

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	363 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f707-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16(L)F707 devices are covered by this data sheet. They are available in 40/44-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F707 devices. Table 1-1 shows the pinout descriptions.

6.2.2.4 RA3/AN3/VREF+/CPSA2

The RA3 pin is configurable to function as one of the following:

- General purpose I/O
- Analog input for the A/D
- Voltage Reference input for the A/D
- Capacitive sensing input

6.2.2.5 RA4/CPSA3/T0CKI/TACKI

The RA4 pin is configurable to function as one of the following:

- General purpose I/O
- Capacitive sensing input
- Clock input for Timer0
- Clock input for TimerA

The Timer0 clock input function works independently of any TRIS register setting. Effectively, if TRISA4 = 0, the PORTA4 register bit will output to the pad and clock Timer0 at the same time.

6.2.2.6 RA5/AN4/CPSA4/SS/VCAP

The RA5 pin is configurable to function as one of the following:

- General purpose I/O
- · Capacitive sensing input
- Analog input for the A/D
- Slave Select input for the SSP⁽¹⁾
- Voltage Regulator Capacitor pin (PIC16F707 only)
 - **Note 1:** \overline{SS} pin location may be selected as RA5 or RA0.

6.2.2.7 RA6/CPSB1/OSC2/CLKOUT/VCAP

The RA6 pin is configurable to function as one of the following:

- General purpose I/O
- Crystal/resonator connection
- Clock Output
- Voltage Regulator Capacitor pin (PIC16F707 only)
- Capacitive sensing input

6.2.2.8 RA7/CPSB0/OSC1/CLKIN

The RA7 pin is configurable to function as one of the following:

- General purpose I/O
- Crystal/resonator connection
- Clock Input
- Capacitive sensing input.

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	_	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ADCON1	_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0	-00000	-00000
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1111 1111	1111 1111
APFCON	_	_	_	_	_	—	SSSEL	CCP2SEL	00	00
CPSACON0	CPSAON	CPSARM	_	_	CPSARNG1	CPSARNG0	CPSAOUT	TAXCS	00 0000	00 0000
CPSACON1	_	_	_	_	CPSACH3	CPSACH2	CPSACH1	CPSACH0	0000	0000
CPSBCON0	CPSBON	CPSBRM	_	_	CPSBRNG1	CPSBRNG0	CPSBOUT	TBXCS	00 0000	00 0000
CPSBCON1	_	_	_	_	CPSBCH3	CPSBCH2	CPSBCH1	CPSBCH0	0000	0000
CONFIG2 ⁽¹⁾	_	—	VCAPEN1	VCAPEN0	_	_	_	_	—	—
OPTION_REG	RBPU	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	xxxx xxxx
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TACON	TMRAON	—	TACS	TASE	TAPSA	TAPS2	TAPS1	TAPS0	0-00 0000	0-00 0000
DACCON0	DACEN	DACLPS	DACOE	—	DACPSS1	DACPSS0	—	_	000- 00	000- 00
L a manuali								LL DODT		

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PIC16F707 only.

6.3 PORTB and TRISB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 6-6). Setting a TRISB bit (=1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-2 shows how to initialize PORTB.

Reading the PORTB register (Register 6-5) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISB register (Register 6-6) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'. Example 6-2 shows how to initialize PORTB.

EXAMPLE 6-2: INITIALIZING PORTB

BANKSEL	PORTB	;
CLRF	PORTB	;Init PORTB
BANKSEL	ANSELB	
CLRF	ANSELB	;Make RB<7:0> digital
BANKSEL	TRISB	;
MOVLW	B'11110000'	;Set RB<7:4> as inputs
		;and RB<3:0> as outputs
MOVWF	TRISB	;

Note: The ANSELB register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

6.3.1 ANSELB REGISTER

The ANSELB register (Register 6-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no affect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

6.3.2 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 6-7). Each weak pullup is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the RBPU bit of the OPTION register.

6.3.3 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:0> enable or disable the interrupt function for each pin. Refer to Register 6-8. The interrupt-on-change feature is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the present value is compared with the old value latched on the last read of PORTB to determine which bits have changed or mismatched the old value. The 'mismatch' outputs of the last read are OR'd together to set the PORTB Change Interrupt Flag bit (RBIF) in the INTCON register.

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear the flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading or writing PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After these Resets, the RBIF flag will continue to be set if a mismatch is present.

Note: When a pin change occurs at the same time as a read operation on PORTB, the RBIF flag will always be set. If multiple PORTB pins are configured for the interrupt-on-change, the user may not be able to identify which pin changed state.

6.3.4.4 RB3/AN9/CPSB11/CCP2

These pins are configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC
- Capacitive sensing input
- Capture 2 input, Compare 2 output, and PWM2 output

Note: CCP2 pin location may be selected as RB3 or RC1.

6.3.4.5 RB4/AN11/CPSB12

These pins are configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC
- Capacitive sensing input

6.3.4.6 RB5/AN13/CPSB13/T1G/T3CKI

These pins are configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC
- · Capacitive sensing input
- Timer1 gate input
- Timer3 clock input

6.3.4.7 RB6/ICSPCLK/CPSB14

These pins are configurable to function as one of the following:

- General purpose I/O
- In-Circuit Serial Programming clock
- Capacitive sensing input

6.3.4.8 RB7/ICSPDAT/CPSB15

These pins are configurable to function as one of the following:

- General purpose I/O
- In-Circuit Serial Programming data
- Capacitive sensing input

TABLE 6-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB										
Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2		Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000	
ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111	
_	_	_	_	_	_	SSSEL	CCP2SEL	00	00	
_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000	
CPSBON	CPSBRM	_	_	CPSBRNG1	CPSBRNG0	CPSBOUT	TBXCS	00 0000	00 0000	
_	_	_	_	CPSBCH3	CPSBCH2	CPSBCH1	CPSBCH0	0000	0000	
GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x	
IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	0000 0000	0000 0000	
RBPU	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	xxxx xxxx	
TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	—	T3SYNC	—	TMR3ON	0000 -0-0	0000 -0-0	
TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	uuuu uxuu	
TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111	
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111	
	Bit 7	Bit 7 Bit 6 — — ANSB7 ANSB6 — — ANSB7 ANSB6 — — CPS — — — GIE PEIE IOCB7 IOCB6 RB7U INTEDG RB7U INTEDG TMR3CS1 TMR3CS0 TMR1GE TIGPOL TRISB7 TRISB6	Bit 7Bit 6Bit 5CHS3ANSB7ANSB6ANSB5DC2B1CPSBONCPSBRMCPSBONCPSBRMGIEPEIETMR0IEIOCB7IOCB6IOCB5RB7RB6RB5TMR3CS1TMR3CS0T3CKPS1TMR1GET1GPOLT1GTMTRISB7TRISB6TRISB5	Bit 7Bit 6Bit 5Bit 4CHS3CHS2ANSB7ANSB6ANSB5ANSB4CHS3CHS2ANSB7ANSB6ANSB5ANSB4DC2B1DC2B0CPSB0NCPSBRMGIEPEIETMR0IEINTEIOCB7IOCB6IOCB5IOCB4RB7RB6RB5RB4TMR3CS1TMR3CS0T3CKPS1TMR1GETIGPOLTIGTMTIGSPMTRISB7TRISB6TRISB5TRISB4	Bit 7Bit 6Bit 5Bit 4Bit 3CHS3CHS2CHS1ANSB7ANSB6ANSB5ANSB4ANSB3DC2B1DC2B0CCP2M3CPSB0NCPSBRMCPSBRNG1CPSBRNG1CPSBRNG1CPSBRNG1CPSBCH3GIEPEIETMR0IEINTEIOCB7IOCB6IOCB5IOCB4IOCB3IOCB7IOCB6TMR0CSTMR0SEPSARB7RB6RB5RB4RB3TMR3CS1TMR3CS0T3CKPS1T3CKPS0TMR1GET1GPOLT1GTMT1GSPMT1GGO/ DONETRISB7TRISB6TRISB5TRISB4TRISB3	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2CHS3CHS2CHS1CHS0ANSB7ANSB6ANSB5ANSB4ANSB3ANSB2DC2B1DC2B0CCP2M3CCP2M2CPSB0NCPSBRMCPSBRNG1CPSBRNG0CPSBCH3CCP2M2GIEPEIETMR0IEINTERBIETMR0IFIOCB7IOCB6IOCB5IOCB4IOCB3IOCB2RB7RB6RB5RB4RB3RB2TMR3CS1TMR3CS0T3CKPS1T3CKPS0T3SYNCTMR1GET1GPOLT1GTMT1GSPMT1GGO/ DONET1GVALTRISB7TRISB6TRISB5TRISB4TRISB3TRISB2	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1CHS3CHS2CHS1CHS0GO/DONEANSB7ANSB6ANSB5ANSB4ANSB3ANSB2ANSB1SSELDC2B1DC2B0CCP2M3CCP2M2CCP2M1CPSBONCPSBRMCPSBRNG1CPSBRNG0CPSB0UTCPSBRNG1CPSBRNG0CPSB0UTCPSBCH3CPSBCH2CPSBCH1GIEPEIETMR0IEINTERBIETMR0IFINTFIOCB7IOCB6IOCB5IOCB4IOCB3IOCB2IOCB1RB7RB6RB5RB4RB3RB2RB1TMR3CS1TMR3CS0T3CKPS1T3CKPS0T3SYNCTMR1GET1GPOLT1GTMT1GSPMT1GG0/ DONET1GVALT1GSS1TRISB7TRISB6TRISB5TRISB4TRISB3TRISB2TRISB1	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0CHS3CHS2CHS1CHS0GO/DONEADONANSB7ANSB6ANSB5ANSB4ANSB3ANSB2ANSB1ANSB0SSELCCP2SELDC2B1DC2B0CCP2M3CCP2M2CCP2M1CCP2M0CPSBONCPSBRMCPSBRNG1CPSBRNG0CPSBOUTTBXCSCPSBCH3CPSBCH2CPSBCH1CPSBCH0GIEPEIETMR0IEINTERBIETMR0IFINTFRBIFIOCB7IOCB6IOCB5IOCB4IOCB3IOCB2IOCB1IOCB0RBFUINTEDGTMR0CSTMR0SEPSAPS2PS1PS0RB7RB6RB5RB4RB3RB2RB1RB0TMR3CS1TMR3CS0T3CKPS1T3CKP30T3SYNCTMR3ONTMR1GETIGPOLT1GTMT1GSPMT1GG0/ DONET1GVALT1GSS1T1GSS0TRISB7TRISB6TRISB5TRISB4TRISB3TRISB2TRISB1TRISB0	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR CHS3 CHS2 CHS1 CHS0 GO/DONE ADON 00 0000 ANSB7 ANSB6 ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 1111 1111 SSSEL CCP2SEL -00 0000 SSSEL CCP2SEL -00 0000 SSSEL CCP2M2 CCP2M1 CCP2M0 -00 0000 CPSBRNG1 CPSBRNG0 CPSBOUT TBXCS 00 0000 CPSBRNG1 CPSBCH2 CPSBCH1 CPSBCH0 000 CPSBCH3 CPSBCH2 CPSBCH1 CPSBCH0 0000 GIE PEIE TMR0IE INTE RBIE	

TABLE 6-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

14.1 TimerA/B Operation

The TimerA/B modules can be used as either 8-bit timers or 8-bit counters. Additionally, the modules can also be used to set Timer1's/Timer3's period of measurement for the capacitive sensing modules via Timer1's or Timer3's gate feature.

TABLE 14-1:CPSOSC/TIMERASSOCIATION

Cap Sense Oscillator	Divider Timer	Period Measurement
CPS A	TimerA	Timer1
CPS B	TimerB	Timer3

14.1.1 8-BIT TIMER MODE

The TimerA/B modules will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMRxCS bit of the TxCON registers.

When TMRx is written, the increment is inhibited for two instruction cycles immediately following the write.

Note:	The value written to the TMRx register can
	be adjusted, in order to account for the
	two instruction cycle delay when TMRx is
	written.

14.1.2 8-BIT COUNTER MODE

In 8-bit Counter mode, the TimerA/B modules will increment on every rising or falling edge of the TxCKI pin or the Capacitive Sensing Oscillator (CPSxOSC) signal. 8-bit Counter mode using the TxCKI pin is selected by setting the TMRxCS bit of the TxCON register to '1' and resetting the TxXCS bit in the CPSxCON0 register to '0'. 8-bit Counter mode using the Capacitive Sensing Oscillator (CPSxOSC) signal is selected by setting the TMRxCS bit in the TxCON register to '1' and setting the TxXCS bit in the TxCON register to '1' and setting the TxXCS bit in the CPSxCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMRxSE bit in the TxCON register.

14.1.3 SOFTWARE PROGRAMMABLE PRESCALER

For TimerA/B modules, the software programmable prescaler is exclusive to the Timer. The prescaler is enabled by clearing the TMRxPSA bit of the TxCON register.

There are eight prescaler options for TimerA/B modules ranging from 1:2 to 1:256. The prescale values are selectable via the TMRxPS<2:0> bits of the TxCON register for TimerA/B. In order to have a 1:1 prescaler value for the TimerA/B modules, the prescaler must be disabled.

The prescaler is not readable or writable. When the prescaler is enabled or assigned to the Timer module, all instructions writing to the TMRx register will clear the prescaler. Enabling the TimerA/B modules also clears the prescaler.

14.1.4 TIMERA/B INTERRUPT

TimerA/B will generate an interrupt when the corresponding TMR register overflows from FFh to 00h. The TMRxIF interrupt flag bit of the PIR2 register is set every time the TMRx register overflows. These interrupt flag bits are set regardless of whether or not the relative Timer interrupt is enabled. The interrupt flag bits can only be cleared in software. The TimerA/B interrupt enable bits are the TMRxIE in the PIE2 register.

Note: TimerA/B interrupts cannot wake the processor from Sleep since the timer is frozen during Sleep.

14.1.5 USING TIMERA/B WITH AN EXTERNAL CLOCK

When TimerA/B is in Counter mode, the synchronization of the TxCKI input and the TMRx register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in Section 25.0 "Electrical Specifications".

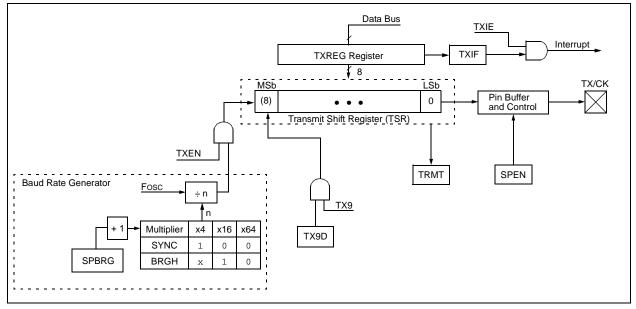
14.1.6 TIMER ENABLE

Operation of TimerA/B is enabled by setting the TMRxON bit of the TxCON register. When the module is disabled, the value in the TMRx register is maintained. Enabling the TMRx module will reset the prescaler used by the counter.

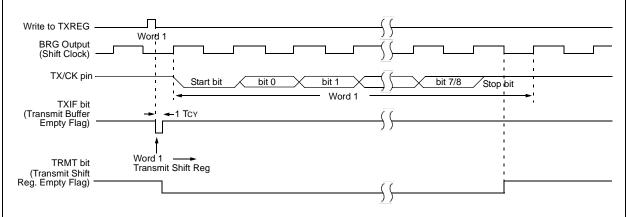
14.1.7 OPERATION DURING SLEEP

TimerA and TimerB cannot operate while the processor is in Sleep mode. The contents of the TMRx registers will remain unchanged while the processor is in Sleep mode.

18.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)


The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The AUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The AUSART module includes the following capabilities:


- Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- · Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- · Sleep operation

Block diagrams of the AUSART transmitter and receiver are shown in Figure 18-1 and Figure 18-2.

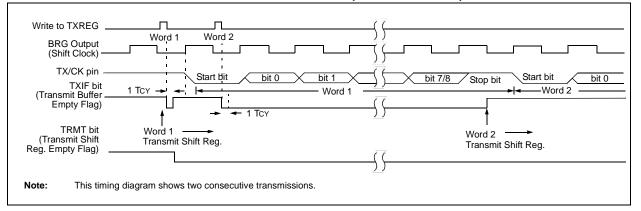

FIGURE 18-1: AUSART TRANSMIT BLOCK DIAGRAM

TABLE 18-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXREG	AUSART Transmit Data Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for asynchronous transmission.

18.1.2 AUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 18-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight

or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the AUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
bit 7							bit (
Legend:										
R = Readable		W = Writable		-	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
h:+ 7	SPEN: Serial	Dent Enchle h								
bit 7				T and TX/CK n	ins as serial por	t nins)				
		rt disabled (be				t pillo)				
bit 6	RX9: 9-bit Re	ceive Enable b	bit							
	1 = Selects 9	-bit reception								
	0 = Selects 8	•								
bit 5	-	Receive Enal	ole bit							
	Asynchronous	<u>s mode</u> :								
	Don't care	mode – Maste	.r.							
	1 = Enables		<u>u</u> .							
		single receive								
		ared after rece		ete.						
	-	mode – Slave	<u>.</u>							
L:1 1	Don't care		Enchla hit							
bit 4	CREN: Continuous Receive Enable bit Asvnchronous mode:									
	1 = Enables									
	0 = Disables									
	Synchronous	mode:								
		continuous rec continuous rec		ble bit CREN is	cleared (CREN	l overrides SRE	EN)			
bit 3	ADDEN: Add	ress Detect Er	able bit							
		<u>s mode 9-bit (F</u>								
	0 = Disables		tion, all bytes		d the receive bu nd ninth bit can					
	Don't care									
	Synchronous									
	Must be set to									
bit 2	FERR: Framin	-	un alata al las curas							
	1 = Framing 0 = No framing 0		ipdated by rea	ading RUREG I	egister and reco	eive next valid i	oyte)			
bit 1	OERR: Overr	un Error bit								
	1 = Overrun = 0 0 = No overrun	•	leared by clea	aring bit CREN))					
bit 0	RX9D: Ninth I	oit of Received	l Data							
	This can be a	ddress/data bi	t or a parity bi	t and must be o	calculated by us	er firmware.				
	he AUSART m RISx = 1.	odule automa	tically change	es the pin fro	m tri-state to c	drive as neede	ed. Configure			

REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

© 2010-2015 Microchip Technology Inc.

|--|

OSC1 ⁽¹⁾ CLKOUT ⁽²⁾ Interrupt flag	1	Q1 Q2 Q3 Q4	·	Tost ⁽³⁾			Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4
GIE bit (INTCON reg.)	:	· · · · · · · · · ·	Processor in					
Instruction Flow PC	X PC	X PC + 1	Х РС	+ 2	X PC + 2	PC + 2	<u>χ 0004h</u> χ	0005h
Instruction {	Inst(PC) = Sleep	Inst(PC + 1)	1		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep	1 1		Inst(PC + 1)	Dummy Cycle	Dummy Cycle	Inst(0004h)
2: 3:	Tost = 1024 Tosc	ailable in XT, HS, o (drawing not to sc	or LP Oscillate ale). This dela	ay applie	, but shown here for s only to XT, HS or r calls the ISR at 0	LP Oscillator mo		nue in-line.

TABLE 21-1:	SUMMARY OF REGISTERS	ASSOCIATED WITH POWER-DOWN MODE
-------------	----------------------	---------------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000x
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	TMR3GIE	TMR3IE	TMRBIE	TMRAIE	_	_	_	CCP2IE	00000	00000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	TMR3GIF	TMR3IF	TMRBIF	TMRAIF	_	_	_	CCP2IF	00000	00000
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

ADDLW	Add literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

23.2	Instruction	Descriptions
------	-------------	--------------

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[label] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W reg- ister.			

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

24.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

24.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

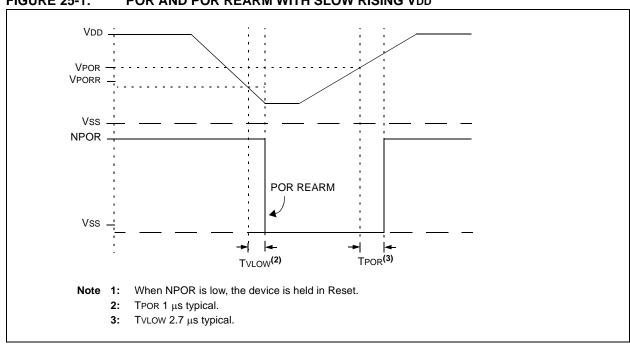
The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

24.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.


The object linker/library features include:

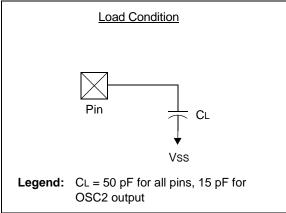
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

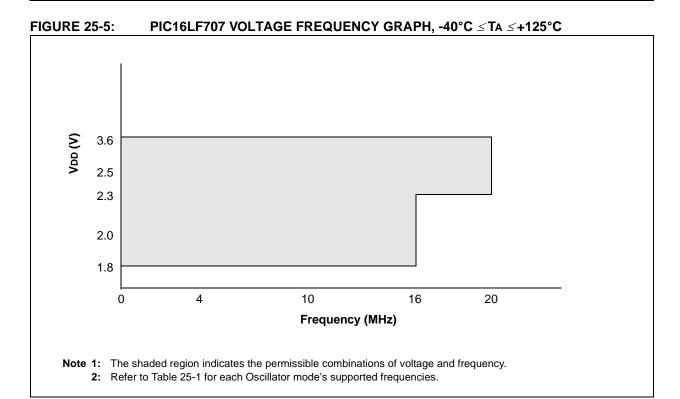
24.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

FIGURE 25-1: POR AND POR REARM WITH SLOW RISING VDD


25.6 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

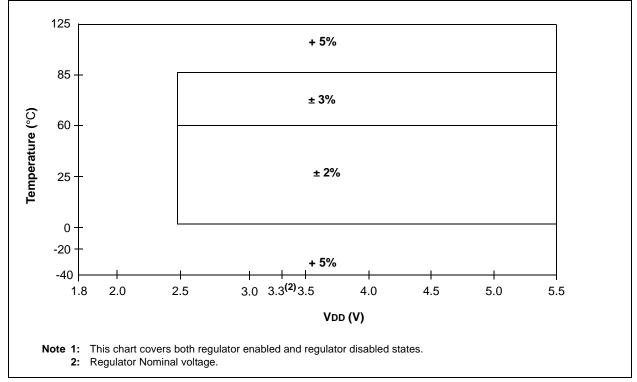

2. TPp0				
т				
F	Frequency	Т	Time	
Lowerc	case letters (pp) and their meanings:			
рр				
сс	CCP1	osc	OSC1	
ck	CLKOUT	rd	RD	
cs	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O PORT	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	case letters and their meanings:	·		
S				
F	Fall	Р	Period	
н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	

FIGURE 25-2: LOAD CONDITIONS

TABLE 25-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	37	kHz	LP Oscillator mode
			DC	_	4	MHz	XT Oscillator mode
			DC	_	20	MHz	HS Oscillator mode
			DC		20	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	—	32.768	_	kHz	LP Oscillator mode
			0.1		4	MHz	XT Oscillator mode
			1		4	MHz	HS Oscillator mode, VDD \leq 2.7V
			1	_	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC		4	MHz	RC Oscillator mode
OS02	Tosc	External CLKIN Period ⁽¹⁾	27		×	μs	LP Oscillator mode
			250	_	×	ns	XT Oscillator mode
			50	_	×	ns	HS Oscillator mode
			50		×	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	—	μs	LP Oscillator mode
			250	_	10,000	ns	XT Oscillator mode
			250	_	1,000	ns	HS Oscillator mode, VDD \leq 2.7V
			50	_	1,000	ns	HS Oscillator mode, VDD > 2.7V
			250	_	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	TCY = 4/FOSC
OS04*	TosH,	External CLKIN High,	2	_	_	μs	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	_	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	_	×	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	∞	ns	XT oscillator
			0	—	∞	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 25-3: CLKOUT AND I/O TIMING PARAMETERS

Standard Operating Conditions (unless otherwise stated)

	Temperature	4000 / -	
Indrating	Democratilica	_/// \~ <	$1 \wedge < \pm 1 25^{\circ}$
Operating	remperature	-+0 0	

Operatio	ng Temperat	ure $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾			70	ns	VDD = 3.3-5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 3.3-5.0V
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾		_	20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_	_	ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50			ns	VDD = 3.3-5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	_	ns	
OS18	TioR	Port output rise time ⁽²⁾	_	40 15	72 32	ns	VDD = 2.0V VDD = 3.3-5.0V
OS19	TioF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 3.3-5.0V
OS20*	Tinp	INT pin input high or low time	25	_	_	ns	
OS21*	Trbp	PORTB interrupt-on-change new input level time	Тсү	_	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

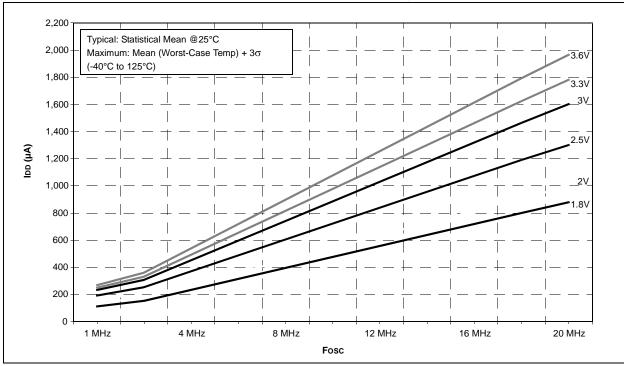
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.

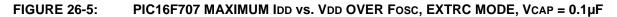
TABLE 25-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET PARAMETERS

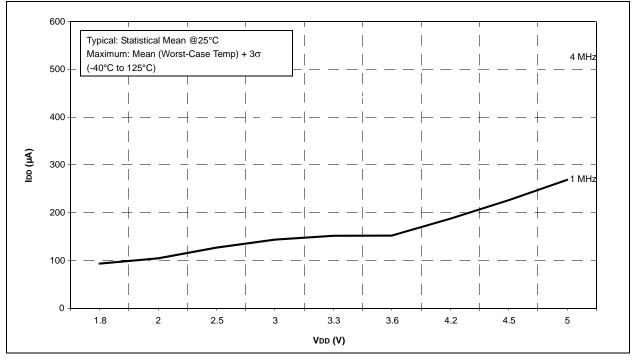
Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2 5		—	μS μS	VDD = 3.3-5V, -40°C to +85°C VDD = 3.3-5V
31	TWDTLP	Low Power Watchdog Timer Time- out Period (No Prescaler)	10	18	27	ms	VDD = 3.3V-5V
32	Tost	Oscillator Start-up Timer Period ^{(1),} (2)	—	1024	—	Tosc	(Note 3)
33*	TPWRT	Power-up Timer Period, PWRTE = 0	40	65	140	ms	
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.0	μS	
35	VBOR	Brown-out Reset Voltage	2.38 1.80	2.5 1.9	2.73 2.11	V	BORV=2.5V BORV=1.9V
36*	VHYST	Brown-out Reset Hysteresis	0	25	50	mV	-40°C to +85°C
37*	TBORDC	Brown-out Reset DC Response Time	1	3	5 10	μS	$VDD \le VBOR$, -40°C to +85°C $VDD \le VBOR$

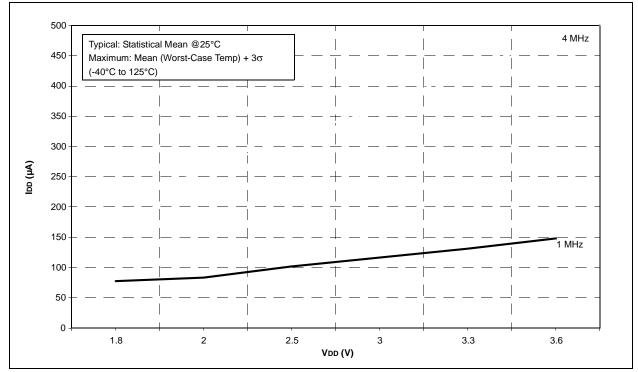
These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: By design.


3: Period of the slower clock.


4: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.


Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

