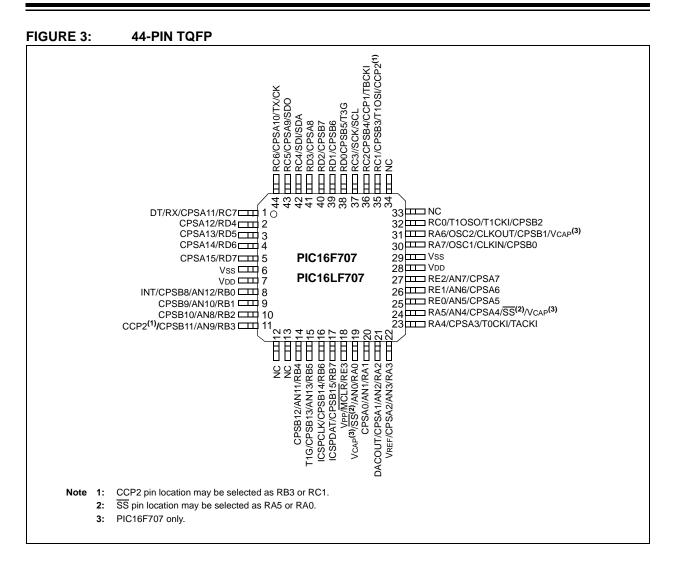


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	363 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f707-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	11
2.0	Memory Organization	. 17
3.0	Resets	. 28
4.0	Interrupts	
5.0	Low Dropout (LDO) Voltage Regulator	. 47
6.0	I/O Ports	-
7.0	Oscillator Module	
8.0	Device Configuration	
9.0	Analog-to-Digital Converter (ADC) Module	
10.0	Fixed Voltage Reference	
11.0	Digital-to-Analog Converter (DAC) Module	
12.0	Timer0 Module	
13.0	Timer1/3 Modules with Gate Control	
14.0	TimerA/B Modules	
15.0	Timer2 Module	
16.0	Capacitive Sensing Module	
17.0	Capture/Compare/PWM (CCP) Module	
18.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	
19.0	SSP Module Overview	
	Program Memory Read	
21.0	Power-Down Mode (Sleep)	
22.0	In-Circuit Serial Programming™ (ICSP™)	
23.0	Instruction Set Summary	
24.0	Development Support.	
25.0	Electrical Specifications	
26.0	DC and AC Characteristics Graphs and Charts	
27.0	Packaging Information	
	ndix A: Data Sheet Revision History	
	ndix B: Migrating From Other PIC [®] Devices	
	/icrochip Website	
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	266

TABLE 1-1: PIC16(L)F707 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/SDI/SDA	RC4	ST	CMOS	General purpose I/O.
	SDI	ST		SPI data input.
	SDA	l ² C	OD	I ² C data input/output.
RC5/SDO/CPSA9	RC5	ST	CMOS	General purpose I/O.
	SDO	_	CMOS	SPI data output.
	CPSA9	AN	_	Capacitive sensing A input 9.
RC6/TX/CK/CPSA10	RC6	ST	CMOS	General purpose I/O.
	ТХ	_	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
	CPSA10	AN	—	Capacitive sensing A input 10.
RC7/RX/DT/CPSA11	RC7	ST	CMOS	General purpose I/O.
	RX	ST	_	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
	CPSA11	AN	_	Capacitive sensing A input 11.
RD0/CPSB5/T3G	RD0	ST	CMOS	General purpose I/O.
	CPSB5	AN	—	Capacitive sensing B input 5.
	T3G	ST	_	Timer3 Gate input.
RD1/CPSB6	RD1	ST	CMOS	General purpose I/O.
	CPSB6	AN	_	Capacitive sensing B input 6.
RD2/CPSB7	RD2	ST	CMOS	General purpose I/O.
	CPSB7	AN	_	Capacitive sensing B input 7.
RD3/CPSA8	RD3	ST	CMOS	General purpose I/O.
	CPSA8	AN	_	Capacitive sensing A input 8.
RD4/CPSA12	RD4	ST	CMOS	General purpose I/O.
	CPSA12	AN		Capacitive sensing A input 12.
RD5/CPSA13	RD5	ST	CMOS	General purpose I/O.
	CPSA13	AN	_	Capacitive sensing A input 13.
RD6/CPSA14	RD6	ST	CMOS	General purpose I/O.
	CPSA14	AN		Capacitive sensing A input 14.
RD7/CPSA15	RD7	ST		General purpose I/O.
			CMOS	
	CPSA15	AN	—	Capacitive sensing A input 15.
RE0/AN5/CPSA5	REO	ST	CMOS	General purpose I/O.
	AN5	AN	—	A/D Channel 5 input.
	CPSA5	AN	-	Capacitive sensing A input 5.
RE1/AN6/CPSA6	RE1	ST	CMOS	General purpose I/O.
	AN6	AN	_	A/D Channel 6 input.
	CPSA6	AN	-	Capacitive sensing A input 6.
RE2/AN7/CPSA7	RE2	ST	CMOS	General purpose I/O.
	AN7	AN	_	A/D Channel 7 input.
	CPSA7		_	Capacitive sensing A input 7.
RE3/MCLR/Vpp	RE3	TTL		General purpose input.
	MCLR	ST	—	Master Clear with internal pull-up.
N/	VPP	HV	—	Programming voltage.
VDD	Vdd	Power	—	Positive supply.

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired, then OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and \overrightarrow{PWRTE} bit status. For example, in EC mode with \overrightarrow{PWRTE} bit = 1 (PWRT disabled), there will be no time-out at all. Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences.

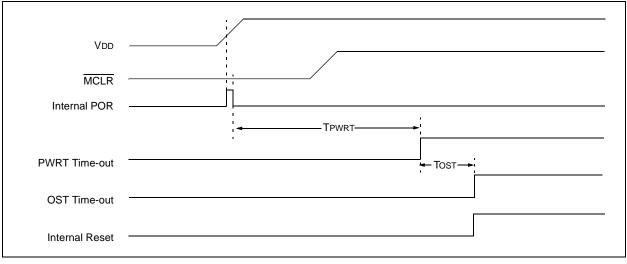
Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 3-6). This is useful for testing purposes or to synchronize more than one PIC16(L)F707 device operating in parallel.

Table 3-2 shows the Reset conditions for some special registers.

3.7 Power Control (PCON) Register

The Power Control (PCON) register has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is \overrightarrow{BOR} (Brown-out Reset). \overrightarrow{BOR} is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overrightarrow{BOR} = 0$, indicating that a brown-out has occurred. The \overrightarrow{BOR} Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).


Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 3.5 "Brown-Out Reset (BOR)".

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up from	
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT		TPWRT	_	—

TABLE 3-4: TIME-OUT IN VARIOUS SITUATIONS

FIGURE 3-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1

TABLE 3-5:	INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)									
Register	Address	Power-on Reset/ Brown-out Reset ⁽¹⁾	MCLR Reset/ WDT Reset	Wake-up from Sleep through Interrupt/Time-out						
ADCON0	1Fh	00 0000	00 0000	uu uuuu						
OPTION_REG	81h/181h	1111 1111	1111 1111	uuuu uuuu						
TRISA	85h	1111 1111	1111 1111	uuuu uuuu						
TRISB	86h	1111 1111	1111 1111	uuuu uuuu						
TRISC	87h	1111 1111	1111 1111	uuuu uuuu						
TRISD	88h	1111 1111	1111 1111	uuuu uuuu						
TRISE	89h	1111	1111	uuuu						
PIE1	8Ch	0000 0000	0000 0000	uuuu uuuu						
PIE2	8Dh	00000	00000	uuuuu						
PCON	8Eh	dd	uu ^(1,5)							
T1GCON	8Fh	0000 0x00	uuuu uxuu	uuuu uxuu						
OSCCON	90h	10 qq	10 qq	uu qq						
OSCTUNE	91h	00 0000	uu uuuu	uu uuuu						
PR2	92h	1111 1111	1111 1111	uuuu uuuu						
SSPADD	93h	0000 0000	0000 0000	uuuu uuuu						
SSPMSK	93h	1111 1111	1111 1111	uuuu uuuu						
SSPSTAT	94h	0000 0000	0000 0000	uuuu uuuu						
WPUB	95h	1111 1111	1111 1111	uuuu uuuu						
IOCB	96h	0000 0000	0000 0000	uuuu uuuu						
T3CON	97h	0000 -0-0	0000 -0-0	uuuu -u-u						
TXSTA	98h	0000 -010	0000 -010	uuuu -uuu						
SPBRG	99h	0000 0000	0000 0000	uuuu uuuu						
TMR3L	9Ah	XXXX XXXX	uuuu uuuu	uuuu uuuu						
TMR3H	9Bh	XXXX XXXX	սսսս սսսս	uuuu uuuu						
APFCON	9Ch	00	00	uu						
FVRCON	9Dh	q000 0000	q000 0000	q000 0000						
ADCON1	9Fh	-00000	-00000	-uuuuu						
TACON	105h	0-00 0000	0-00 0000	u-uu uuuu						
CPSBCON0	106h	00 0000	00 0000	uu uuuu						
CPSBCON1	107h	0000	0000	uuuu						
CPSACON0	108h	00 0000	00 0000	uu uuuu						
CPSACON1	109h	0000	0000	uuuu						
PMDATL	10Ch	xxxx xxxx	XXXX XXXX	นนนน นนนน						
PMADRL	10Dh	xxxx xxxx	XXXX XXXX	นนนน นนนน						
PMDATH	10Eh	xx xxxx	xx xxxx	uu uuuu						
PMADRH	10Fh	x xxxx	x xxxx	u uuuu						
TMRA	110h	0000 0000	0000 0000	uuuu uuuu						

TABLE 3-5: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).

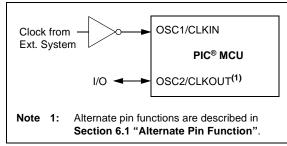
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 3-2 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

7.6 External Clock Modes

7.6.1 OSCILLATOR START-UP TIMER (OST)


If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations on the OSC1 pin before the device is released from Reset. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

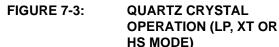
7.6.2 EC MODE

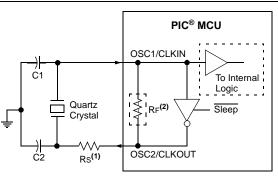
The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 7-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 7-2: EXTERNAL CLOCK (EC) MODE OPERATION

7.6.3 LP, XT, HS MODES


The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.


LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals.

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

Note 1: A series resistor (Rs) may be required for quartz crystals with low drive level.

2: The value of RF varies with the Oscillator mode selected.

Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

- 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
RBPU	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	RBPU: POR	TB Pull-up Enal	ble bit							
		oull-ups are disa								
	0 = PORTB p	oull-ups are ena	bled by indivi	dual PORT late	h values					
bit 6	INTEDG: Inte	errupt Edge Sel	ect bit							
	1 = Interrupt	on rising edge	of INT pin							
	0 = Interrupt	on falling edge	of INT pin							
bit 5	TMROCS: TA	IR0 Clock Sou	ce Select bit							
	1 = Transitior	Transition on T0CKI pin								
		nstruction cycle	clock (Fosc/	4)						
bit 4	TMR0SE: TM	IR0 Source Ed	ge Select bit							
	1 = Incremen	t on high-to-lov	v transition on	T0CKI pin						
		t on low-to-high								
bit 3	PSA: Presca	ler Assignment	bit							
		is assigned to								
		r is assigned to		odule						
bit 2-0		escaler Rate Se								
	BIT	VALUE TMR0 R	ATE WDT RA	TE						
		000 1:2	1:1							
	(1:4	1:2							
	(1:8	1:4							
		1:16								
	-	1:32	_							
		1:64								
	1	1:12 1:12								

REGISTER 12-1: OPTION_REG: OPTION REGISTER

TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
OPTION_REG	RBPU	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
TMR0	Timer0 Module Register									uuuu uuuu
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

- = Unimplemented locations, read as '0'. Shaded cells are not used by the Timer0 module. Legend:

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit C
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-3	TOUTPS<3:0)>: Timer2 Outp	out Postscaler	Select bits			
	0000 = 1:1 P	ostscaler					
	0001 = 1:2 P	ostscaler					
	0010 = 1:3 P						
	0011 = 1:4 P						
	0100 = 1:5 P						
	0101 = 1:6 P						
	0110 = 1:7 P 0111 = 1:8 P						
	1000 = 1:9 P						
	1000 = 1.91 1001 = 1.10						
	1010 = 1:11						
	1011 = 1:12						
	1100 = 1:13	Postscaler					
	1101 = 1:14	Postscaler					
	1110 = 1:15						
	1111 = 1:16	Postscaler					
bit 2	TMR2ON: Tir	mer2 On bit					
	1 = Timer2 is	s on					
	0 = Timer2 is	soff					
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Se	lect bits			
	00 = Prescale	er is 1					
	01 = Prescale	er is 4					
	1x = Prescale	er is 16					

REGISTER 15-1: T2CON: TIMER2 CONTROL REGISTER

TABLE 15-1:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2			Т	imer2 Module	Period Regis	ter			1111 1111	1111 1111
TMR2				0000 0000	0000 0000					
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
Logondu										

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

16.1 Analog MUX

Each capacitive sensing module can monitor up to 16 inputs, providing 32 capacitive sensing inputs in total. The capacitive sensing inputs are defined as CPSA<15:0> for capacitive sensing module A, and CPSB<15:0> for capacitive sensing module B. To determine if a frequency change has occurred the use must:

- Select the appropriate CPS pin by setting the CPSxCH<3:0> bits of the CPSxCON1 register.
- Set the corresponding ANSEL bit.
- Set the corresponding TRIS bit.
- Run the software algorithm.

Selection of the CPSx pin while the module is enabled will cause the capacitive sensing oscillator to be on the CPSx pin. Failure to set the corresponding ANSEL and TRIS bits can cause the capacitive sensing oscillator to stop, leading to false frequency readings.

16.2 Capacitive Sensing Oscillator

The capacitive sensing oscillator consists of a constant current source and a constant current sink, to produce a triangle waveform. The CPSxOUT bit of the CPSxCON0 register shows the status of the capacitive sensing oscillator, whether it is sinking or sourcing current. The oscillator is designed to drive a capacitive load (single PCB pad) and at the same time, be a clock source to either TimerA/B or Timer1/3. The oscillator has three different current settings as defined by CPSxRNG<1:0> of the CPSxCON0 register. The different current settings for the oscillator serve two purposes:

- Maximize the number of counts in a timer for a fixed time base.
- Maximize the count differential in the timer during a change in frequency.

16.3 Voltage References

The capacitive sensing oscillator uses voltage references to provide two voltage thresholds for oscillation. The upper voltage threshold is referred to as Ref+ and the lower voltage threshold is referred to as Ref-.

The user can elect to use Fixed Voltage References, which are internal to the capacitive sensing oscillator, or variable voltage references, which are supplied by the Fixed Voltage Reference (FVR) module and the Digital-to-Analog Converter (DAC) module.

When the Fixed Voltage References are used, the Vss voltage determines the lower threshold level (Ref-) and the VDD voltage determines the upper threshold level (Ref+).

When the variable voltage references are used, the DAC voltage determines the lower threshold level (Ref-) and the FVR voltage determines the upper threshold level (Ref+). An advantage of using these reference sources is that oscillation frequency remains constant with changes in VDD.

Different oscillation frequencies can be obtained through the use of these variable voltage references. The more the upper voltage reference level is lowered and the more the lower voltage reference level is raised, the higher the capacitive sensing oscillator frequency becomes.

Selection between the voltage references is controlled by the CPSxRM bit of the CPSxCON0 register. Setting this bit selects the variable voltage references and clearing this bit selects the Fixed Voltage References.

Please see Section 10.0 "Fixed Voltage Reference" and Section 11.0 "Digital-to-Analog Converter (DAC) Module" for more information on configuring the variable voltage levels.

- 6. Enable PWM output pin:
 - Wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See the Note below.
 - Enable the PWM pin (CCPx) output driver(s) by clearing the associated TRIS bit(s).
 - **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

TABLE 17-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
ANSELC	ANSC7	ANSC6	ANSC5		_	ANSC2	ANSC1	ANSC0	111111	111111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL			Capture/0	Compare/PWN	/I Register X L	ow Byte			xxxx xxxx	uuuu uuuu
CCPRxH			Capture/C	Compare/PWN	/I Register X H	ligh Byte			xxxx xxxx	uuuu uuuu
PR2				Timer2 Peri	od Register				1111 1111	1111 1111
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR2	Timer2 Module Register								0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

18.1.2.1 Enabling the Receiver

The AUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other AUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the AUSART. Clearing the SYNC bit of the TXSTA register configures the AUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the AUSART and automatically configures the RX/DT I/O pin as an input.

Note 1:	When the SPEN bit is set, the TX/CK I/O
	pin is automatically configured as an out-
	put, regardless of the state of the corre-
	sponding TRIS bit and whether or not the
	AUSART transmitter is enabled. The
	PORT latch is disconnected from the out-
	put driver so it is not possible to use the
	TX/CK pin as a general purpose output.
0.	The corresponding ANCEL bit must be

2: The corresponding ANSEL bit must be cleared for the RX/DT port pin to ensure proper AUSART functionality.

18.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. Refer to Section 18.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the AUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

ſ	Note:	If the receive FIFO is overrun, no additional							
		characters will be received until the overrun							
				-	cleared.				
		Section	18	.1.2.5	"Receive	Ov	errun		
		Error"	for	more	information	on ov	/errun		
		errors.							

18.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the AUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- RCIE, Receive Interrupt Enable bit of the PIE1
 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCIF interrupt flag bit of the PIR1 register will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

18.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the AUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note: If all receive characters in the receive FIFO have framing errors, repeated reads of the RCREG will not clear the FERR bit.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit (
Legend:							
R = Readable		W = Writable		-	mented bit, read		
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	own
h:+ 7	SPEN: Serial	Dent Enchle h	:(1)				
bit 7				T and TX/CK n	ins as serial por	t nins)	
		rt disabled (be				t pins)	
bit 6	RX9: 9-bit Re	ceive Enable b	oit				
	1 = Selects 9	-bit reception					
	0 = Selects 8	•					
bit 5	-	Receive Enal	ole bit				
	Asynchronous	<u>s mode</u> :					
	Don't care	mode – Maste	vr.				
	1 = Enables		<u>11</u> .				
		single receive					
		ared after rece		ete.			
		mode – Slave	<u>.</u>				
L:4 4	Don't care	D	En abla bit				
bit 4		nuous Receive	Enable bit				
	Asynchronous						
	0 = Disables						
	Synchronous	mode:					
		continuous rec continuous rec		ble bit CREN is	cleared (CREN	l overrides SRE	EN)
bit 3	ADDEN: Add	ress Detect Er	able bit				
		<u>s mode 9-bit (F</u>					
	0 = Disables		tion, all bytes		d the receive bu nd ninth bit can		
	Don't care						
	<u>Synchronous</u>						
	Must be set to						
bit 2	FERR: Framin	-	un alota al las curas				
	1 = Framing 0 = No framing 0		ipdated by rea	ading RCREG I	egister and reco	eive next valid i	oyte)
bit 1	OERR: Overr	un Error bit					
	1 = Overrun = 0 0 = No overrun	•	leared by clea	aring bit CREN))		
bit 0	RX9D: Ninth I	oit of Received	l Data				
	This can be a	ddress/data bi	t or a parity bi	t and must be o	calculated by us	er firmware.	
	he AUSART m RISx = 1.	odule automa	tically change	es the pin fro	m tri-state to c	drive as neede	ed. Configure

REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

© 2010-2015 Microchip Technology Inc.

	DC C	HARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C \le TA \le +85°C for industrial} \\ \ -40°C \le TA \le +125°C for extended \end{array}$						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D130	Ep	Cell Endurance	100	1k	—	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D131		VDD for Read	Vmin	—	—	V			
		Voltage on MCLR/VPP during Erase/Program	8.0	—	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
		VDD for Bulk Erase	2.7	3	—	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D132	Vpew	VDD for Write or Row Erase	2.7	-	—	V	VMIN = Minimum operating voltage VMAX = Maximum operating voltage		
	IPPPGM	Current on MCLR/VPP during Erase/Write	_	_	5.0	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
	IDDPGM	Current on VDD during Erase/ Write	_		5.0	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D133	TPEW	Erase/Write cycle time	-		2.8	ms	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D134	TRETD	Characteristic Retention	40	—	-	Year	Provided no other specifications are violated		
		VCAP Capacitor Charging		·	•		•		
D135		Charging current	_	200		μΑ			
D135A		Source/sink capability when charging complete	_	0.0	—	mA			

25.4 DC Characteristics: PIC16(L)F707-I/E (Continued)

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

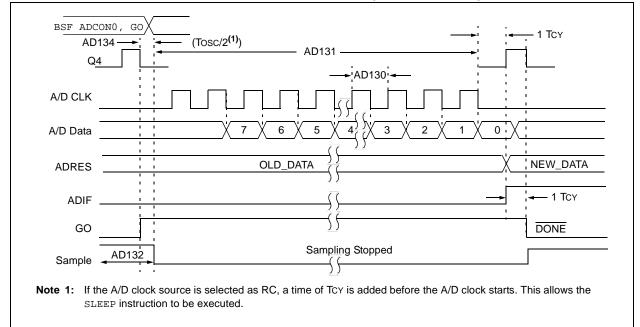
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

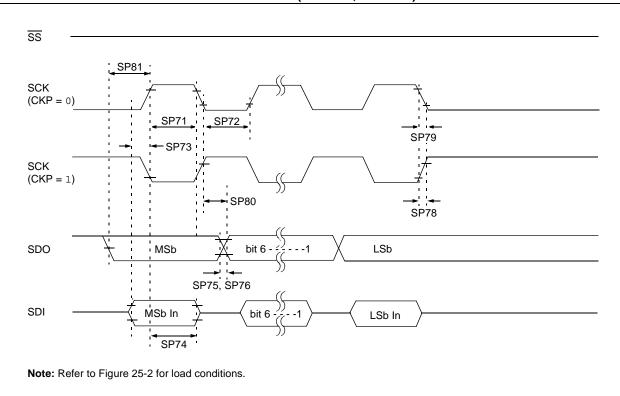
2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

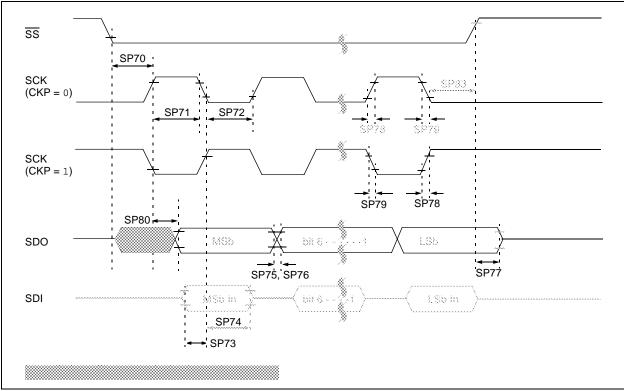
TABLE 25-8: PIC16F707 A/D CONVERSION REQUIREMENTS

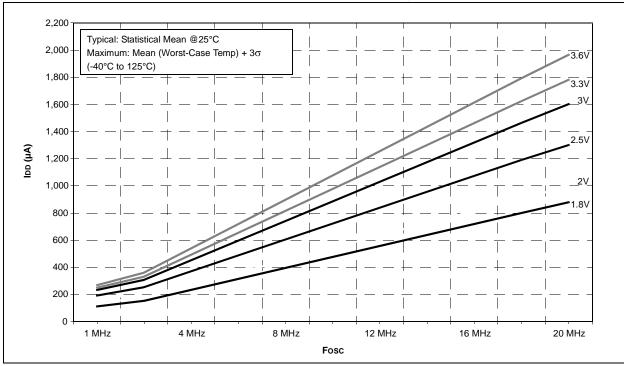

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD130*	Tad	A/D Clock Period	1.0	_	9.0	μS	Tosc-based
		A/D Internal RC Oscillator Period	1.0	2.0	6.0	μS	ADCS<1:0> = 11 (ADRC mode)
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		10.5	-	TAD	Set GO/DONE bit to conversion complete
AD132*	TACQ	Acquisition Time		1.0	—	μS	

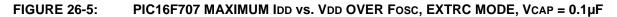

* These parameters are characterized but not tested.

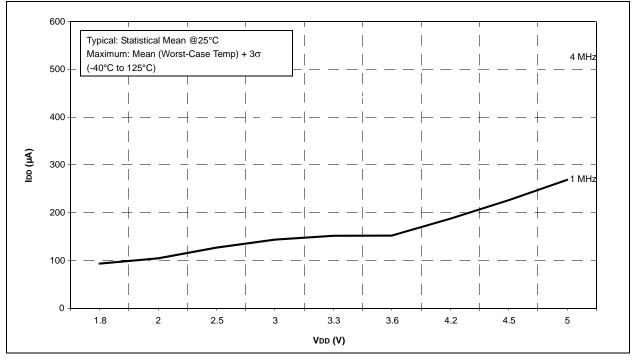
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

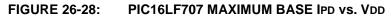
Note 1: The ADRES register may be read on the following TCY cycle.

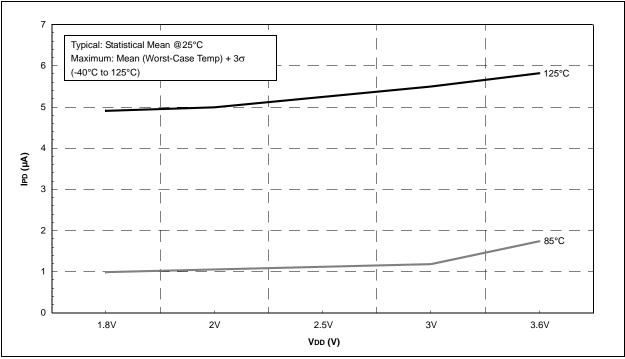

FIGURE 25-12: PIC16F707 A/D CONVERSION TIMING (NORMAL MODE)

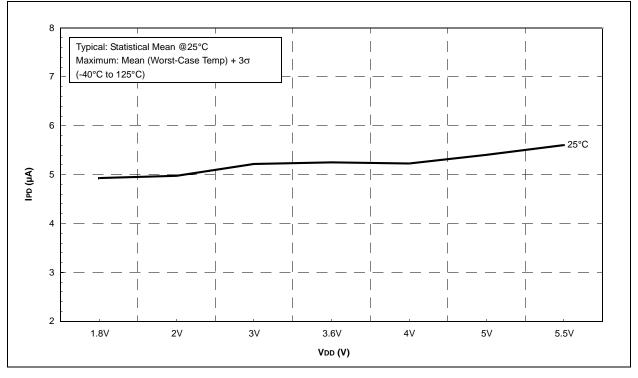



FIGURE 25-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)









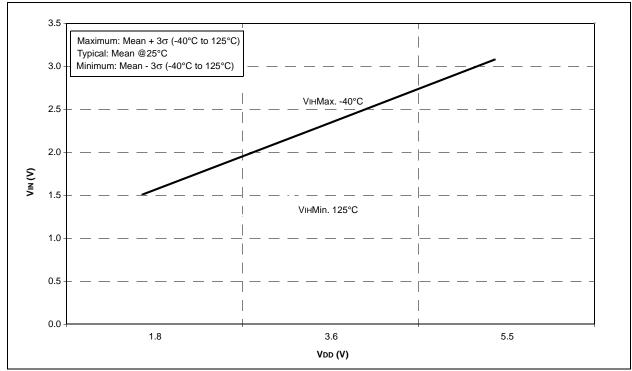
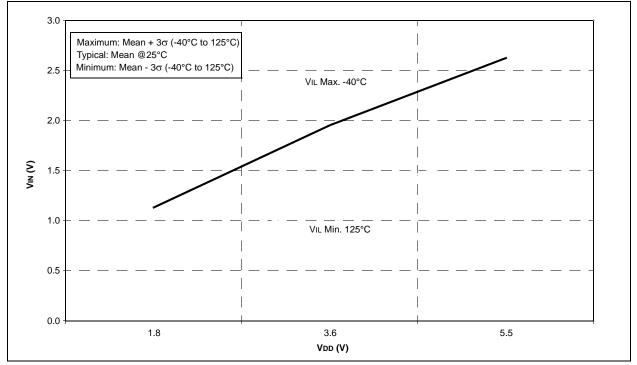
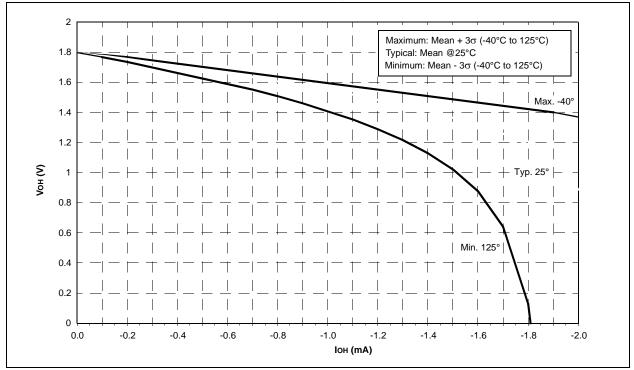
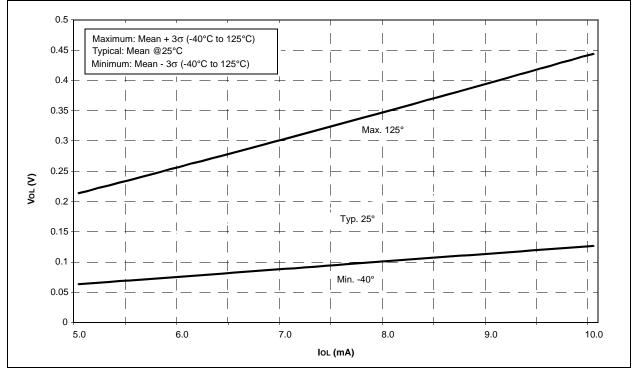




FIGURE 26-50: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE


FIGURE 26-51: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

