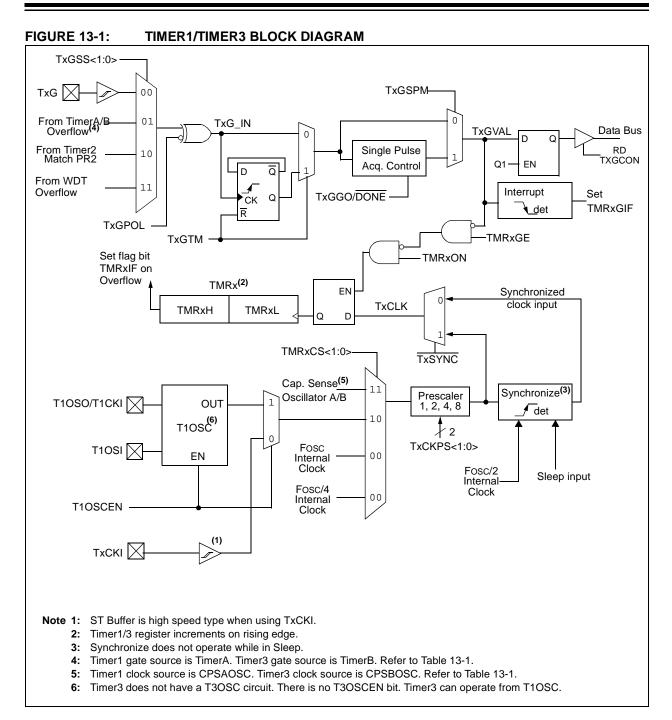
Note 1: A series resistor (Rs) may be required for quartz crystals with low drive level.

2: The value of RF varies with the Oscillator mode selected.

Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

- 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

REGISTER 10-1: FVRCON: FIXED VOLTAGE REFERENCE REGISTER


R-q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
FVRRDY ⁽¹⁾	FVREN	_	_	CDAFVR1 ⁽²⁾	CDAFVR0 ⁽²⁾	ADFVR1 ⁽²⁾	ADFVR0 ⁽²⁾		
bit 7	1						bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
q = Value depe	ends on condition	on							
bit 7	FVRRDY: Fix	ed Voltage Refe	erence Read	y Flag bit ⁽¹⁾					
		0	•	ot active or stable	e				
		tage Reference		,					
bit 6		d Voltage Refer		bit					
		tage Reference							
	1 = Fixed Vol	tage Reference	e is enabled						
bit 5-4	Reserved: Re	ead as '0'. Mair	tain these bi	ts clear					
bit 3-2	CDAFVR<1:0	>: Cap Sense	and D/A Con	verter Fixed Vol	tage Reference	Selection bit ⁽²			
	00 = CSM an	d D/A Converte	r Fixed Volta	ige Reference P	eripheral output	is off.			
				ige Reference P	• •	•			
				ige Reference P	•	•			
				ige Reference P		is 4x (4.096V))		
bit 1-0				ge Reference S					
			•	ence Peripheral					
01 = A/D Converter Fixed Voltage Reference Peripheral output is 1x (1.024V)									
	 10 = A/D Converter Fixed Voltage Reference Peripheral output is 2x (2.048V) 11 = A/D Converter Fixed Voltage Reference Peripheral output is 4x (4.096V) 								
			maye relete	fice renpuela	001pul 15 4x (4.t	(30 V)			
Note 1: FVF	RDY is always	1' on PIC16F	707 devices.						

2: Fixed Voltage Reference output cannot exceed VDD.

TABLE 10-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
FVRCON	FVRRDY	FVREN	Reserved	Reserved	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	d000 0000	d000 0000

Legend: Shaded cells are not used by the voltage reference module.

TABLE 13-1:CPSOSC/TIMERASSOCIATION

Period Measurement	Cap Sense Oscillator	Divider Timer (Gate Source)
Timer1	CPS A	TimerA
Timer3	CPS B	TimerB

13.8 Timer1/3 Operation During Sleep

Timer1/3 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMRxON bit of the TxCON register must be set
- TMRxIE bit of the PIEx register must be set
- · PEIE bit of the INTCON register must be set
- TxSYNC bit of the TxCON register must be set
- TMRxCS bits of the TxCON register must be configured
- T1OSCEN bit of the T1CON register must be configured
- TMRxGIE bit of the TxGCON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

13.9 CCP Capture/Compare Time Base (Timer1 Only)

The CCP module uses the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

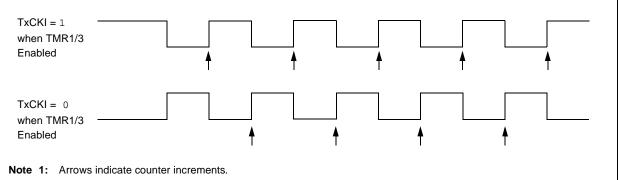
In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 17.0 "Capture/ Compare/PWM (CCP) Module".

13.10 CCP Special Event Trigger (Timer1 only)

When the CCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.


In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized to the FOSC/4 to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see Section 17.2.4 "Special Event Trigger".

FIGURE 13-2: TIMER1/TIMER3 INCREMENTING EDGE

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

	1. 12001						
R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMRxON	_	TMRxCS	TMRxSE	TMRxPSA	TMRxPS2	TMRxPS1	TMRxPS0
bit 7							bit C
Legend:							
R = Readable b	it	W = Writable	e bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at PC	DR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	TMRxON: Tim	nerA/TimerB	On/Off Control	bit			
	1 = Timerx is						
	0 = Timerx is						
bit 6	Unimplement	ted: Read as	'0'				
			urce Select bit				
			n or CPSxOSC	•			
			le clock (Fosc/	4)			
	TMRxSE: TM		0				
		0	ow transition on gh transition on	•			
	TMRxPSA: P			·			
	1 = Prescaler	is disabled.	c Fimer clock inp	ut bypasses pro	escaler.		
	0 = Prescaler	is enabled. T	imer clock inpu	ut comes from t	he prescaler ou	utput.	
bit 2-0	TMRxPS<2:0	>: Prescaler	Rate Select bit	S			
	BIT	ALUE TMRx	RATE				
	0	00 1::	2				
	01	10 1:	8				

REGISTER 14-1: TxCON: TIMERA/TIMERB CONTROL REGISTER

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH TIMERA/B

1 : 16 1 : 32

1:64

1:128

1:256

011

100

101 110

111

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CPSACON0	CPSAON	CPSARM	-	_	CPSARNG1	CPSARNG0	CPSAOUT	TAXCS	00 0000	00 0000
CPSBCON0	CPSBON	CPSBRM	_	_	CPSBRNG1	CPSBRNG0	CPSBOUT	TBXCS	00 0000	00 0000
PIE2	TMR3GIE	TMR3IE	TMRBIE	TMRAIE	—	_	_	CCP2IE	00000	00000
PIR2	TMR3GIF	TMR3IF	TMRBIF	TMRAIF	—	_	_	CCP2IF	00000	00000
TACON	TMRAON	_	TACS	TASE	TAPSA	TAPS2	TAPS1	TAPS0	0-00 0000	0-00 0000
TBCON	TMRBON	_	TBCS	TBSE	TBPSA	TBPS2	TBPS1	TBPS0	0-00 0000	0-00 0000
TMRA				TimerA Mo	odule Register				0000 0000	0000 0000
TMRB		TimerB Module Register							0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: -= Unimplemented locations, read as '0'. Shaded cells are not used by the TimerA/B modules.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0				
bit 7							bit C				
Legend:											
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-3	TOUTPS<3:0)>: Timer2 Outp	out Postscaler	Select bits							
	0000 = 1:1 P	ostscaler									
	0001 = 1:2 P	ostscaler									
	0010 = 1:3 P										
	0011 = 1:4 P										
	0100 = 1:5 P										
	0101 = 1:6 Postscaler 0110 = 1:7 Postscaler										
	0110 = 1.7 P 0111 = 1.8 P										
	1000 = 1.9 P										
	1000 = 1.91 1001 = 1.10										
	1000 = 1:10										
	1011 = 1:12										
	1100 = 1:13	Postscaler									
	1101 = 1:14	Postscaler									
	1110 = 1:15										
	1111 = 1:16	Postscaler									
bit 2	TMR2ON: Tir	mer2 On bit									
	1 = Timer2 is	s on									
	0 = Timer2 is	soff									
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Se	lect bits							
	00 = Prescale	er is 1									
	01 = Prescale	er is 4									
	1x = Prescale	er is 16									

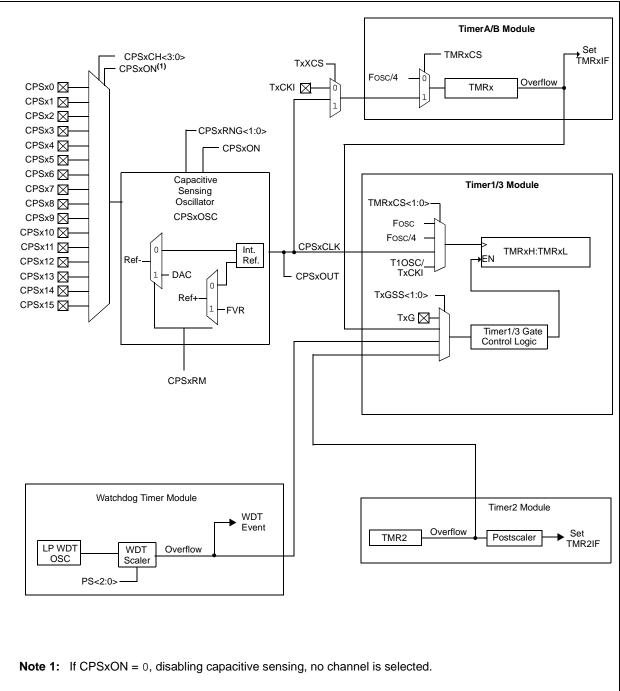

REGISTER 15-1: T2CON: TIMER2 CONTROL REGISTER

TABLE 15-1:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2			Т	imer2 Module	Period Regis	ter			1111 1111	1111 1111
TMR2				0000 0000	0000 0000					
T2CON	- TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0								-000 0000	-000 0000
Logondu	مبامير		and u		l read as (o) (Shadad aalla a		r Timor2 mod	lula	

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

17.3.2 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 17-1.

EQUATION 17-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note:	The	Timer2	postscaler	(refer	to
			Timer2 Ope		
	used	in the de	etermination	of the P	WM
	freque				

17.3.3 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 17-2 is used to calculate the PWM pulse width.

Equation 17-3 is used to calculate the PWM duty cycle ratio.

EQUATION 17-2: PULSE WIDTH

Pulse Width =
$$(CCPRxL:CCPxCON < 5:4>)$$
 •

TOSC • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

EQUATION 17-3: DUTY CYCLE RATIO

Duty Cycle Ratio = $\frac{(CCPRxL:CCPxCON < 5:4>)}{4(PR2 + 1)}$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (refer to Figure 17-3).

17.3.4 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 17-4.

EQUATION 17-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 17-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 17-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

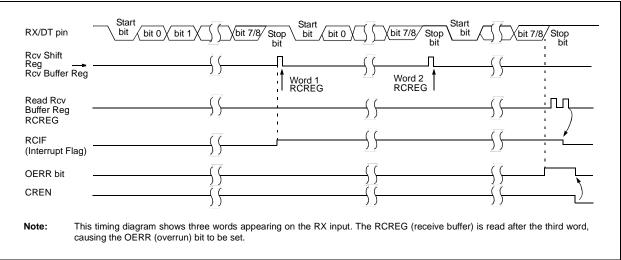
17.3.5 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

17.3.6 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (FOSC). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to **Section 7.0** "**Oscillator Module**" for additional details.

17.3.7 EFFECTS OF RESET


Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

17.3.8 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

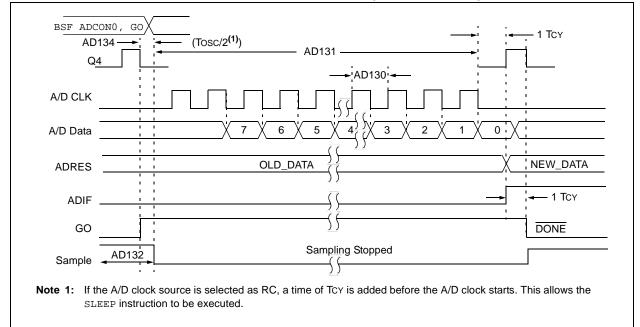
- 1. Disable the PWM pin (CCPx) output driver(s) by setting the associated TRIS bit(s).
- 2. Load the PR2 register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- 4. Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.

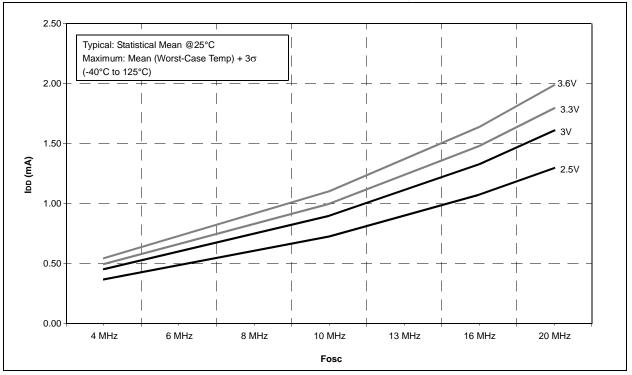
TABLE 18-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELC	ANSC7	ANSC6	ANSC5	—	—	ANSC2	ANSC1	ANSC0	111111	111111
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG			AUSA	ART Receiv	e Data Reg	jister			0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for asynchronous reception.

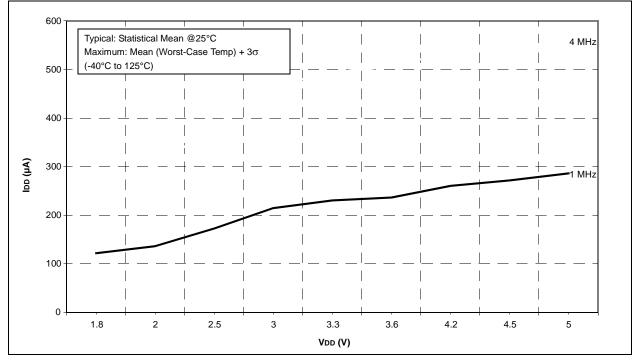
TABLE 25-8: PIC16F707 A/D CONVERSION REQUIREMENTS

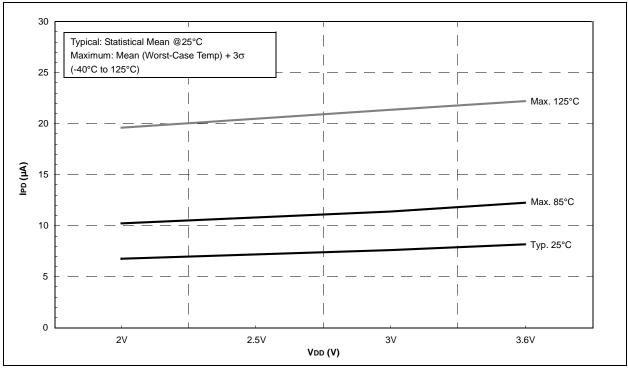

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
AD130*	Tad	A/D Clock Period	1.0	_	9.0	μS	Tosc-based				
		A/D Internal RC Oscillator Period	1.0	2.0	6.0	μS	ADCS<1:0> = 11 (ADRC mode)				
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		10.5	-	TAD	Set GO/DONE bit to conversion complete				
AD132*	TACQ	Acquisition Time		1.0	—	μS					


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.


FIGURE 25-12: PIC16F707 A/D CONVERSION TIMING (NORMAL MODE)



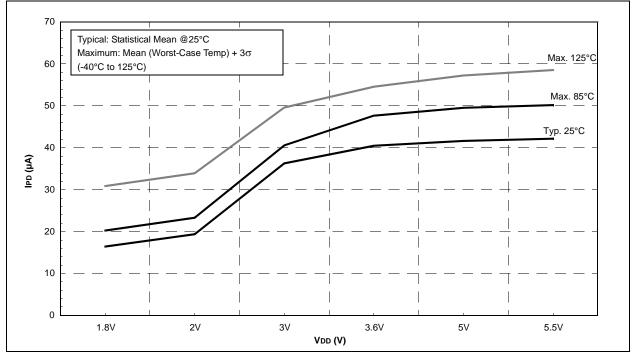


FIGURE 26-34: PIC16LF707 BOR IPD vs. VDD

40-Lead UQFN (5x5x0.5 mm) PIN 1-PIN 1-PIN 1-PIC 16F707 -I/MV @3 10033K1

	Ourstand and sittle information		
: XXX			
Y	Year code (last digit of calendar year)		
YY	Year code (last 2 digits of calendar year)		
WW	Week code (week of January 1 is week '01')		
NNN	Alphanumeric traceability code		
(e3)	Pb-free JEDEC [®] designator for Matte Tin (Sn)		
* This package is Pb-free. The Pb-free JEDEC [®] designator ($_{(e3)}$)			
	can be found on the outer packaging for this package.		
In the event the full Microchip part number cannot be marked on one line, it will			
be carried over to the next line, thus limiting the number of available characters for customer-specific information.			
	In the eve		

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (4/2010)

Original release of this data sheet.

Revision B (4/2011)

Updated the data sheet to new format; Added 40-Pin UQFN diagram; Updated Table 1 and Table 25-5; Added 40-Lead UQFN Package Marking Information and Package Details; Other minor corrections.

Revision C (12/2015)

Updated the data sheet to the new format. Updated the first chapter of the data sheet to include the Memory section. Updated the Package Details for 44-Lead QFN and 40-Lead UQFN. Other minor corrections.

APPENDIX B: MIGRATING FROM OTHER PIC[®] DEVICES

This discusses some of the issues in migrating from other $PIC^{\textcircled{B}}$ devices to the PIC16F707 family of devices.

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

Note: The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the oscillator mode may be required.

B.1 PIC16F77 to PIC16F707

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F77	PIC16F707
Max. Operating Speed	20 MHz	20 MHz
Max. Program Memory (Words)	8K	8K
Max. SRAM (Bytes)	368	363
A/D Resolution	8-bit	8-bit
Timers (8/16-bit)	2/1	4/2
Oscillator Modes	4	8
Brown-out Reset	Y	Y
Internal Pull-ups	RB<7:0>	RB<7:0>
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	0	0
USART	Y	Y
Extended WDT	N	N
Software Control Option of WDT/BOR	N	Ν
INTOSC Frequencies	None	500 kHz - 16 MHz
Clock Switching	Ν	N